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C,-EXTENSIONS OF §, AS GALOIS GROUPS

TERESA CRESPO*

Abstract.
For Galois embedding problems associated to extensions of a symmetric group by a cyclic group of

order 4, we give an equivalent condition to their solvability and an explicit way to compute the
solutions.

1. The solutions to the embedding problem.

Let S, denote the symmetric group of degree nand C, be a cyclic group of order 4,
¢ a generator of C4,. We consider the central extension

l—v+C4—->4S,,—>S,,—>1
such that the following diagram of exact sequences is commutative
1 — {2 — 2%5, — §, — 1

Lo

1 — C4 ———>4S,,—/——>S,,——>1

where 27 S, is the double cover of S, which restricts to the non trivial double cover
A, of the alternating group A, and in which transpositions lift to involutions and
the morphismj *: 2*S, — 4S, is injective. If {x,},s, is a system of representatives
of S, in 27 S,, we can also consider it as a system of representatives of S, in 45, by
identifying 2* S, with j*(2*S,). The elements of 45, can then be written as c'x,, for
s€S,, 0 <i < 3. We note that H:= {c'x;:s€ A,,i = 0,2} U {c'x,: s€S,\A,,i =
1,3} is a subgroup of 485, isomorphic to 27§, the second double cover of the
symmetric group S, reducing to 4,. We obtain then a commutative diagram

2°S, — S,

o

45, — S,.
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Now, for a subgroup G of the alternating group S,, we define 4G as the
preimage of G in 4S,. We can see, for example, that 4C, is isomorphicto Cg x C,
and 4V, to Hg x C,/{+1}.

Let now E| K be a separable extension of degree n > 4, where K is a field of
characteristic different from 2. Let K be a separable closure of K, G the absolute
Galois group of K, Lthe Galois closure of E in K, G the Galois group of L | K. We
consider G as a subgroup of the symmetric group S, by means of the action of G¢
on the set of K-embeddings of E in K. We will deal with the embedding problem

*) 4G - G ~ Gal(L| K).

In proposition 1 we give a criterium for the solvability of the embedding
problem (*) and two different characterisations of its set of solutions. We note
that, given a Galois realization G ~ Gal(L | K), the condition for the solvability
of (*) is weaker that the condition for the solvability of the embedding problems
given by the two double covers of the symmetric group (cf. Example 2).

We note that the symmetric group S, is a subgroup of the projective linear
group PGL(2, C) and the diagram

L—— Co— 85, — 5, —1

| | |

{ —» C* — GL(2,C) — PGL(2,C) — 1

is commutative.

So, in this particular case, a Galois realisation of S, over a field K gives
a projective representation of the absolute Galois group Gg. By solving the
embedding problem associated to 27S,, 27S, or 4S5, we lift this projective
representation to a linear one. The results in this paper allows then, in particular,
to obtain such a lifting for a Galois realization S, ~ Gal(L | K) for which the
embedding problems 2%fS,-—»S, ~Gal(L|K) are not solvable but
45, — S, ~ Gal(L|K) is.

PROPOSITION 1. Let Qp = Trg x(X?), dg its discriminant and w(Qg) its Has-
se-Witt invariant. The embedding problem 4G — G ~ Gal(L| K) is solvable if and
only if W(Qg) = (2,dg) ® (—1,a) for an element ae K*\L*?.

If the condition above is satisfied, for a running over the set of elements in K*\ L*?
such that w(Qg) = (2,dg) ® (— 1, a), we have:

1) The set of proper solutions to the embedding problem 4G — G ~ Gal(L|K)
is equal to the union of the sets of solutions to the embedding problems
46 225G x C, ~ Gal(L(\/a)l K), where the morphismp*: 4G — G x C, is de-
fined by
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x> (5,(—1)),0<i <3, 5€G.

2) The set of proper solutions to the embedding problem 4G — G ~ Gal(L|K)
is equal to the union of the sets of solutions to the embedding problems
46 L5 G x Cy ~ Gal(L(\/aTiE)lK), where the morphism p~:4G - G x C, is
defined by

Cist(sa(—l)i) ifSEA,,ﬁG,Oé l§3’
x> (s, (=) Y ifseG\(4,n G),0 < i < 3.

Proor. 1) Let L be a solution field to the embedding problem
4G - Gal(L|K) and let L, = [<. We have Gal(L,|K) ~ 4G/{c*) ~ G x
(C4/{c?>). For K, =LS, we have [K;:K]=2 and LNnK, =K and so
K, = K(,/a) for a¢ L*>.

