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ON KLEIN SURFACES AND DIHEDRAL GROUPS

M. IZQUIERDO

1. Introduction.

In this paper we study the following problem. Given an NEC group I' and the
dihedral group D, with p a prime, how many non conjugate normal subgroups of
I' has D, as quotient group? This is equivalent to asking how many
non-biconformally equivalent Klein surfaces that are coverings of the orbifold
whose fundamental group is I admit D, as a group of automorphisms. A related
question is the classification of actions of D, on a Riemann surface. Natanzon [9]
gives a classification for D,-actions on Riemann surfaces.
This paper is a generalization to NEC groups of the paper of Lloyd [6].

2. Klein surfaces and their groups.

Let H be the hyperbolic plane. A non-Euclidean crysstallographic NEC group is
a discrete subgroup I' of automorphisms of H (Iso H) with compact quotient
space (2-orbifold). Equivalently, I is a group that acts properly discontinuously
on H. If I' is an NEC group containing orientation-reversing elements, then I' is
called a proper NEC group; otherwise I is called a Fuchsian group and is
asubgroupof Iso* H, where Iso* H denotes the subgroup of Iso H formed by the
orientation-preserving automorphisms of H. If I' is a proper NEC group then
I'nIso™ H =I'" is a Fuchsian group called the canonical Fuchsian group of I'.

DEFINITION ([8]). A 2-orbifold M is a connected Hausdorf space which admits
a folding atlas of formed by folding charts (U;, ¢;, G;, A;) where U, is an open
subset of C, G, is a finite group, and the mapping ¢;: A; — U, is such that
A;/G; =~ U,, with the following compatibility condition that for all xe 4; and
y€ A; such that ¢,(x) = ¢;(y), there exist open subsets V; of 4; and V; of 4;, and
a diffeomorphism ¢: V; - V; such that ¢; = ¢;¢.

Moreover, if pe M, p = ¢i(x), x € 4;, then the group Stb(p) = {geGy; xg = x}
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depends only on p and is independent of the choice of x or U;, so we can
distinguish the following points on the 2-orbifold M.

p is a regular point if Stb(p) = I,,

p is a cone point if Stb(p) is a cyclic rotation group of order n,

p belongs to a mirror line if Stb(p) is a cyclic rotation group of order 2 generated
by one reflection,

p is a corner point if if Stb(p) is a dihedral group of order 2n generated by
2 reflections.

The above number n is called the order of p.

DEFINITION ([8]). Let M, N be 2-orbifolds and let h: N - M be a continuous
onto mapping. h is called an (orbifold-)covering if there exists a folding atlas
o = {(U;, ¢;, G, 4;)} for M such that for every connected component V of h~ 1 U;
there exists a folding chart f;: 4; - V in the maximal atlas of N such that hf; = ¢,.

ExAMPLE. Let S be a Riemann surface, S has a 2-orbifold structure whose
points are all regular. If now G is a group acting properly discontinuously on S,
then the quotient space S/G has orbifold structure and the projection map
n: S — §/G is an (orbifold-)covering.

A surface S with boundary is a 2-orbifold without cone or corner points. The
connected components of the boundary correspond to the mirror lines of the
2-orbifold.

A 2-orbifold M is called a good 2-orbifold if M has a covering which is a surface.
We denote by % the universal covering of the orbifold M (% is either the 2-sphere
52, the Euclidean plane E? or the hyperbolic plane H). A good 2-orbifold M is the
quotient of # by a group I' acting properly discontinuously on %. The group I"is
called the fundamental group of M and we write I’ = n(M) since, if M is a closed
surface, then I' is the fundamental group of M. Notice that the fundamental
group, as a 2-orbifold, of a surface M with boundary is not the fundamental
group of M as a 2-manifold.

ExAMPLE. Let M = H/I' be a good hyperbolic 2-orbifold. The 2-sheeted
covering M* of M given by H/I'*, where I' " is the canonical Fuchsian subgroup
of I', is called the complex double of M.

