ON KLEIN SURFACES AND DIHEDRAL GROUPS

M. IZQUIERDO

1. Introduction.

In this paper we study the following problem. Given an NEC group \(\Gamma \) and the dihedral group \(D_p \), with \(p \) a prime, how many non conjugate normal subgroups of \(\Gamma \) has \(D_p \) as quotient group? This is equivalent to asking how many non-biconformally equivalent Klein surfaces that are coverings of the orbifold whose fundamental group is \(\Gamma \) admit \(D_p \) as a group of automorphisms. A related question is the classification of actions of \(D_p \) on a Riemann surface. Natanzon [9] gives a classification for \(D_2 \)-actions on Riemann surfaces.

This paper is a generalization to NEC groups of the paper of Lloyd [6].

2. Klein surfaces and their groups.

Let \(H \) be the hyperbolic plane. A non-Euclidean crystallographic NEC group is a discrete subgroup \(\Gamma \) of automorphisms of \(H \) (Iso \(H \)) with compact quotient space (2-orbifold). Equivalently, \(\Gamma \) is a group that acts properly discontinuously on \(H \). If \(\Gamma \) is an NEC group containing orientation-reversing elements, then \(\Gamma \) is called a proper NEC group; otherwise \(\Gamma \) is called a Fuchsian group and is a subgroup of \(\text{Iso}^+ H \), where \(\text{Iso}^+ H \) denotes the subgroup of \(\text{Iso} H \) formed by the orientation-preserving automorphisms of \(H \). If \(\Gamma \) is a proper NEC group then \(\Gamma \cap \text{Iso}^+ H = \Gamma^+ \) is a Fuchsian group called the canonical Fuchsian group of \(\Gamma \).

DEFINITION ([8]). A 2-orbifold \(M \) is a connected Hausdorff space which admits a folding atlas \(\mathcal{A} \) formed by folding charts \((U_i, \phi_i, G_i, A_i) \) where \(U_i \) is an open subset of \(\mathbb{C} \), \(G_i \) is a finite group, and the mapping \(\phi_i: A_i \to U_i \) is such that \(A_i/G_i \approx U_i \), with the following compatibility condition that for all \(x \in A_i \) and \(y \in A_j \) such that \(\phi_i(x) = \phi_j(y) \), there exist open subsets \(V_i \) of \(A_i \) and \(V_j \) of \(A_j \), and a diffeomorphism \(\phi: V_i \to V_j \) such that \(\phi_j = \phi_j \phi \).

Moreover, if \(p \in M \), \(p = \phi_i(x), x \in A_i \), then the group \(\text{Stb}(p) = \{ g \in G_i : xg = x \} \)
depends only on \(p \) and is independent of the choice of \(x \) or \(U_i \), so we can distinguish the following points on the 2-orbifold \(M \).

- \(p \) is a **regular point** if \(\text{Stb}(p) = I_d \).
- \(p \) is a **cone point** if \(\text{Stb}(p) \) is a cyclic rotation group of order \(n \).
- \(p \) belongs to a **mirror line** if \(\text{Stb}(p) \) is a cyclic rotation group of order 2 generated by one reflection,
- \(p \) is a **corner point** if \(\text{Stb}(p) \) is a dihedral group of order \(2n \) generated by 2 reflections.

The above number \(n \) is called the **order of \(p \)**.

Definition ([8]). Let \(M, N \) be 2-orbifolds and let \(h : N \to M \) be a continuous mapping. \(h \) is called an **(orbifold-)covering** if there exists a folding atlas \(\mathcal{A} = \{ (U_i, \phi_i, G_i, A_i) \} \) for \(M \) such that for every connected component \(V \) of \(h^{-1} U_i \) there exists a folding chart \(f_j : A_i \to V \) in the maximal atlas of \(N \) such that \(hf_i = \phi_i \).

Example. Let \(S \) be a Riemann surface, \(S \) has a 2-orbifold structure whose points are all regular. If now \(G \) is a group acting properly discontinuously on \(S \), then the quotient space \(S/G \) has orbifold structure and the projection map \(\pi : S \to S/G \) is an (orbifold-)covering.

A surface \(S \) with boundary is a 2-orbifold without cone or corner points. The connected components of the boundary correspond to the mirror lines of the 2-orbifold.

A 2-orbifold \(M \) is called a **good 2-orbifold** if \(M \) has a covering which is a surface. We denote by \(\mathcal{U} \) the universal covering of the orbifold \(M \) (\(\mathcal{U} \) is either the 2-sphere \(S^2 \), the Euclidean plane \(E^2 \) or the hyperbolic plane \(H \)). A good 2-orbifold \(M \) is the quotient of \(\mathcal{U} \) by a group \(\Gamma \) acting properly discontinuously on \(\mathcal{U} \). The group \(\Gamma \) is called the **fundamental group of \(M \)** and we write \(\Gamma = \pi(M) \) since, if \(M \) is a closed surface, then \(\Gamma \) is the fundamental group of \(M \). Notice that the fundamental group, as a 2-orbifold, of a surface \(M \) with boundary is not the fundamental group of \(M \) as a 2-manifold.

