C_4 -EXTENSIONS OF S_n AS GALOIS GROUPS #### TERESA CRESPO* ### Abstract. For Galois embedding problems associated to extensions of a symmetric group by a cyclic group of order 4, we give an equivalent condition to their solvability and an explicit way to compute the solutions. ## 1. The solutions to the embedding problem. Let S_n denote the symmetric group of degree n and C_4 be a cyclic group of order 4, c a generator of C_4 . We consider the central extension $$1 \xrightarrow{\prime} C_4 \rightarrow 4S_n \rightarrow S_n \rightarrow 1$$ such that the following diagram of exact sequences is commutative $$1 \longrightarrow \langle c^2 \rangle \longrightarrow 2^+ S_n \longrightarrow S_n \longrightarrow 1$$ $$\downarrow \qquad \qquad \downarrow^{j^+} \downarrow \qquad \parallel$$ $$1 \longrightarrow C_4 \longrightarrow 4S_n \longrightarrow S_n \longrightarrow 1$$ where 2^+S_n is the double cover of S_n which restricts to the non trivial double cover \widetilde{A}_n of the alternating group A_n and in which transpositions lift to involutions and the morphism $j^+\colon 2^+S_n\to 4S_n$ is injective. If $\{x_s\}_{s\in S_n}$ is a system of representatives of S_n in 2^+S_n , we can also consider it as a system of representatives of S_n in $4S_n$, by identifying 2^+S_n with $j^+(2^+S_n)$. The elements of $4S_n$ can then be written as c^ix_s , for $s\in S_n$, $0\le i\le 3$. We note that $H:=\{c^ix_s\colon s\in A_n, i=0,2\}\cup\{c^ix_s\colon s\in S_n\setminus A_n, i=1,3\}$ is a subgroup of $4S_n$, isomorphic to 2^-S_n , the second double cover of the symmetric group S_n reducing to \widetilde{A}_n . We obtain then a commutative diagram $$\begin{array}{cccc} 2^{-}S_{n} & \longrightarrow & S_{n} \\ \downarrow j^{-} & & & & & \\ 4S_{n} & \longrightarrow & S_{n}. \end{array}$$ ^{*} Partially supported by grant PB93-0815 of the DGICYT. Received January 6, 1994. Now, for a subgroup G of the alternating group S_n , we define 4G as the preimage of G in $4S_n$. We can see, for example, that $4C_4$ is isomorphic to $C_8 \times C_2$ and $4V_4$ to $H_8 \times C_4/\{\pm 1\}$. Let now $E \mid K$ be a separable extension of degree $n \ge 4$, where K is a field of characteristic different from 2. Let \overline{K} be a separable closure of K, G_K the absolute Galois group of K, L the Galois closure of E in \overline{K} , G the Galois group of $L \mid K$. We consider G as a subgroup of the symmetric group S_n , by means of the action of G_K on the set of K-embeddings of E in \overline{K} . We will deal with the embedding problem (*) $$4G \to G \simeq \operatorname{Gal}(L|K).$$ In proposition 1 we give a criterium for the solvability of the embedding problem (*) and two different characterisations of its set of solutions. We note that, given a Galois realization $G \simeq \operatorname{Gal}(L|K)$, the condition for the solvability of (*) is weaker that the condition for the solvability of the embedding problems given by the two double covers of the symmetric group (cf. Example 2). We note that the symmetric group S_4 is a subgroup of the projective linear group PGL(2, C) and the diagram is commutative. So, in this particular case, a Galois realisation of S_4 over a field K gives a projective representation of the absolute Galois