The algebraic structure of I' or, equivalently, the geometrical structure of the
quotient 2-orbifold M = H/I is determined by the signature:

(21) S(M) = S(F) = (g’ i’[mlvmr]v {("11a"'9n1s1)9' . w(npl""’npsp)}‘

where H/I' is a 2-orbifold lying on a compact surface of genus g and having
pmirror lines. If the orbifold is orientable we use the sign +, and the sign — ifitis
non-orientable. The integers my, ..., m, are called the periods of s(I'): these are the
orders the cone points of H/I'. The bracket (ny;,..., ny,) is called the kth period
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cycle, itis associated to the kth mirror line of H/I". The integers ny, ..., m, called
link periods, are the orders of the corner points on the kth mirror line.

Associated with the signature of a 2-orbifold M = H/I" is a presentation for the
NEC group I' with:

GENERATORS:  xi,...,X%, Ckos--Chs0 1 SkSp,

(If H/I is non-orientable) ((1) a,, |l £h<g,

(If H/T 1s orientable) 2) ap, by, 1 Sh=y.

RELATORS: x/ 1<i<r, ;1 <k<p0<j<s,
(ki1 " 1 Sk Ep 1 SjE 8,000 = ek‘lck,skekvl Zk=p

. p g r 14 g
(2.2) (1) n Xi n €x H a,f or (2) H X; n H Lan, by].
i=1 k=1 h=1 i=1 k=1 h=
(Where {4, b,] is the commutator of a, and b,)

Let I"be an NEC group. I' is called a surface group if s(F) (g, £, [-1L{{—),
and called a bordered surface group if (I') = (g, +,[ -1, {(— —)}). Shorten-
ing we say that I' is a surface group in both cases.

Every good 2-orbifold M = #/I' admits a finite-sheeted (orbifold-)covering
S that is a surface. This allows us to generalize the Euler characteristic to
a 2-orbifold M:

x(M)=2—ag—p—;<1— "ll>—%z<1—~‘~),

i

where o = 1 if #/I' is non-orientable and a = 2 if %/I is orientable.

Let % be the universal covering of a 2-orbifold M. Then # = S? if y(M) < 0,
U = E*if M) =0and # = H if y(M) > 0.

The hyperbolic area u(M) of a 2-orbifold M = H/I" depends only on s(I'). It is
calculated by the Gauss-Bonnet formula:

2.3 W) = W(M) = —2rnxy(M),

Let I" be an NEC group with quotient orbifold M. If I'" is a subgroup of I" of
finiteindex [I": "] = nin I',then I'" is an NEC group whose quotient orbifold M’
is an n-sheeted covering of M, whose monodromy map is the representation of
the action of I" on the I'-cosets. We have the Riemann-Hurwitz formula:

(2.4) Iy = [r:r’jur).

Let I' be an NEC group with quotient 2-orbifold M = H/I'. Then
M* = H/I'* is a 2-orbifold without mirror lines called the complex double of M.
The algebraic genus g, of M is defined to be the topological genus of its complex
double, i.e.
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(2.5) Ja=o0ag +k—1,

where o = 1 if M is non-orientable and « = 2 if M is orientable, g is the genus of
M and k is the number of mirror lines in M.

Let G be a finite group. If G acts faithfully on a Klein surface S as a group of
automorphisms, where S = H/A,then G = I'/A, where A is a normal subgroup of
an NEC group I'. Now, the following are equivalent:

a) The number ¢(I', G) of normal surface subgroups A of an NEC group
I' such that I'/A = G.

We say that an epimorphism ¢: I' — G is a surface kernel epimorphism if Ker ¢
is a group without other elliptic elements than reflections, i.e. H/Ker ¢ is a sur-
face. Then the number ¢(I', G) given in a) yields us

b) the number of non-equivalent surface kernel epimorphisms from I" onto G.