Example. Let \(M = H/\Gamma \) be a good hyperbolic 2-orbifold. The 2-sheeted covering \(M^+ \) of \(M \) given by \(H/\Gamma^+ \), where \(\Gamma^+ \) is the canonical Fuchsian subgroup of \(\Gamma \), is called the **complex double** of \(M \).

The algebraic structure of \(\Gamma \) or, equivalently, the geometrical structure of the quotient 2-orbifold \(M = H/\Gamma \) is determined by the signature:

\[
(2.1) \quad s(M) = s(\Gamma) = (g; \pm; [m_1, \ldots, m_r]; \{(n_{11}, \ldots, n_{1s_1}), \ldots, (n_{p1}, \ldots, n_{ps_p})\})
\]

where \(H/\Gamma \) is a 2-orbifold lying on a compact surface of genus \(g \) and having \(p \) mirror lines. If the orbifold is orientable we use the sign \(+ \), and the sign \(- \) if it is non-orientable. The integers \(m_1, \ldots, m_r \) are called the **periods** of \(s(\Gamma) \); these are the orders the cone points of \(H/\Gamma \). The bracket \((n_{k1}, \ldots, n_{k_s}) \) is called the \(k \)th **period**
cyke, it is associated to the kth mirror line of \(H/\Gamma \). The integers \(n_{k1}, \ldots, n_{kn} \), called link periods, are the orders of the corner points on the kth mirror line.

Associated with the signature of a 2-orbifold \(M = H/\Gamma \) is a presentation for the NEC group \(\Gamma \) with:

GENERATORS: \(x_1, \ldots, x_r, c_{k,0}, \ldots, c_{k,n_k}, 1 \leq k \leq p, \)

(If \(H/\Gamma \) is non-orientable) \((1) \ a_h, 1 \leq h \leq g, \)

(If \(H/\Gamma \) is orientable) \((2) \ a_h, b_h, 1 \leq h \leq g. \)

RELATORS: \(x_i^{m_i}, 1 \leq i \leq r, c_{k,j}^2, 1 \leq k \leq p, 0 \leq j \leq n_k, \)

\((c_{k,j-1}c_{k,j})^{s_{kj}}, 1 \leq k \leq p, 1 \leq j \leq s_k, c_{k,0} = e_k^{-1}c_{k,n_k}e_k, 1 \leq k \leq p, \)

(2.2) \((1) \ \prod_{i=1}^{r} x_i \prod_{k=1}^{p} e_k \prod_{h=1}^{g} a_h^2 \) or \((2) \ \prod_{i=1}^{r} x_i \prod_{k=1}^{p} e_k \prod_{h=1}^{g} [a_h, b_h]. \)

(Where \([a_h, b_h]\) is the commutator of \(a_h \) and \(b_h \))

Let \(\Gamma \) be an NEC group. \(\Gamma \) is called a surface group if \(s(\Gamma) = (g, \pm, \{ - \}, \{ - \}) \), and called a bordered surface group if \(s(\Gamma) = (g, \pm, \{ - \}, \{ - \}, \ldots, \{ - \}) \). Shortening we say that \(\Gamma \) is a surface group in both cases.

Every good 2-orbifold \(M = \mathcal{U}/\Gamma \) admits a finite-sheeted (orbifold-)covering \(S \) that is a surface. This allows us to generalize the Euler characteristic to a 2-orbifold \(M \):

\[
\chi(M) = 2 - \omega g - p - \sum_i \left(1 - \frac{1}{m_i} \right) - \frac{1}{k} \sum_{j} \left(1 - \frac{1}{n_{kj}} \right),
\]

where \(\omega = 1 \) if \(\mathcal{U}/\Gamma \) is non-orientable and \(\omega = 2 \) if \(\mathcal{U}/\Gamma \) is orientable.

Let \(\mathcal{U} \) be the universal covering of a 2-orbifold \(M \). Then \(\mathcal{U} = S^2 \) if \(\chi(M) < 0 \), \(\mathcal{U} = E^2 \) if \(\chi(M) = 0 \) and \(\mathcal{U} = H \) if \(\chi(M) > 0 \).