group G_K . By solving the embedding problem associated to 2^+S_4 , 2^-S_4 or $4S_4$ we lift this projective representation to a linear one. The results in this paper allows then, in particular, to obtain such a lifting for a Galois realization $S_4 \simeq \operatorname{Gal}(L \mid K)$ for which the embedding problems $2^{\pm}S_4 \to S_4 \simeq \operatorname{Gal}(L \mid K)$ are not solvable but $4S_4 \to S_4 \simeq \operatorname{Gal}(L \mid K)$ is. PROPOSITION 1. Let $Q_E = \operatorname{Tr}_{E|K}(X^2)$, d_E its discriminant and $w(Q_E)$ its Hasse-Witt invariant. The embedding problem $4G \to G \simeq \operatorname{Gal}(L|K)$ is solvable if and only if $w(Q_E) = (2, d_E) \otimes (-1, a)$ for an element $a \in K^* \setminus L^{*2}$. If the condition above is satisfied, for a running over the set of elements in $K^* \setminus L^{*2}$ such that $w(Q_E) = (2, d_E) \otimes (-1, a)$, we have: 1) The set of proper solutions to the embedding problem $4G \rightarrow G \simeq \operatorname{Gal}(L \mid K)$ is equal to the union of the sets of solutions to the embedding problems $4G \xrightarrow{p^+} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{a}) \mid K)$, where the morphism $p^+ \colon 4G \rightarrow G \times C_2$ is defined by $$c^{i}x_{s} \mapsto (s, (-1)^{i}), 0 \le i \le 3, s \in G.$$ 2) The set of proper solutions to the embedding problem $4G \to G \simeq \operatorname{Gal}(L \mid K)$ is equal to the union of the sets of solutions to the embedding problems $4G \xrightarrow{p^-} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{ad_E}) \mid K)$, where the morphism $p^-: 4G \to G \times C_2$ is defined by $$c^{i}x_{s} \mapsto (s,(-1)^{i}) \quad \text{if } s \in A_{n} \cap G, \ 0 \le i \le 3,$$ $$c^{i}x_{s} \mapsto (s,(-1)^{i+1}) \text{ if } s \in G \setminus (A_{n} \cap G), \ 0 \le i \le 3.$$ PROOF. 1) Let \hat{L} be a solution field to the embedding problem $4G \to \operatorname{Gal}(L \mid K)$ and let $L_1 = \hat{L}^{\langle c^2 \rangle}$. We have $\operatorname{Gal}(L_1 \mid K) \simeq 4G/\langle c^2 \rangle \simeq G \times (C_4/\langle c^2 \rangle)$. For $K_1 = L_1^G$, we have $[K_1 : K] = 2$ and $L \cap K_1 = K$ and so $K_1 = K(\sqrt{a})$ for $a \notin L^{*2}$. Now, \hat{L} is a solution to the embedding problem $4G \xrightarrow{p^+} G \times C_2 \simeq \operatorname{Gal}(L_1 \mid K)$. The obstruction to the solvability of this embedding problem is the product of the obstructions to the solvability of the embedding problems $C_4 \to C_2 \simeq \operatorname{Gal}(K_1 \mid K)$ and $2^+ G \to G \simeq \operatorname{Gal}(L \mid K)$, where $2^+ G$ denotes the preimage of G in $2^+ S_n$. For the first, this is (-1, a) and for the second $w(Q_E) \otimes (2, d_E)$ ([4, Théorème 1]). If now $w(Q_E)$ is like in the proposition, for an element $a \in K^* \setminus L^{*2}$, the embedding problem $4G \xrightarrow{p^+} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{a}) \mid K)$ is solvable and, if \hat{L} is a solution to it, the commutativity of the diagram $$Gal(\hat{L} \mid K) \longrightarrow Gal(L \mid K) \times Gal(K(\sqrt{a}) \mid K)$$ $$\simeq \downarrow \qquad \qquad \simeq \downarrow$$ $$4G \xrightarrow{p^+} \qquad G \times C_2$$ implies that \hat{L} is also a solution to $4G \rightarrow G \simeq \operatorname{Gal}(L \mid K)$. 