If we consider that two orbifold-coverings of the orbifold M = H/I" are
isomorphic if and only if their fundamental groups are conjugate in I' (the
fundamental group of M) [8], then we can express a) or b) with geometrical words
as follows:

¢) the number ¢(I',G) of non equivalent surfaces that are regular (orbi-
fold-)coverings of H/I', where G is the group of transformations of the covering.

After the following lemma, our aim is to calculating the above number ¢(I', G)
when G is a dihedral group D, with pa prime number. In this case all link-periods
in I must be equal to the prime p. This is the natural generalization to NEC
groups of [6].

LeEMMA 2.1. If T is a proper NEC group with some link-period of odd order p,
then G does not admit a cyclic group C, as a quotient group by a surface group.

PROOF. Let ¢, ;- and ¢, ; be the reflections associated to the odd link-period
ny;. Let ¢: I' - C,, be an epimorphism from I" to C,, where C,, = u/u” = 1,), As
¢y, j—1 and ¢, ;are elements of order 2in I', both ¢, ;_, and ¢, ; must be in Ker ¢.
Then ¢ ;- ¢, ;1s an elliptic element in Ker ¢ and Ker ¢ is not a surface group.

Lemma 2.1 does not apply for p = 2.

IEMMA 2.2. Let T’ be an NEC group with s(I') = (0, +,[-1,{(2,...,2),...,
(2,...,2)}), where the r period cycles are of even length. Then there are 2*"~* non
equivalent surface coverings of U/I" which admit C, as a group of automorphisms.

NOTE. % = S2 if ([) = (0, +,[— 1, {(2,2)}) and % = E* if s(I) = (0, +,[ -1,
{2,2,2,2)}).
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PROOF. Let us write C, = {1,,u}. As Aut C, is trivial, to prove the lemma we
must count ¢(I',C,), i.e. in how many ways can we define ¢: I' —» C, on the
generators ¢, ; and ¢, of I" such that ¢ is a surface kernel epimorphism?

Now, we can define ¢ for the generators of each period cycle in two ways:

i) ¢’(Ck,2j) =1;= ¢(Ck.sk)a ¢(Ck.2j+1) =u, Pleg) =15 or ¢leg) =u, 1 <j=
(s — 2)/2, or

ii) ¢(Ck‘2j) =u= ¢(ck‘s,‘)’ dler, 2541 =1, Ple) =1, or Ple)=u, 15j=
(s — 2)/2, but ¢(e,) is given by the condition H dle) = 15 So oI, C,)
— 2’ 4,.,_ 1 — 22r—1_

3. Generating epimorphisms ¢: I' — D, with p an odd prime.

We are only interested in those NEC groups I' whose quotient orbifold lies on the
sphere and without conic points. So s(I') = (0, +,[ —1,{Cy}«=1.,), where each
period cycle C, have s, link-periods equal to p and a presentation for I' is the
following:

I'= (e o) k=1rrj=0, Sk/cf,j, (Ck,j- 16k, )" Ck,0€k 1Ck‘seka Hek>'

D, = <c,u/c*.u”, cucu).If pis a prime distinct from 2, there is one conjugacy class
of elements of order 2 and one conjugacy class of elements of order p. If p = 2,
there are 3 conjugacy classes of elements of order 2, namely {c}, {u} and {cu}.

We consider in this paragraph the cases when p is an odd prime.

If ¢: I > D, is a surface kernel epimorphism, then o(¢(cy ;) divides 2 (o(z)
denotes the order of an element z in D)), ¢(c, ;¢ ;) =W, for some
ye{l,..p— 1} and [] ¢(e,) = 1,. So the conditions to be satisfied by the images
of the generators of G are:

(3.1) 1) gij=lcr,j-1) =, ye{0,..p — 1}, Plcy, ;) = cu*, where x F y,
(3.2)ii) g = ¢lex) is such that Plce, o)(P(er)) ™ Pler)plex) = 1gand [ dlee) = 1. _

Since a set G4 = {gy, g/satisfying (3.1) and (3.2)} is a generating set for D, the
number ¢(I', D) is the number of orbits of the sets G, under the action of Aut D,,.
But AutD, = C, < C,_y, 50 |AutD,| = p(p — 1).