The hyperbolic area \(\mu(M) \) of a 2-orbifold \(M = H/\Gamma \) depends only on \(s(\Gamma) \). It is calculated by the Gauss-Bonnet formula:

(2.3) \(\mu(\Gamma) = \mu(M) = -2\pi\chi(M), \)

Let \(\Gamma \) be an NEC group with quotient orbifold \(M \). If \(\Gamma' \) is a subgroup of \(\Gamma \) of finite index \([\Gamma : \Gamma'] = n \) in \(\Gamma \), then \(\Gamma' \) is an NEC group whose quotient orbifold \(M' \) is an \(n \)-sheeted covering of \(M \), whose monodromy map is the representation of the action of \(\Gamma \) on the \(\Gamma \)-cosets. We have the Riemann-Hurwitz formula:

(2.4) \(\mu(\Gamma') = [\Gamma : \Gamma']\mu(\Gamma). \)

Let \(\Gamma \) be an NEC group with quotient 2-orbifold \(M = H/\Gamma \). Then \(M^+ = H/\Gamma^+ \) is a 2-orbifold without mirror lines called the complex double of \(M \). The algebraic genus \(g_a \) of \(M \) is defined to be the topological genus of its complex double, i.e.
(2.5) \[g_a = \alpha g + k - 1, \]

where \(\alpha = 1 \) if \(M \) is non-orientable and \(\alpha = 2 \) if \(M \) is orientable, \(g \) is the genus of \(M \) and \(k \) is the number of mirror lines in \(M \).

Let \(G \) be a finite group. If \(G \) acts faithfully on a Klein surface \(S \) as a group of automorphisms, where \(S \cong H/A \), then \(G \cong \Gamma/A \), where \(A \) is a normal subgroup of an NEC group \(\Gamma \). Now, the following are equivalent:

a) The number \(\phi(\Gamma, G) \) of normal surface subgroups \(A \) of an NEC group \(\Gamma \) such that \(\Gamma/A \cong G \).

We say that an epimorphism \(\phi: \Gamma \to G \) is a surface kernel epimorphism if \(\ker \phi \) is a group without other elliptic elements than reflections, i.e. \(H/\ker \phi \) is a surface. Then the number \(\phi(\Gamma, G) \) given in a) yields us

b) the number of non-equivalent surface kernel epimorphisms from \(\Gamma \) onto \(G \).

If we consider that two orbifold-coverings of the orbifold \(M = H/\Gamma \) are isomorphic if and only if their fundamental groups are conjugate in \(\Gamma \) (the fundamental group of \(M \)) [8], then we can express a) or b) with geometrical words as follows:

c) the number \(\phi(\Gamma, G) \) of non-equivalent surfaces that are regular (orbifold-)coverings of \(H/\Gamma \), where \(G \) is the group of transformations of the covering.

After the following lemma, our aim is to calculating the above number \(\phi(\Gamma, G) \) when \(G \) is a dihedral group \(D_p \), with \(p \) a prime number. In this case all link-periods in \(\Gamma \) must be equal to the prime \(p \). This is the natural generalization to NEC groups of [6].

Lemma 2.1. If \(\Gamma \) is a proper NEC group with some link-period of odd order \(p \), then \(G \) does not admit a cyclic group \(C_p \) as a quotient group by a surface group.

Proof. Let \(c_{k,j-1} \) and \(c_{k,j} \) be the reflections associated to the odd link-period \(n_{kj} \). Let \(\phi: \Gamma \to C_p \) be an epimorphism from \(\Gamma \) to \(C_p \), where \(C_p = \langle u/u^p = 1 \rangle \). As \(c_{k,j-1} \) and \(c_{k,j} \) are elements of order 2 in \(\Gamma \), both \(c_{k,j-1} \) and \(c_{k,j} \) must be in \(\ker \phi \). Then \(c_{k,j-1}c_{k,j} \) is an elliptic element in \(\ker \phi \) and \(\ker \phi \) is not a surface group.

Lemma 2.1 does not apply for \(p = 2 \).

Lemma 2.2. Let \(\Gamma \) be an NEC group with \(s(\Gamma) = (0, +, [-], \{(2, \ldots, 2), \ldots, (2, \ldots, 2)\}) \), where the \(r \) period cycles are of even length. Then there are \(2^{2r-1} \) non-equivalent surface coverings of \(\mathcal{U}/\Gamma \) which admit \(C_2 \) as a group of automorphisms.

Note. \(\mathcal{U} = S^2 \) if \(s(\Gamma) = (0, +, [-], \{(2, 2)\}) \) and \(\mathcal{U} = E^2 \) if \(s(\Gamma) = (0, +, [-], \{(2, 2, 2)\}) \).
Proof. Let us write $C_2 = \{1, u\}$. As Aut C_2 is trivial, to prove the lemma we must count $\phi(\Gamma, C_2)$, i.e. in how many ways can we define $\phi: \Gamma \to C_2$ on the generators $c_{k,j}$ and e_k of Γ such that ϕ is a surface kernel epimorphism?

Now, we can define ϕ for the generators of each period cycle in two ways:

i) $\phi(c_{k,2j}) = 1 = \phi(c_{k,s_k})$, $\phi(c_{k,2j+1}) = u$, $\phi(e_k) = 1 = 1 \leq j \leq (s_k - 2)/2$, or

ii) $\phi(c_{k,2j}) = u = \phi(c_{k,s_k})$, $\phi(c_{k,2j+1}) = 1$, $\phi(e_k) = 1 = 1 \leq j \leq (s_k - 2)/2$, but $\phi(e_k)$ is given by the condition $\prod \phi(e_k) = 1$. So $\phi(\Gamma, C_2) = 2, 4^{r-1} = 2^{2r-1}$.

