# $C_4$ -EXTENSIONS OF $S_n$ AS GALOIS GROUPS

#### TERESA CRESPO\*

### Abstract.

For Galois embedding problems associated to extensions of a symmetric group by a cyclic group of order 4, we give an equivalent condition to their solvability and an explicit way to compute the solutions.

## 1. The solutions to the embedding problem.

Let  $S_n$  denote the symmetric group of degree n and  $C_4$  be a cyclic group of order 4, c a generator of  $C_4$ . We consider the central extension

$$1 \xrightarrow{\prime} C_4 \rightarrow 4S_n \rightarrow S_n \rightarrow 1$$

such that the following diagram of exact sequences is commutative

$$1 \longrightarrow \langle c^2 \rangle \longrightarrow 2^+ S_n \longrightarrow S_n \longrightarrow 1$$

$$\downarrow \qquad \qquad \downarrow^{j^+} \downarrow \qquad \parallel$$

$$1 \longrightarrow C_4 \longrightarrow 4S_n \longrightarrow S_n \longrightarrow 1$$

where  $2^+S_n$  is the double cover of  $S_n$  which restricts to the non trivial double cover  $\widetilde{A}_n$  of the alternating group  $A_n$  and in which transpositions lift to involutions and the morphism  $j^+\colon 2^+S_n\to 4S_n$  is injective. If  $\{x_s\}_{s\in S_n}$  is a system of representatives of  $S_n$  in  $2^+S_n$ , we can also consider it as a system of representatives of  $S_n$  in  $4S_n$ , by identifying  $2^+S_n$  with  $j^+(2^+S_n)$ . The elements of  $4S_n$  can then be written as  $c^ix_s$ , for  $s\in S_n$ ,  $0\le i\le 3$ . We note that  $H:=\{c^ix_s\colon s\in A_n, i=0,2\}\cup\{c^ix_s\colon s\in S_n\setminus A_n, i=1,3\}$  is a subgroup of  $4S_n$ , isomorphic to  $2^-S_n$ , the second double cover of the symmetric group  $S_n$  reducing to  $\widetilde{A}_n$ . We obtain then a commutative diagram

$$\begin{array}{cccc}
2^{-}S_{n} & \longrightarrow & S_{n} \\
\downarrow j^{-} & & & & & \\
4S_{n} & \longrightarrow & S_{n}.
\end{array}$$

<sup>\*</sup> Partially supported by grant PB93-0815 of the DGICYT. Received January 6, 1994.

Now, for a subgroup G of the alternating group  $S_n$ , we define 4G as the preimage of G in  $4S_n$ . We can see, for example, that  $4C_4$  is isomorphic to  $C_8 \times C_2$  and  $4V_4$  to  $H_8 \times C_4/\{\pm 1\}$ .

Let now  $E \mid K$  be a separable extension of degree  $n \ge 4$ , where K is a field of characteristic different from 2. Let  $\overline{K}$  be a separable closure of K,  $G_K$  the absolute Galois group of K, L the Galois closure of E in  $\overline{K}$ , G the Galois group of  $L \mid K$ . We consider G as a subgroup of the symmetric group  $S_n$ , by means of the action of  $G_K$  on the set of K-embeddings of E in  $\overline{K}$ . We will deal with the embedding problem

(\*) 
$$4G \to G \simeq \operatorname{Gal}(L|K).$$

In proposition 1 we give a criterium for the solvability of the embedding problem (\*) and two different characterisations of its set of solutions. We note that, given a Galois realization  $G \simeq \operatorname{Gal}(L|K)$ , the condition for the solvability of (\*) is weaker that the condition for the solvability of the embedding problems given by the two double covers of the symmetric group (cf. Example 2).

We note that the symmetric group  $S_4$  is a subgroup of the projective linear group PGL(2, C) and the diagram



is commutative.

So, in this particular case, a Galois realisation of  $S_4$  over a field K gives a projective representation of the absolute Galois group  $G_K$ . By solving the embedding problem associated to  $2^+S_4$ ,  $2^-S_4$  or  $4S_4$  we lift this projective representation to a linear one. The results in this paper allows then, in particular, to obtain such a lifting for a Galois realization  $S_4 \simeq \operatorname{Gal}(L \mid K)$  for which the embedding problems  $2^{\pm}S_4 \to S_4 \simeq \operatorname{Gal}(L \mid K)$  are not solvable but  $4S_4 \to S_4 \simeq \operatorname{Gal}(L \mid K)$  is.