THEOREM 3.1. Let T’ be an NEC group with s(I') = (0, +,[ -1, {(p,..-,P)}),
where there are s =3 link-periods. Then there are ¢(I',D,)=(p — 1)~ % —
s—3 § — 2 . .

Y (S . >ps~ 3 ~J(— 1Y non equivalent surface coverings of U/I" and the surfaces
ji=o\ J
admit D, as a group of automorphisms.

Again, % = E* if s(I') = (0, +,[ -1, {(3, 3, 3)}), otherwise % = H.
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Proor. We begin by calculating the number Q; of different sets G, = {¢(c;),
0 <i<s— 1},wherec;,0 < i < sarethe generating reflections of I'. Notice that
Co = Cs.

For s = 3, we have that ¢(co) = cu*, ¢(cy) = cv’, with y £ x and ¢(c,) = cv?,
with z + x and z % y. So there are @3 = p(p — 1)(p — 2) different sets.

For s = 4, we have ¢(c,), ¢(c;)and ¢(c,) = cu® asfor s = 3. For ¢)(c3), we have,
respectively, p — 1 choicesifz = xorp —2ifz £ x.SoQ,=plp— D(p — 1) +
(- 271

Fors = 5,wehave p — 2 choices for ¢(c,_ ,)if ¢(c, _,) is distinct from ¢(c,) and
p — 1 choices if ¢(c_ ,) is equal to ¢p(cy). But ¢(c,- ;) is equal to ¢(co) if dlcs-3) is
distinct from ¢(co). So Q; satisfies the equation:

(3.3) Q= —2Qs-1 +(p — DQ;->.

Equation (3.3) is a homogeneous difference equation with characteristic poly-
nomial

(3.4 rr—p—-2r—(-1.

The zeros of (3.4) are p — 1 and — 1. So, the general solution is @, = (p — 1)°
A + (—1)°B. Using Q3 and Q, to determine the constants 4 and B,weget A = 1,
B=p—-1. S0

(3.5) &=@—-1+(=D-1)

s—2

ie. @ =[p — ™" + (=11p — 1), where (p — 1" + (=1 =p

k=0
(S B l)pS‘z-*(—l)*, s0

S22 (s —1
Qs=(p~1)pk20< k )ps‘z"‘(—l)"=
s (s—2 . .
=[(p— y2- ¥ (sj >ps-3‘1(~1y](p~ 1.

i=0

_ 9 s _s_3<s _2> S—3-j(_ 1\
M) === =02 = B (T )p A

NoTte 1. By the Riemann-Hurwitz formula and using the representation of D,
as permutation group, there are different biconformal structures on
a non-orientable surface or orientable surface of genus (s —2)(p — 1) or
(s — 2)(p — 1)/2 respectively without boundary components. The subgroups A of
I' associated to them have signature s(4) = ((s —2)(p — 1), —,[=1,{—}) or

s(A) =(s—20p - 1/2,+,[-1.{-})
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Figure 1.

The minimal genus surfaces with D, as a group of automorphism occur when
I is an NEC group with signature s(I') = (0, +,[—1, {(p, p, p)})- The number of
such non equivalent surface coverings is p — 2 according to theorem 3.1. In
particular, there is a unique biconformal structure for a torus admitting D5 as
a group of automorphisms. A fundamental region for this torus is shown in figure
1. Itsfundamental group A is a normal subgroup of an NEC group with signature
s(I'y = (0, +,[—1,{(3,3,3)}) and with the following permutation representation:
¢: I — X defined by f(co) = (1,2)(3,4)(5,6), flc1) = (1,3)(2,5)(4,6), f(c;) =
(1,6)(3, 5)(2,4). Notice that (1, 2)(3,4)(5, 6), and (1, 5,4)(2, 3,6) = f(co) f(c,) gener-
ate D3. The map ¢ is also the monodromy map of the (orbifold-)covering
F:E?/A - E*T.