3. Generating epimorphisms $\phi: \Gamma \to D_p$, with p an odd prime.

We are only interested in those NEC groups Γ whose quotient orbifold lies on the sphere and without conic points. So $s(\Gamma) = (0, +, [-], \{C_k\}_{k=1,r})$, where each period cycle C_k have s_k link-periods equal to p and a presentation for Γ is the following:

$$\Gamma = \langle e_k, c_{k,j}, k = 1, r, r, j = 0, s_k/c_{k,j}, (c_{k,j-1}c_{k,j})^p, c_{k,0}e_{k,-1}c_{k,x}e_k, \prod e_k \rangle.$$

$D_p = \langle c, u/c^2, u^p, cuc \rangle$. If p is a prime distinct from 2, there is one conjugacy class of elements of order 2 and one conjugacy class of elements of order p. If $p = 2$, there are 3 conjugacy classes of elements of order 2, namely $\{c\}, \{u\}$ and $\{cu\}$.

We consider in this paragraph the cases when p is an odd prime.

If $\phi: \Gamma \to D_p$ is a surface kernel epimorphism, then $o(\phi(c_{k,j}))$ divides 2 ($o(z)$ denotes the order of an element z in D_p), $\phi(c_{k,j-1}c_{k,j}) = u^y$, for some $y \in \{1, \ldots, p - 1\}$ and $\prod \phi(e_k) = 1$. So the conditions to be satisfied by the images of the generators of G are:

\begin{enumerate}
 \item[(3.1)] i) $g_{kj} = \phi(c_{k,j-1}) = cu^y$, $y \in \{0, \ldots, p - 1\}$, $\phi(c_{k,j}) = cu^x$, where $x \neq y$,
 \item[(3.2)] ii) $g_k = \phi(e_k)$ is such that $\phi(c_{k,0})(\phi(e_k))^{-1} \phi(c_{k,x})\phi(e_k) = 1$ and $\prod \phi(e_k) = 1$.
\end{enumerate}

Since a set $G_\phi = \{g_{kj}, g_k/satisfying (3.1) and (3.2)\}$ is a generating set for D_p, the number $\phi(\Gamma, D_p)$ is the number of orbits of the sets G_ϕ under the action of Aut D_p.

But Aut $D_p = C_p \bowtie C_{p-1}$, so $|\text{Aut } D_p| = p(p - 1)$.

Theorem 3.1. Let Γ be an NEC group with $s(\Gamma) = (0, +, [-], \{(p, \ldots, p)\})$, where there are $s \geq 3$ link-periods. Then there are $\phi(\Gamma, D_p) = (p - 1)^r - \sum_{j=0}^{s-3} \binom{s-2}{j} p^{s-3-j}(-1)^j$ non equivalent surface coverings of \mathcal{U}/Γ and the surfaces admit D_p as a group of automorphisms.

Again, $\mathcal{U} = E^2$ if $s(\Gamma) = (0, +, [-], \{(3, 3, 3)\})$, otherwise $\mathcal{U} = H$.

Proof. We begin by calculating the number Q_s of different sets $G_{\phi} = \{\phi(c_i), 0 \leq i \leq s - 1\}$, where $c_i, 0 \leq i \leq s$ are the generating reflections of Γ. Notice that $c_0 = c_s$.

For $s = 3$, we have that $\phi(c_0) = cu^x, \phi(c_1) = cu^y$, with $y \neq x$ and $\phi(c_2) = cu^z$, with $z \neq x$ and $z \neq y$. So there are $Q_3 = p(p - 1)(p - 2)$ different sets.

For $s = 4$, we have $\phi(c_0), \phi(c_1)$ and $\phi(c_2) = cu^z$ as for $s = 3$. For $\phi(c_3)$, we have, respectively, $p - 1$ choices if $z = x$ or $p - 2$ if $z \neq x$. So $Q_4 = p(p - 1)[(p - 1) + (p - 2)^2]$.

For $s \geq 5$, we have $p - 2$ choices for $\phi(c_{s - 1})$ if $\phi(c_{s - 2})$ is distinct from $\phi(c_0)$ and $p - 1$ choices if $\phi(c_{s - 2})$ is equal to $\phi(c_0)$. But $\phi(c_{s - 2})$ is equal to $\phi(c_0)$ if $\phi(c_{s - 3})$ is distinct from $\phi(c_0)$. So Q_s satisfies the equation:

$$Q_s = (p - 2)Q_{s - 1} + (p - 1)Q_{s - 2}.$$

Equation (3.3) is a homogeneous difference equation with characteristic polynomial