2) It is enough to note that $(2, d_E) \otimes (-1, a) = (-2, d_E) \otimes (-1, ad_E)$ and that $w(Q_E) \otimes (-2, d_E)$ is the obstruction to the solvability of the embedding problem $2^-G \to G \simeq \operatorname{Gal}(L \mid K)$, where 2^-G denotes the preimage of G in 2^-S_n . Then the proof follows like for 1). ## 2. Computation of the solutions. We will see now how to compute explicitly the solutions to this kind of embedding problems. Let then $L \mid K$ be a realization of a subgroup G of S_n such that $w(Q_E) = (-2, d_E) \otimes (-1, a)$ for an element a in $L^* \setminus K^{*2}$. We put $d = d_E$, b = ad. We will see how to build up the solutions to the (solvable) embedding problem $$4G \xrightarrow{p^-} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{b}) | K).$$ We note that, if $L(\sqrt{b})(\sqrt{\gamma})$ is a solution, then the general solution is $L(\sqrt{b})(\sqrt{r\gamma})$, with r running over K^*/K^{*2} . To obtain a particular solution, we use the commutativity of the diagram $$4S_n \xrightarrow{p^-} S_n \times C_2$$ $$\downarrow \qquad \qquad \downarrow$$ $$\tilde{A}_{n+6} \longrightarrow A_{n+6},$$ where \tilde{A}_{n+6} is the nontrivial double cover of the alternating group A_{n+6} and the vertical arrow is obtained as the composition of the morphisms $$S_n \to S_n \times S_2 \subset S_{n+2}$$ given by $s \mapsto (s, sg s)$ and taking S_n into A_{n+2} and $$A_{n+2} \times C_2 \longrightarrow A_{n+6}$$ obtained by identifying C_2 with the subgroup $\langle (12)(34) \rangle$ of A_4 . We consider now the quadratic form $$Q_b^- = Q_E \perp Q_b \perp Q_b \perp Q_d$$ where $Q_b = \operatorname{Tr}_{K(\sqrt{b})|K}(X^2)$ and $Q_d = \operatorname{Tr}_{K(\sqrt{d})|K}(X^2)$. For $(u_1, u_2, ..., u_n)$ a K-basis of E and $\{s_1, s_2, ..., s_n\}$ the set of K-embeddings of E in \overline{K} , we consider the matrix $$M_b^- = \begin{pmatrix} M_E & 0 & 0 & 0 \\ 0 & M_b & 0 & 0 \\ 0 & 0 & M_b & 0 \\ 0 & 0 & 0 & M_d \end{pmatrix}$$ where $$M_E = (u_j^{s_i})_{\substack{1 \le i \le n \\ 1 \le j \le n}}; \quad M_b = \begin{pmatrix} 1 & \sqrt{b} \\ 1 & -\sqrt{b} \end{pmatrix}; \quad M_d = \begin{pmatrix} 1 & \sqrt{d} \\ 1 & -\sqrt{d} \end{pmatrix}.$$ We have then $(M_b^-)^t(M_b^-) = (Q_b^-)$ and the quadratic form Q_b^- is the twisted form of the identity form in n + 6 variables by the 1-cocycle $$G \times C_2 \rightarrow S_n \times C_2 \rightarrow A_{n+6} \rightarrow SO_{n+6}(K)$$. The invariants or the quadratic form Q_b^- are $\operatorname{disc}(Q_b^-)=1$ and $w(Q_b^-)=w(Q_b)\otimes (-1,b)\otimes (-2,d)$. The solvability of the considered embedding problem is then equivalent to $w(Q_b^-) = 1$ and we can apply the results obtained in [1]. We get then an element γ in $(L(\sqrt{b}))^*$ such that $L(\sqrt{b})(\sqrt{\gamma})$ is a solution to the considered embedding problem as a coordinate of the spinor norm of an invertible element z in the even Clifford algebra $C_{L(\sqrt{b})}^+(Q_b^-)$ of the quadratic form Q_b^- with scalar extension to $L(\sqrt{b})$ ([1, Theorem 3]). Let us examine now under which conditions this element γ can be written in term of matrices. We suppose first K = Q. Let (n + 6 - q, q) be the signature of the form Q_b^- . We have $q = r_2 + 2 \operatorname{sg}(b) + \operatorname{sg}(d)$, where r_2 is the number of non real places of E, and $\operatorname{sg}(x)$ is equal to 0 for x > 0 and to 1 for x < 0. By comparing the form Q_b^- with the form $Q_q = -I_q \perp I_{n+6-q}$, we obtain **PROPOSITION** 2. If $K = \mathbb{Q}$, the two following conditions are equivalent: - 1) The embedding problem $4G \rightarrow G \times C_2 \simeq \text{Gal}(L(\sqrt{b}) \mid K \text{ is solvable.