NoTE 2. We can extrapolate to @, = p(p — 1), Q; =0, Qo = p. They have
geometrical interpretation. For instance, the signature s(I') = (0, +,[—1, {(p)})is
not admissible since the orbifold lying on a disc with one corner point is not
a good orbifold.

With the same calculations as in theorem 3.1:

CorOLLARY 3.1. Let T' be an NEC group with s(I')= (0, +,[—],
{(®,..-sD),-- -, (D, ..., D)}), where at least one period cycle has 2 or more link-periods
and all cycles are non empty. The number ¢(I", D,) of non-equivalent epimorphisms

from I’ onto D, is p""*(p — 1)~ ', where s is the number of link-periods and r is the
number of period cycles in s(I).

ProoF. We assume that the last period cycle has more than 1 link-period. Let
s; be the number of link-periods in the i-th cycle, with Zsi = 5. Now ¢(c; ,,) is
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conjugate, but not necessarily equal to ¢(c; o). So for all cycles except the last one
the number of choices of {¢(c; ), 0<j<s, 1 <i<r—1}are Q;=p(p — 1)
To calculate the number of choices for the last period cycle we must distinguish

two cases:
a) If ¢(e,) =1 from the relator [[¢(e;) =1, then ¢(ci o) = Plci;,) and

s—2 . 1
Q,=Q,,whereQ;=(p—1)p Y, <S v >ps‘2"‘(— 1)* is given in theorem 3.1.
k=0

b) If ¢(e,) + 1, then P(e,) = u?, with z F 0. If P(c, o) = cw’, then ¢(c, ;) = cu”,
where x satisfies the equation x — y = —2zmod(p).

Ifs, = 2,then 0} = plp — 2),((cr.0) = W, dlcr. ) = cu, (e, 1) = cu”’,with X'
distinct from x and y)

if s, = 3, then Q; = p(p — 1) + p(p — 2)*,

For s, = 4, we have p — 2 choices for ¢(c, ; -,) is distinct from ¢(c, ;) and
p — 1 choices if ¢(c, ; —,) is equal to ¢(c, 5 ). But ¢(c, s, ) is equal to ¢(c, ) if
¢(c, s, -3) is equal to ¢(c, 5 ). So Q; satisfies the equation (3.3) with characteristic
polynomial (3.4). The general solutionis Q; = (p — 1’4" + (—1)°B". Using Q, for
s, = 2,5, = 3 to determine the constants A" and B, weget A" =1, B’ = —1. So

(3.6) =(p— 1+ (=1 =p z ( ) Pt (= 1y

So the number of choices for the last cycle is:

Yo ld s =2 (s — 1 . .
0= B0 1)[ > <S’ . )ps"z"(—l)ur
P P i

j=0

+Srz ( ) s~ 1 ](~1)j] (p—l)[( > s,*l(_l)o

£T (SJ_ )p*“f(—l)f}(p— D — 17" = p = 1),
j=1

_ng _ple-
plp—1) plp—1)
COROLLARY 3.2. Let I' be an NEC group withs(I') = (0, +,[ =1, {(p,-- D), - »

P, ..,p)}), with s link-periods in r period cycles, where at least one period cycle is

empty. Then there are ¢(I', D,) = (p — 1*~'p"~ 2 non equivalent surface coverings

of /T which admit D, as a group of automorphisms.

and ¢(I',D,) =p p—1y""

ProOF. We can assume that the empty period cycles are the r — ' last ones
and each of the r’ first period cycles has s; link-periods, with ) s; = s. So for all
non-empty period cycles the number of choices of {¢¢; ,0 < j<s,1 <i<r'}are
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Q; = p(p — 1)*. ¢le,) is given as the commutator of ¢(c; o) and ¢(c; ;). The
number of choices for all empty period cycles except the last one is p.