$$r^2 - (p - 2)r - (p - 1).$$

The zeros of (3.4) are $p - 1$ and -1. So, the general solution is $Q_s = (p - 1)^s A + (-1)^s B$. Using Q_3 and Q_4 to determine the constants A and B, we get $A = 1, B = p - 1$. So

$$Q_s = (p - 1)^s + (-1)^s(p - 1)$$

i.e. $Q_s = [(p - 1)^{s - 1} + (-1)^s](p - 1)$, where $(p - 1)^{s - 1} + (-1)^s = p \sum_{k=0}^{s-2} \binom{s - 1}{k} p^{s - 2 - k}(-1)^k$, so

$$Q_s = (p - 1)p \sum_{k=0}^{s-2} \binom{s - 1}{k} p^{s - 2 - k}(-1)^k =$$

$$= \left[(p - 1)^{s - 2} - \sum_{j=0}^{s-3} \binom{s - 2}{j} p^{s - 3 - j}(-1)^j\right](p - 1)p.$$

$$\phi(\Gamma, D_p) = \frac{Q_s}{p(p - 1)} = (p - 1)^{s - 2} - \sum_{j=0}^{s-3} \binom{s - 2}{j} p^{s - 3 - j}(-1)^j.$$

Note 1. By the Riemann-Hurwitz formula and using the representation of D_p as permutation group, there are different biconformal structures on a non-orientable surface or orientable surface of genus $(s - 2)(p - 1)$ or $(s - 2)(p - 1)/2$ respectively without boundary components. The subgroups A of Γ associated to them have signature $s(A) = ((s - 2)(p - 1), -[, -], \{ - \})$ or $s(A) = ((s - 2)(p - 1)/2, +, [-], \{ - \})$.

The minimal genus surfaces with D_p as a group of automorphism occur when Γ is an NEC group with signature $s(\Gamma) = (0, +, [\, - \], \{(p, p, p)\})$. The number of such non-equivalent surface coverings is $p - 2$ according to theorem 3.1. In particular, there is a unique biconformal structure for a torus admitting D_3 as a group of automorphisms. A fundamental region for this torus is shown in figure 1. Its fundamental group Λ is a normal subgroup of an NEC group with signature $s(\Gamma) = (0, +, [\, - \], \{(3, 3, 3)\})$ and with the following permutation representation: $\phi: \Gamma \to \Sigma_6$ defined by $f(c_0) = (1, 2)(3, 4)(5, 6)$, $f(c_1) = (1, 3)(2, 5)(4, 6)$, $f(c_2) = (1, 6)(3, 5)(2, 4)$. Notice that $(1, 2)(3, 4)(5, 6)$ and $(1, 5, 4)(2, 3, 6) = f(c_0)f(c_1)$ generate D_3. The map ϕ is also the monodromy map of the (orbifold-)covering $F: E^2/\Lambda \to E^2/\Gamma$.

Note 2. We can extrapolate to $Q_2 = p(p - 1)$, $Q_1 = 0$, $Q_0 = p$. They have geometrical interpretation. For instance, the signature $s(\Gamma) = (0, +, [\, - \], \{(p)\})$ is not admissible since the orbifold lying on a disc with one corner point is not a good orbifold.

With the same calculations as in theorem 3.1:

Corollary 3.1. Let Γ be an NEC group with $s(\Gamma) = (0, +, [\, - \], \{(p, \ldots, p), \ldots, (p, \ldots, p)\})$, where at least one period cycle has 2 or more link-periods and all cycles are non-empty. The number $\phi(\Gamma, D_p)$ of non-equivalent epimorphisms from Γ onto D_p is $p^{r-2}(p - 1)^{s-1}$, where s is the number of link-periods and r is the number of period cycles in $s(\Gamma)$.

Proof. We assume that the last period cycle has more than 1 link-period. Let s_i be the number of link-periods in the i-th cycle, with $\sum s_i = s$. Now $\phi(c_{i,s_i})$ is
conjugate, but not necessarily equal to \(\phi(c_{i,o}) \). So for all cycles except the last one the number of choices of \(\{ \phi(c_{i,j}), 0 \leq j \leq s, 1 \leq i \leq r - 1 \} \) are \(Q'_r = p(p - 1)^s \).

To calculate the number of choices for the last period cycle we must distinguish two cases:

a) If \(\phi(e_r) = 1 \) from the relator \(\prod \phi(e_i) = 1 \), then \(\phi(c_{i,s_i}) = \phi(c_{i,s_r}) \) and \(Q''_r = Q_s \), where \(Q_s = (p - 1) p \sum_{k=0}^{s-2} \binom{s - 1}{k} p^{s - 2 - k}(-1)^k \) is given in theorem 3.1.

b) If \(\phi(e_r) \neq 1 \), then \(\phi(e_r) = u^z \) with \(z \neq 0 \). If \(\phi(c_{r,0}) = cu^x \), then \(\phi(c_{r,s_r}) = cu^x \), where \(x \) satisfies the equation \(x - y = -2z \mod(p) \).