})$ - 2) $q \equiv 0 \pmod{4}$ and $Q_b^- \sim_{Q} Q_q$. We now turn back to the general hypothesis that K is any field of characteristic different from 2. Theorem 1. We assume that the quadratic form Q_b^- is K-equivalent to a form Q_q with $q \equiv 0 \pmod{4}$. Let $P \in GL_{n+6}(K)$ such that $$P^tQ_h^-P=Q_a$$ 1) If q = 0, the solutions to the embedding problem $$4G \xrightarrow{p^-} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{b}) | K)$$ are the fields $\hat{L} = L(\sqrt{b})(\sqrt{r\det(M_b^-P + 1)})$ with $r \in K^*/K^{*2}$. 2) If q > 0, the solutions to the considered embedding problem are the fields $\hat{L} = L(\sqrt{b})(\sqrt{r\gamma})$, with $r \in K^*/K^{*2}$, where γ is given as a sum of minors of the matrix $M_b P$ as in [1, Theorem 5]. In both cases, the matrix P can be chosen so that the element γ is non zero. We shall see now an alternative method of resolution valid when G is a subgroup of S_n containing at least one transposition, which we assume to be (1, 2). We note that the advantage of this second method is that the quadratic forms we use have a smaller number of variables. As above, let $L \mid K$ be a realization of the group G such that $w(Q_E) = (2, d_E) \otimes (-1, a)$ for an element a in $L^* \setminus K^{*2}$ and let $d = d_E$. We consider now the (solvable) embedding problem: $$4G \xrightarrow{p^+} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{a}) \mid K).$$ We assume first that K = Q and consider the two quadratic forms $$Q_a^+ = Q_E \perp \operatorname{Tr}_{K(\sqrt{a})|K} \perp \operatorname{Tr}_{K(\sqrt{a})|K}$$ $$Q_q^+ = \langle 2, 2d \rangle \perp I_{n+2-q} \perp (-I_q)$$ where $q = r_2 + 2 \operatorname{sg}(a) - \operatorname{sg}(d)$. By comparison of the two forms, we obtain **PROPOSITION 3.** If $K = \mathbb{Q}$, the two following conditions are equivalent: - 1) The embedding problem $4G \xrightarrow{p^+} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{a})|K)$ is solvable. - 2) $q \equiv 0 \pmod{4}$ and $Q_a^+ \sim_0 Q_q^+$ We now turn back to the general hypothesis that K is any field of characteristic different from 2 and assume that Q_a^+ is equivalent to a form Q_q^+ with $q \equiv 0 \pmod{4}$. Let P_0 be a matrix in $GL_{n+4}(K)$ such that $$P_0^t(Q_a^+)P_0 = Q_a^+$$ and R be the matrix in $GL_{n+4}(K(\sqrt{d}))$ defined by $$R = \begin{pmatrix} R_0 & 0 \\ 0 & I_{n+2} \end{pmatrix}$$ where $R_0 = \begin{pmatrix} 1/2 & 1/2 \\ 1/2\sqrt{d} & -1/2\sqrt{d} \end{pmatrix}$ Let $P = P_0 R$ and M_a^+ be the matrix $$M_a^+ = \begin{pmatrix} M_E & 0 & 0 \\ 0 & M_a & 0 \\ 0 & 0 & M_a \end{pmatrix} \quad \text{where } M_a = \begin{pmatrix} 1 & \sqrt{a} \\ 1 & -\sqrt{a} \end{pmatrix}$$ and M_E is defined as above. Theorem 2. If q = 0, the solutions to the embedding problem $$4G \xrightarrow{p^+} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{a}) | K)$$ are the fields $\hat{L} = L(\sqrt{a})(\sqrt{r \det(M_a^+ P + I)})$, with $r \in K^*/K^{*2}$. If q > 0, the solutions to the considered embedding problem are the fields $L(\sqrt{a})(\sqrt{r\gamma})$, where the element γ is given as a sum of minors of the matrix M_a^+P as in [1, Theorem 5]. In both cases, the matrix P can be chosen so that the element γ is non zero. PROOF. The element γ defined in the theorem provides a solution to the embedding problem $(\widehat{G \cap A_n}) \to (G \cap A_n) \times C_2 \simeq \operatorname{Gal}(L(\sqrt{a}) | K(\sqrt{d}))$, where $(\widehat{G \cap A_n})$ denotes the preimage of $G \cap A_n$ in the non trivial extension A_n of A_n by C_4 (cf [3]). Now, the way in which we have chosen the matrices P_0 and R gives that the element γ is invariant under the transposition (1, 2). Then, as in [2, Theorem 5], we obtain that $L(\sqrt{a})(\sqrt{\gamma})$ is a solution to the embedding problem $4G \xrightarrow{p^+} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{a})|K)$. EXAMPLE 1. We consider the polynomial $f(X) = X^4 + X + 1$ with Galois group S_4 over Q. Let x be a root of f, E = Q(x) and L the Galois closure of E in Q. We have $d_E = 229$, $w(Q_E) = (-1, -229)$ and so the embedding problems $2^+S_4 \to S_4 \simeq \operatorname{Gal}(L \mid \mathbb{Q})$ and $2^-S_4 \to S_4 \simeq \operatorname{Gal}(L \mid \mathbb{Q})$ are not solvable. Now Proposition 1 and [5, III théorème 4] give that the embedding problem $4S_4 \to S_4 \simeq \operatorname{Gal}(L \mid \mathbb{Q})$ is also not solvable. EXAMPLE 2. We consider now the polynomial $f(X) = X^4 - 3X^2 + 2X + 1$ with Galois group S_4 over Q and take E and L as in example 1. We have $d_E = -16.83$ and $w(Q_E) \otimes (2, d_E) = -1$ in 2 and 83 and $w(Q_E) \otimes (2, d_E) = 1$ outside these two primes. The embedding problem $2^+S_4 \to S_4 \simeq \operatorname{Gal}(L \mid \mathbb{Q})$ is then not solvable. We have $w(Q_E) \otimes (-2, d_E) = -1$ in 2 an ∞ and $w(Q_E) \otimes (-2, d_E) = 1$ outside these two primes. The embedding problem $2^-S_4 \to S_4 \simeq \operatorname{Gal}(L \mid \mathbb{Q})$ is then also not solvable. Now, a=83 satisfy $w(Q_E)\otimes (2,d_E)\otimes (-1,a)=1$, and so the embedding problem $4S_4\to S_4\simeq \operatorname{Gal}(L\mid \mathbb{Q})$ is solvable. Moreover, we have $r_2=1$ and so the general solution is given by $\hat{L}=L(\sqrt{a})(\sqrt{r\det(M_a^+P+I)})$, for M_a^+ and P the matrices in theorem 2. ACKNOWLEDGEMENT. I thank J. Quer for pointing out to me a mistake in a previous version of this work and for providing Example 2. #### REFERENCES - 1. T. Crespo, Explicit construction of \tilde{A}_n -type fields, J. Algebra 127 (1989), 452–461. - 2. T. Crespo, Explicit construction of 2S_n Galois extensions, J. Algebra 129 (1990), 312-319. - T. Crespo, Extensions de A_n par C₄ comme groupes de Galois, C.R. Acad. Sci. Paris 315 (1992), 625-628 - 4. J.-P. Serre, L'invariant de Witt de la forme Tr(x2), Comment. Math. Helv. 59 (1984), 651-676. - 5. J.-P. Serre, Cours d'arithmétique, Presses universitaires de France, 1970. DEPARTAMENT D'ALGEBRA I GEOMETRIA FACULTAT DE MATEMATIQUES UNIVERSITAT DE BARCELONA GRAN VIA DE LES CORTS CATALANES 585 08007 BARCELONA SPAIN