PROPOSITION 1. Let  $Q_E = \operatorname{Tr}_{E|K}(X^2)$ ,  $d_E$  its discriminant and  $w(Q_E)$  its Hasse-Witt invariant. The embedding problem  $4G \to G \simeq \operatorname{Gal}(L|K)$  is solvable if and only if  $w(Q_E) = (2, d_E) \otimes (-1, a)$  for an element  $a \in K^* \setminus L^{*2}$ .

If the condition above is satisfied, for a running over the set of elements in  $K^* \setminus L^{*2}$  such that  $w(Q_E) = (2, d_E) \otimes (-1, a)$ , we have:

1) The set of proper solutions to the embedding problem  $4G \rightarrow G \simeq \operatorname{Gal}(L \mid K)$  is equal to the union of the sets of solutions to the embedding problems  $4G \xrightarrow{p^+} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{a}) \mid K)$ , where the morphism  $p^+ \colon 4G \rightarrow G \times C_2$  is defined by

$$c^{i}x_{s} \mapsto (s, (-1)^{i}), 0 \le i \le 3, s \in G.$$

2) The set of proper solutions to the embedding problem  $4G \to G \simeq \operatorname{Gal}(L \mid K)$  is equal to the union of the sets of solutions to the embedding problems  $4G \xrightarrow{p^-} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{ad_E}) \mid K)$ , where the morphism  $p^-: 4G \to G \times C_2$  is defined by

$$c^{i}x_{s} \mapsto (s,(-1)^{i}) \quad \text{if } s \in A_{n} \cap G, \ 0 \le i \le 3,$$
$$c^{i}x_{s} \mapsto (s,(-1)^{i+1}) \text{ if } s \in G \setminus (A_{n} \cap G), \ 0 \le i \le 3.$$

PROOF. 1) Let  $\hat{L}$  be a solution field to the embedding problem  $4G \to \operatorname{Gal}(L \mid K)$  and let  $L_1 = \hat{L}^{\langle c^2 \rangle}$ . We have  $\operatorname{Gal}(L_1 \mid K) \simeq 4G/\langle c^2 \rangle \simeq G \times (C_4/\langle c^2 \rangle)$ . For  $K_1 = L_1^G$ , we have  $[K_1 : K] = 2$  and  $L \cap K_1 = K$  and so  $K_1 = K(\sqrt{a})$  for  $a \notin L^{*2}$ .

Now,  $\hat{L}$  is a solution to the embedding problem  $4G \xrightarrow{p^+} G \times C_2 \simeq \operatorname{Gal}(L_1 \mid K)$ . The obstruction to the solvability of this embedding problem is the product of the obstructions to the solvability of the embedding problems  $C_4 \to C_2 \simeq \operatorname{Gal}(K_1 \mid K)$  and  $2^+ G \to G \simeq \operatorname{Gal}(L \mid K)$ , where  $2^+ G$  denotes the preimage of G in  $2^+ S_n$ . For the first, this is (-1, a) and for the second  $w(Q_E) \otimes (2, d_E)$  ([4, Théorème 1]).

If now  $w(Q_E)$  is like in the proposition, for an element  $a \in K^* \setminus L^{*2}$ , the embedding problem  $4G \xrightarrow{p^+} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{a}) \mid K)$  is solvable and, if  $\hat{L}$  is a solution to it, the commutativity of the diagram

$$Gal(\hat{L} \mid K) \longrightarrow Gal(L \mid K) \times Gal(K(\sqrt{a}) \mid K)$$

$$\simeq \downarrow \qquad \qquad \simeq \downarrow$$

$$4G \xrightarrow{p^+} \qquad G \times C_2$$

implies that  $\hat{L}$  is also a solution to  $4G \rightarrow G \simeq \operatorname{Gal}(L \mid K)$ .