If \(s_r = 2 \), then \(Q''_r = p(p - 2)(\phi(c_{r,0}) = cu^x, \phi(c_{r,2}) = cu^x, \phi(c_{r,1}) = cu^x \), with \(x' \) distinct from \(x \) and \(y \).

If \(s_r = 3 \), then \(Q''_r = p(p - 1) + p(p - 2)^2 \).

For \(s_r \geq 4 \), we have \(p - 2 \) choices for \(\phi(c_{r,s_r - 2}) \) is distinct from \(\phi(c_{r,s_r}) \) and \(p - 1 \) choices if \(\phi(c_{r,s_r - 2}) \) is equal to \(\phi(c_{r,s_r}) \). But \(\phi(c_{r,s_r - 2}) \) is equal to \(\phi(c_{r,s_r}) \) if \(\phi(c_{r,s_r - 3}) \) is equal to \(\phi(c_{r,s_r}) \). So \(Q''_r \) satisfies the equation (3.3) with characteristic polynomial (3.4). The general solution is \(Q''_r = (p - 1)^x A' + (-1)^y B' \). Using \(Q''_r \) for \(s_r = 2 \), \(s_r = 3 \) to determine the constants \(A' \) and \(B' \), we get \(A' = 1, B' = -1 \). So

\[
Q''_r = (p - 1)^{s_r} + (-1)^{s_r + 1} = p \sum_{j=0}^{s_r - 1} \binom{s_r}{j} p^{s_r - 1 - j}(-1)^j
\]

So the number of choices for the last cycle is:

\[
Q' = \frac{Q_s}{p} + \frac{(p - 1)Q''_r}{p} = (p - 1) \left[\sum_{j=0}^{s_r - 2} \binom{s_r - 1}{j} p^{s_r - 2 - j}(-1)^j \right] + \sum_{j=0}^{s_r - 1} \binom{s_r}{j} p^{s_r - 1 - j}(-1)^j \right] = (p - 1)(p - 1)^{s_r - 1} = (p - 1)^{s_r}.
\]

and \(\phi(\Gamma, D_p) = \frac{\Pi Q'_i}{p(p - 1)} = \frac{p^{r-1}(p - 1)^s}{p(p - 1)} = p^{r-2}(p - 1)^{s-1} \).

Corollary 3.2. Let \(\Gamma \) be an NEC group with \(s(\Gamma) = (0, +, [-], \{p, \ldots, p\}, \ldots, (p, \ldots, p)) \), with \(s \) link-periods in \(r \) period cycles, where at least one period cycle is empty. Then there are \(\phi(\Gamma, D_p) = (p - 1)^{s-1} p^{r-2} \) non equivalent surface coverings of \(\mathcal{U}/\Gamma \) which admit \(D_p \) as a group of automorphisms.

Proof. We can assume that the empty period cycles are the \(r - r' \) last ones and each of the \(r' \) first period cycles has \(s_i \) link-periods, with \(\sum s_i = s \). So for all non-empty period cycles the number of choices of \(\{ \phi c_{i,j}, 0 \leq j \leq s, 1 \leq i \leq r' \} \) are
$Q_i = p(p - 1)^{r_i}$. $\phi(e_r)$ is given as the commutator of $\phi(c_{i,0})$ and $\phi(c_{i,s})$. The number of choices for all empty period cycles except the last one is p.

Finally, $\phi(c_r)$ and $\phi(e_r)$ are fixed by the relators $\prod \phi(e_i) = 1_d$, $\phi(c_r)(\phi(e_r))^{-1}$ $\phi(c_i)\phi(e_i) = 1_d$. Therefore the number of sets G_ϕ is $p^{r-1}(p - 1)^s$, and $\phi(\Gamma, D_p) = p^{r-2}(p - 1)^{s-1}$.

Remark. To calculate the number $\phi(\Gamma, D_p)$ of non equivalent surface coverings of H/Γ with D_p as the group of covering-transformations is slightly different from theorem 3.1 for the groups Γ when all period cycles have exactly one link-period. If Γ is such a group, then, as in note 2, $s(\Gamma) = (0, +, [-], \{(p), \ldots, (p)\})$, with at least 2 period cycles. The generators of Γ are $c_{i,0}, c_{i,1}, e_i$, $1 \leq i \leq r$, where r is the number of period cycles. To calculate the different sets $G_\phi = \{g_{k,j, g_k/satisfying (3.1) and (3.2)}\}$, we must consider that $\phi(c_{i,0}) \neq \phi(c_{i,1})$, $1 \leq i \leq r$, so $\phi(e_i) \neq 1_d$.

The case when $r = 2$, $\phi(c_{1,0}) = cu^x$, $\phi(c_{1,1}) = cu^y$, with $y \neq x$, $\phi(e_1) = u^z$ is the commutator of cu^x and cu^y, so $z \neq 0$. We have choices for $\phi(c_{2,0})$, but $\phi(c_{2,1})$ and $\phi(e_2)$ are fixed. The number of sets G_ϕ is $I_2 = p^2(p - 1)$, and $\phi(\Gamma, D_p) = p$.