Now, L is a solution to the embedding problem 4G L GxCy~
Gal(L, | K). The obstruction to the solvability of this embedding problem is the
product of the obstructions to the solvability of the embedding problems
C,— C, ~Gal(K,|K) and 2*G - G ~ Gal(L|K), where 2*G denotes the
preimage of G in 2*S,. For the first, this is (—1,a) and for the second
w(QE) ® (2,dg) ([4, Théoréme 1]).

If now w(Qg) is like in the proposition, for an element ae K*\ L*?, the embed-
ding problem 4G PG xCy~ Gal(L(\/z;)lK) is solvable and, if L is a sol-
ution to it, the commutativity of the diagram

Gal(L.|K) — Gal(L|K) x Gal(K(,/a)| K)

| N

4G AN G x C,

implies that L is also a solution to 4G — G ~ Gal(L| K).

2) It is enough to note that (2,dg) ® (—1,a) = (—2,dg) ® (—1,adg) and that
w(Qg) ® (—2,dg) is the obstruction to the solvability of the embedding problem
2 G — G ~ Gal(L| K), where 2~ G denotes the preimage of G in 2~ S,. Then the
proof follows like for 1).

2. Computation of the solutions.

We will see now how to compute explicitly the solutions to this kind of embed-
ding problems. Let then L| K be a realization of a subgroup G of S, such that
w(Qg) = (—2,dg) ® (— 1, a) for an element a in L*\K*?. We putd = dg, b = ad.
We will see how to build up the solutions to the (solvable) embedding problem

4G — G x C, ~ Gal(L(\/b)| K).
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We note that, if L(\/B)(\/;) is a solution, then the general solution is L(ﬁ)(ﬂ),
with r running over K*/K*2. To obtain a particular solution, we use the
commutativity of the diagram

45, —25 S, x C,
/Tn+6 — A, .6,

where A, ¢ is the nontrivial double cover of the alternating group A4, . ¢ and the
vertical arrow is obtained as the composition of the morphisms

Sn—" Sn X S2 C">Sn+2
given by s+ (s,sgs) and taking S, into A4, , and
Ap+a X Cy =5 Ayse

obtained by identifying C, with the subgroup {(12)(34)> of A,.
We consider now the quadratic form

0y =QE—|—leQb-LQd

where Q, = Trg 5 x(X?) and Qy = Trg .z x(X?).
For (uy,u,,...,u,) a K-basis of E and {sy,s,,...,s,} the set of K-embeddings of
E in K, we consider the matrix

Mg

o

0
0

M_::
b 0

o§oo

0
0 0

where

ue(l el )
jé:’ b 1 ——\/B s d 1 _\/a .
We have then (M, (M, ) = (Q, ) and the quadratic form Q, is the twisted form
of the identity form in # + 6 variables by the 1-cocycle

Mg = (“j)}

IAIIA

G X CZ—PS,. X CZ_)An-&-G—')SOrH-G(K)'

The invariants or the quadratic form Q, are disc(Q,) =1 and w(Q,) =
w(Qp) @ (—1,b) ® (—2,d).

The solvability of the considered embedding problem is then equivalent to
w(@, ) = 1 and we can apply the results obtained in [1]. We get then an element
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y in (L(\/B))* such that L(\/l;)(ﬁ) is a solution to the considered embedding
problem as a coordinate of the spinor norm of an invertible element z in the even

Clifford algebra C Z( VE(Q{) of the quadratic form Q, with scalar extension to

L(/b) ([1, Theorem 3]).

Let us examine now under which conditions this element y can be written in
term of matrices.

We suppose first K = Q. Let (n + 6 — ¢, q) be the signature of the form Q, . We
have q = r, + 2sg(b) + sg(d), where r, is the number of non real places of E, and
sg(x)isequaltoOfor x > Oand to 1 for x < 0. By comparing the form @, with the
form Q, = —1, L I,,¢_,, We obtain

ProrosITION 2. If K = Q, the two following conditions are equivalent:
1) The embedding problem 4G — G x C, ~ Gal(L(\/b)| K is solvable.
2) q=0(mod 4) and Q, ~q0Q,.

We now turn back to the general hypothesis that K is any field of characteristic
different from 2.