Finally, ¢(c,) and ¢(e,) are fixed by the relators ﬂ dle;) = 14, @lc,)(Ple,) !
é(c,)d(e,) = 1,. Therefore the number of sets G, is p"~'(p — 1), and §(I', D) =
P — 1l

REMARK. To calculate the number ¢(I', D,) of non equivalent surface cover-
ings of H/I" with D, as the group of covering-transformations is slightly different
from theorem 3.1 for the groups I' when all period cycles have exactly one
link-period. If I' is such a group, then, as in note 2, s(I') = (0, +,[—1,
{(p),...,(p)}), with at least 2 period cycles. The generators of I are c; o, ¢; 1, €,
1 <i £ r, where r is the number of period cycles. To calculate the different sets
G, = {gx;, gu/satisfying (3.1) and (3.2)}, we must consider that ¢(c; o) + P(ci 1),
L isrsode)+ 1,

The case whenr = 2, ¢(c, o) = cu™, P(cy. 1) = cu’, with y % x, ¢(e;) = u* is the
commutator of cu* and cw’, so z + 0. We have choices for ¢(c, o), but ¢(c, ;) and
@(e,) are fixed. The number of sets G, is I, = p*(p — 1), and ¢(I', D,) = p.

The case when r = 3. ¢(cy o) = cu*, ¢lcy.,) = cu’, with y £ x, ¢(e,) = v*,
where u” is the commutator of cu* and cu”, so z & 0. To choose ¢(e,) and ¢(ez), we
must satisfy the condition

(3.7) Plex)dles) = u™*, with P(e,) + 15 and ¢les) + 1,

¢(c,. 1) and ¢(c5, ;) are given by the condition ¢; o = e; '¢; ye;.

Condition (3.7) is equivalent to the following: counting ordered pairs (z', z") of
numbers between 1 and p — 1 such that z’ + z” = —zmod(p).

There are (p — 2) such pairs, hence I3 = p*(p — 1)(p — 2), and ¢(I',D,) =

2

pip —2)

Ifr 2 4, then d(c;.0) = cu*, (ci, 1) = cw’, with y + x, ple)) = w', | S i <7 — 2,

r-2

where ” is the commutator of cu* and cu®,s0z % 0. If [ | e; = 14, then we do asin

i=1
r—2

the case r = 2 for the two last cycles. If [ ] e; # 1,, then we do asin thecaser = 3
i=1

for the last cycles.
—p—-2 -1
Hence I, =p *p— 1)’_2p2[(p );p ) + (p ’ )] =p 'p—1y!

(p—2+ 1)=p"~!p— 1y. Therefore ¢(I',D,) =p " *(p — 1) "~

NoTE 3. For the NEC groups I' in theorem 3.1 and corollaries 3.1, 3.2 and the
previous remark, Ker ¢ is a normal surface subgroup of index 2pin I'. This is just
twice the minimal index for surfaces subgroups calculated in [3].
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4. Surfaces with D, as a group of automorphisms.

If p = 2, there are 3 conjugacy classes of elements of order 2, namely {c}, {u} and
{cu}. If ¢: I — D, is a surface kernel epimorphism, then o(¢(c,, ;)) divides 2 (o(z)
denotes the order of an element z in D,), ¢(cy, j—1¢, ;) must be ¢, u or cu, and
[ ¢(ex) = 1, So the conditions to be satisfied by the images of the generators of
G are:

i) gxj=Pler,j-1) =2, ze{c,u,cu, 14}, @) =2, 2 €{c,ucu,1,}, where
z% 2z,

ii) g = plex) is such that ey, o)(@(er) ™ ' Plc,)dlex) = 14 and [ [ pler) = 1.

Since a set G, = {gx;, gu/satisfying i) and ii)} may generate D, or any of the
3 cyclic subgroups of order 2, we consider the sets G, = {g;, gx/satisfying i) and
ii), generating D,}. The number ¢(I', D,) is the number of orbits of the sets
G, under the action of Aut D,. But AutD, = S5, so |AutD,| = 6.