The case when $r = 3$. $\phi(c_{1,0}) = cu^x$, $\phi(c_{1,1}) = cu^y$, with $y \neq x$, $\phi(e_1) = u^z$, where u^z is the commutator of cu^x and cu^y, so $z \neq 0$. To choose $\phi(e_2)$ and $\phi(e_3)$, we must satisfy the condition

(3.7) $\phi(e_2)\phi(e_3) = u^{-z}$, with $\phi(e_2) \neq 1_d$ and $\phi(e_3) \neq 1_d$.

$\phi(c_{2,1})$ and $\phi(c_{3,1})$ are given by the condition $c_{i,0} = e_i^{-1}c_{i,1}e_i$.

Condition (3.7) is equivalent to the following: counting ordered pairs (z', z'') of numbers between 1 and $p - 1$ such that $z' + z'' = -z \mod(p)$.

There are $(p - 2)$ such pairs, hence $I_3 = p^3(p - 1)(p - 2)$, and $\phi(\Gamma, D_p) = p^2(p - 2)$.

If $r \geq 4$, then $\phi(c_{i,0}) = cu^x$, $\phi(c_{i,1}) = cu^y$, with $y \neq x$, $\phi(e_i) = u^z$, $1 \leq i \leq r - 2$, where u^z is the commutator of cu^x and cu^y, so $z \neq 0$. If $\prod_{i=1}^{r-2} e_i = 1_d$, then we do as in the case $r = 2$ for the two last cycles. If $\prod_{i=1}^{r-2} e_i \neq 1_d$, then we do as in the case $r = 3$ for the last cycles.

Hence $I_r = p^{r-2}(p - 1)^{r-2}p^2\left[\frac{(p - 1)(p - 2)}{p} + \frac{(p - 1)}{p}\right] = p^{r-1}(p - 1)^{r-1}$ $(p - 2 + 1) = p^{r-2}(p - 1)^{r-1}$. Therefore $\phi(\Gamma, D_p) = p^{r-2}(p - 1)^{r-1}$.

Note 3. For the NEC groups Γ in theorem 3.1 and corollaries 3.1, 3.2 and the previous remark, $\text{Ker } \phi$ is a normal surface subgroup of index $2p$ in Γ. This is just twice the minimal index for surfaces subgroups calculated in [3].
4. Surfaces with D_2 as a group of automorphisms.

If $p = 2$, there are 3 conjugacy classes of elements of order 2, namely $\{c\}$, $\{u\}$ and $\{cu\}$. If $\phi: \Gamma \to D_2$ is a surface kernel epimorphism, then $o(\phi(c_{k,j}))$ divides 2 ($o(z)$ denotes the order of an element z in D_2), $\phi(c_{k,j-1}c_{k,j})$ must be c, u or cu, and $\prod \phi(e_k) = 1_d$. So the conditions to be satisfied by the images of the generators of G are:

i) $g_{kj} = \phi(c_{k,j-1}) = z$, $z \in \{c, u, cu, 1_d\}$, $\phi(c_{k,j}) = z'$, $z' \in \{c, u, cu, 1_d\}$, where $z \neq z'$,

ii) $g_k = \phi(e_k)$ is such that $\phi(c_{k,0})(\phi(e_k))^{-1}\phi(c_{k,s})\phi(e_k) = 1_d$ and $\prod \phi(e_k) = 1_d$.

Since a set $G_\phi = \{g_{kj}, g_k/satisfying i) and ii)\}$ may generate D_2 or any of the 3 cyclic subgroups of order 2, we consider the sets $G'_\phi = \{g_{kj}, g_k/satisfying i) and ii)\}$, generating D_2. The number $\phi(\Gamma, D_2)$ is the number of orbits of the sets G'_ϕ under the action of Aut D_2. But Aut $D_2 = S_3$, so $|Aut D_2| = 6$.

Lemma 4.1. Let Γ be an NEC group with all link-periods equal to 2. If Γ has some period cycle with exactly one link-period, then D_2 is not a quotient group of Γ by a surface group.

Proof. Let $\phi: \Gamma \to D$ an epimorphism from Γ to D_2. Let C_k be the period cycle with exactly one link-period. Γ has, among others, the generators $c_{k,0}$, $c_{k,1}$ and e_k with the relation $c_{k,0} = e_k^{-1}c_{k,1}e_k$. But the elements of order 2, $\phi(c_{k,0})$ and $\phi(c_{k,1})$, are conjugate in D_2 if and only if $\phi(c_{k,0}) = \phi(c_{k,1})$. So $\phi(c_{k,0}c_{k,1}) = 1$, and Ker ϕ is not a surface group.

In the following, we consider signatures of NEC groups where there are at least two link-periods in each cycle.