THEOREM 1. We assume that the quadratic form Q, is K-equivalent to aform Q,
with ¢ = 0 (mod 4). Let Pe GL, , (K) such that

PQ; P =0,
1) If g = 0, the solutions to the embedding problem
4G —2 G x C, =~ Gal(L(\/b) | K)
are the fields L = [,(\/E)(\/rcl—et(X/IM) with re K¥/K*2,

2) If q > 0, the solutions to the considered embedding problem are the fields
L= L(\/B)(\/;;), withre K*/K*2 wherey is given as a sum of minors of the matrix
M, P as in [1, Theorem 5].

In both cases, the matrix P can be chosen so that the element vy is non zero.

We shall see now an alternative method of resolution valid when G is a sub-
group of S, containing at least one transposition, which we assume to be (1,2).
We note that the advantage of this second method is that the quadratic forms we
use have a smaller number of variables. As above, let L| K be a realization of the
group G such that w(Qg) = (2,dg) ® (— 1, a) for an element a in L*\ K*? and let
d = dg. We consider now the (solvable) embedding problem:

4G —25 G x C, ~ Gal(L(/a)| K).

We assume first that K = Q and consider the two quadratic forms
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+
Qo =0sl Trx(vﬁ)lx L Trx(./a)m

Q; = <252d> 1 In+2~q L (”lq)
where ¢ = r, + 2sg(a) — sg(d). By comparison of the two forms, we obtain

ProprosITION 3. If K = Q, the two following conditions are equivalent:

1) The embedding problem 4G —2» G x C, ~ Gal(L(s/a)| K) is solvable.
2) ¢ =0(mod 4) and Q) ~, Q.

We now turn back to the general hypothesis that K is any field of characteristic
different from 2 and assume that Q," is equivalent to a form Q, with g = 0(mod 4).
Let P, be a matrix in GL,  4(K) such that

P, 3(Q: )Py = Q;
and R be the matrix in GL,, , 4(K(\/g)) defined by

Ry 0 12 12
(o 1,,+2) where: o (1/2ﬁ —1/2ﬁ>

Let P = PyR and M, be the matrix

M, 0 0
1
MP={0 M 0 where M, = (1 \/5 )
0 0 M, —Va

and Mg is defined as above.

THEOREM 2. If q = 0, the solutions to the embedding problem
4G —% G x C, ~ Gal(L(\/a)| K)

are the fields L = L(\/a)(\/r det(M," P + I)), with re K¥/K*?.

If q > 0, the solutions to the considered embedding problem are the fields

L(\/;)(\/_r;), where the element y is given as a sum of minors of the matrix M} P asin
[1, Theorem S].

In both cases, the matrix P can be chosen so that the element y is non zero.

ProoF. The element y defined in the theorem provides a solution to the
. TN
embedding problem (G A4,) > (GnNnA4,) x C; ~ Gal(L(\/E)I K(\/E)), where
(G n A4,) denotes the preimage of G N A, in the non trivial extension A4, of 4, by
Ca (cf [3D])
Now, the way in which we have chosen the matrices P, and R gives that the
element y is invariant under the transposition (1,2). Then, as in [2, Theorem 5],
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we obtain that L(\/c;)(\ﬁf) is a solution to the embedding problem 4G 256G x
C, ~ Gal(L(\/a)| K).

ExaMPLE 1. We consider the polynomial f(X) = X* + X + 1 with Galois
group S, over Q. Let x bearoot of f, E = Q(x) and L the Galois closure of E in Q.
We have dg =229, w(Qg) =(—1,—229) and so the embedding problems
2*S, > S, ~Gal(L|Q) and 2°S, —» S, ~ Gal(L|Q) are not solvable. Now
Proposition 1 and [5, III théoréme 4] give that the embedding problem
45, — S, ~ Gal(L| Q) is also not solvable.

EXAMPLE 2. We consider now the polynomial f(X) = X* —3X? +2X + 1
with Galois group S, over Q and take E and L as in example 1. We have
dg = —16.83 and w(Qp) ® (2,dg) = —1 in 2 and 83 and wW(Qg) ® (2,dg) =1
outside these two primes. The embedding problem 2*S, —» S, ~ Gal(L|Q) is
then not solvable. We have w(Qp)®(—2,dg)= —1 in 2 an oo and
w(Qp) ® (—2,dg) = 1 outside these two primes. The embedding problem
278, — S, ~ Gal(L| Q) is then also not solvable.

Now, a = 83 satisfy w(Qg) ®(2,dg) ® (—1,a) =1, and so the embedding
problem 4S, — S, ~ Gal(L| Q) is solvable. Moreover, we haver, = 1 and so the

general solution is given by L = L(\/;)(, /rdet(M, P + I)), for M and P the

matrices in theorem 2.
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