LemMMa 4.1. Let I" be an NEC group with all link-periods equal to 2. If I has some
period cycle with exactly one link-period, then D, is not a quotient group of I' by
a surface group.

PrOOF. Let ¢p: I' - D an epimorphism from I' to D,. Let C; be the period cycle
with exactly one link-period. I' has, among others, the generators ¢;q, ¢, and e,
with the relation ¢ o = € ‘¢, ;€. But the elements of order 2, ¢(ci.o) and ¢(c;_ ),
are conjugatein D, if and only if ¢(cy o) = ¢(cy, 1) So P(cy ock, 1) = 1, and Ker ¢ is
not a surface group.

In the following, we consider s1gnatures of NEC groups where there are at least
two link-periods in each cycle.

THEOREM 4.1. Let I' be an NEC group with s(I') = (0, +,[—1,{(2,...,2)}),
where there are s link-periods all equal to 2. The number of non equivalent surface
coverings of %|T" which admit D, as a group of automorphisms is:

a) (T, Dz)—2z< j 1)4’ 27i(—1Y if sis odd, or
b) &', D,) = i ( )45’2"'(— 1Y — 1ifs is even.
NOTE. % = S?if (1) = (0, +, [T, {2, 2)}) or S(T) = (0, +,[—T, {(2, 2, 2)}),

U = E*ifs(IN = (0, +,[-1.{2,2,2,2)}.

ProOF. We must distinguish the cases when the number of link-periods s is
odd or even.
a) s is odd. Then G4 = G;,. The number Q, of different sets G, = {¢(c;),
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0<i<s— 1},wherec;,0 <i = s(co = c,), are the generating reflections of I', is
calculated as in theorem 3.1, but now p = 4. So

s—2
Q=(@—1p+(-lPd-1=12F (S; 1>p5‘2"f(—1y‘, and

s=2/s 1 . .
0y =2 =2y (S . )ps“z“'(—l){
j=1 J

b) siseven. Then the number of sets G is the number of sets G, minus 3 times
the number C; of different sets that generate any of the cyclic subgroups of D,.
We have calculated this number C; in lemma 2.2. We have C; = 2.

So Q=4 —1F+ (=14 —-1)—6= 6[2si2<s ; 1>ps—z—f(_1y- _ 1]_
i=1

Q, s22(s—1\ _,_. .
Therefore, ¢(F,DZ)=?=2 Y ( j )ps 27 =1y - 1.
ji=1
COROLLARY 4.1. Let I" be an NEC group with s(I') = (0, +,[ -1, {(2,..-,2),...,
(2,...,2)}), where there r period cycles, each of them with s; link-periods equal to 2.
The number of non equivalent surface coverings of %/I" that admit D, as a group of
automorphisms is:

r

a) o(I',D,) = (3" [T03 '+ (- 1)5']>/2 if s; is odd for some i, or

i=1

b)  oU,D,)= (3’“1 103+ (- 1)“])/2 — 4 Yifall s; are even.
i=1
Proor. First of all, as two elements ¢(c; o) and ¢(c; 5,) of order 2 in D, are
conjugate if and only if ¢(c; o) = ¢(c;s,), the number of sets G, for the ith cycle is
Q;,» where Q, is given in theorem 4.1.
a) Some s; is odd. Then G4 = G}, Q;, = 3[3%! 4+ (—1)"], we notice that 4,
and hence 2, divides 3%~ 1 4 (—1)%.

So ()&(1",D2)=E6gs—‘=<3’*1.l:']1 [3! +(——l)s"]>/2.

b) Alls; are even. Then the number of sets G, is the number of sets G, minus
3 times the number C, of different sets that generate any of the cyclic subgroups of
D,. We have calculated this number C, in lemma 2.2. We have C, = 2* "1,
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r

3r n [35.‘1 + (_l)s,] _ 3(221'-1)

So oI, D,)=—=1 S =
= (3"1 [mmt+ (—1)&])/2 — 4t
i=1
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