Theorem 4.1. Let Γ be an NEC group with $s(\Gamma) = (0, +, [-], \{(2, \ldots, 2)\})$, where there are s link-periods all equal to 2. The number of non equivalent surface coverings of \mathcal{U}/Γ which admit D_2 as a group of automorphisms is:

\[\phi(\Gamma, D_2) = 2 \sum_{j=0}^{s-2} \binom{s-1}{j} 4^{s-2-j}(-1)^j \text{ if } s \text{ is odd, or}\]

\[\phi(\Gamma, D_2) = 2 \sum_{j=0}^{s-2} \binom{s-1}{j} 4^{s-2-j}(-1)^j - 1 \text{ if } s \text{ is even.}\]

Note. $\mathcal{U} = S^2$ if $s(\Gamma) = (0, +, [-], \{(2, 2)\})$ or $s(\Gamma) = (0, +, [-], \{(2, 2, 2)\})$, $\mathcal{U} = E^2$ if $s(\Gamma) = (0, +, [-], \{(2, 2, 2, 2)\})$.

Proof. We must distinguish the cases when the number of link-periods s is odd or even.

a) s is odd. Then $G_\phi = G'_\phi$. The number Q_s of different sets $G_\phi = \{\phi(c_i),$
where c_i, $0 \leq i \leq s$ ($c_0 = c_s$), are the generating reflections of Γ, is calculated as in theorem 3.1, but now $p = 4$. So

$$Q_s = (4 - 1)^s + (-1)^s(4 - 1) = 12 \sum_{j=1}^{s-2} \binom{s - 1}{j} p^{s - 2 - j}(-1)^j,$$

and

$$\phi(\Gamma, D_2) = \frac{Q_s}{6} = 2 \sum_{j=1}^{s-2} \left(\binom{s - 1}{j} p^{s - 2 - j}(-1)^j \right).$$

b) s is even. Then the number of sets G'_ϕ is the number of sets G_ϕ minus 3 times the number C_s of different sets that generate any of the cyclic subgroups of D_2. We have calculated this number C_s in lemma 2.2. We have $C_s = 2$.

So

$$Q_s = (4 - 1)^s + (-1)^s(4 - 1) - 6 = 6 \left[2 \sum_{j=1}^{s-2} \left(\binom{s - 1}{j} p^{s - 2 - j}(-1)^j - 1 \right) \right].$$

Therefore,

$$\phi(\Gamma, D_2) = \frac{Q_s}{6} = 2 \sum_{j=1}^{s-2} \left(\binom{s - 1}{j} p^{s - 2 - j}(-1)^j - 1 \right).$$

Corollary 4.1. Let Γ be an NEC group with $s(\Gamma) = (0, +, [-], \{2, \ldots, 2\}), \ldots, (2, \ldots, 2)$), where there r period cycles, each of them with s_i link-periods equal to 2. The number of non equivalent surface coverings of \mathcal{U}/Γ that admit D_2 as a group of automorphisms is:

a) $\phi(\Gamma, D_2) = \left(3^{r-1} \prod_{i=1}^{r} [3^{s_i - 1} + (-1)^{s_i}] \right)/2$ if s_i is odd for some i, or

b) $\phi(\Gamma, D_2) = \left(3^{r-1} \prod_{i=1}^{r} [3^{s_i - 1} + (-1)^{s_i}] \right)/2 - 4^{r-1}$ if all s_i are even.

Proof. First of all, as two elements $\phi(c_{i,0})$ and $\phi(c_{i,s_i})$ of order 2 in D_2 are conjugate if and only if $\phi(c_{i,0}) = \phi(c_{i,s_i})$, the number of sets G_ϕ for the ith cycle is Q_{s_i}, where Q_{s_i} is given in theorem 4.1.

a) Some s_i is odd. Then $G_\phi = G'_\phi$, $Q_{s_i} = 3[3^{s_i - 1} + (-1)^{s_i}]$, we notice that 4, and hence 2, divides $3^{s_i - 1} + (-1)^{s_i}$.

So

$$\phi(\Gamma, D_2) = \frac{\prod Q_{s_i}}{6} = \left(3^{r-1} \prod_{i=1}^{r} [3^{s_i - 1} + (-1)^{s_i}] \right)/2.$$

b) All s_i are even. Then the number of sets G'_ϕ is the number of sets G_ϕ minus 3 times the number C_r of different sets that generate any of the cyclic subgroups of D_2. We have calculated this number C_r in lemma 2.2. We have $C_r = 2^{2r-1}$.
\[
\phi(\Gamma, D_2) = \frac{3^r \prod_{i=1}^{r} [3^{s_i} - 1 + (-1)^{s_i}] - 3(2^{2r} - 1)}{6} = \\
= \left(3^{r-1} \prod_{i=1}^{r} [3^{s_i} - 1 + (-1)^{s_i}] \right) / 2 - 4^{r-1}.
\]

REFERENCES