2) It is enough to note that  $(2, d_E) \otimes (-1, a) = (-2, d_E) \otimes (-1, ad_E)$  and that  $w(Q_E) \otimes (-2, d_E)$  is the obstruction to the solvability of the embedding problem  $2^-G \to G \simeq \operatorname{Gal}(L \mid K)$ , where  $2^-G$  denotes the preimage of G in  $2^-S_n$ . Then the proof follows like for 1).

## 2. Computation of the solutions.

We will see now how to compute explicitly the solutions to this kind of embedding problems. Let then  $L \mid K$  be a realization of a subgroup G of  $S_n$  such that  $w(Q_E) = (-2, d_E) \otimes (-1, a)$  for an element a in  $L^* \setminus K^{*2}$ . We put  $d = d_E$ , b = ad. We will see how to build up the solutions to the (solvable) embedding problem

$$4G \xrightarrow{p^-} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{b}) | K).$$

We note that, if  $L(\sqrt{b})(\sqrt{\gamma})$  is a solution, then the general solution is  $L(\sqrt{b})(\sqrt{r\gamma})$ , with r running over  $K^*/K^{*2}$ . To obtain a particular solution, we use the commutativity of the diagram

$$4S_n \xrightarrow{p^-} S_n \times C_2$$

$$\downarrow \qquad \qquad \downarrow$$

$$\tilde{A}_{n+6} \longrightarrow A_{n+6},$$

where  $\tilde{A}_{n+6}$  is the nontrivial double cover of the alternating group  $A_{n+6}$  and the vertical arrow is obtained as the composition of the morphisms

$$S_n \to S_n \times S_2 \subset S_{n+2}$$

given by  $s \mapsto (s, sg s)$  and taking  $S_n$  into  $A_{n+2}$  and

$$A_{n+2} \times C_2 \longrightarrow A_{n+6}$$

obtained by identifying  $C_2$  with the subgroup  $\langle (12)(34) \rangle$  of  $A_4$ .

We consider now the quadratic form

$$Q_b^- = Q_E \perp Q_b \perp Q_b \perp Q_d$$

where  $Q_b = \operatorname{Tr}_{K(\sqrt{b})|K}(X^2)$  and  $Q_d = \operatorname{Tr}_{K(\sqrt{d})|K}(X^2)$ .

For  $(u_1, u_2, ..., u_n)$  a K-basis of E and  $\{s_1, s_2, ..., s_n\}$  the set of K-embeddings of E in  $\overline{K}$ , we consider the matrix

$$M_b^- = \begin{pmatrix} M_E & 0 & 0 & 0 \\ 0 & M_b & 0 & 0 \\ 0 & 0 & M_b & 0 \\ 0 & 0 & 0 & M_d \end{pmatrix}$$

where

$$M_E = (u_j^{s_i})_{\substack{1 \le i \le n \\ 1 \le j \le n}}; \quad M_b = \begin{pmatrix} 1 & \sqrt{b} \\ 1 & -\sqrt{b} \end{pmatrix}; \quad M_d = \begin{pmatrix} 1 & \sqrt{d} \\ 1 & -\sqrt{d} \end{pmatrix}.$$

We have then  $(M_b^-)^t(M_b^-) = (Q_b^-)$  and the quadratic form  $Q_b^-$  is the twisted form of the identity form in n + 6 variables by the 1-cocycle

$$G \times C_2 \rightarrow S_n \times C_2 \rightarrow A_{n+6} \rightarrow SO_{n+6}(K)$$
.

The invariants or the quadratic form  $Q_b^-$  are  $\operatorname{disc}(Q_b^-)=1$  and  $w(Q_b^-)=w(Q_b)\otimes (-1,b)\otimes (-2,d)$ .

The solvability of the considered embedding problem is then equivalent to  $w(Q_b^-) = 1$  and we can apply the results obtained in [1]. We get then an element

 $\gamma$  in  $(L(\sqrt{b}))^*$  such that  $L(\sqrt{b})(\sqrt{\gamma})$  is a solution to the considered embedding problem as a coordinate of the spinor norm of an invertible element z in the even Clifford algebra  $C_{L(\sqrt{b})}^+(Q_b^-)$  of the quadratic form  $Q_b^-$  with scalar extension to  $L(\sqrt{b})$  ([1, Theorem 3]).

Let us examine now under which conditions this element  $\gamma$  can be written in term of matrices.

We suppose first K = Q. Let (n + 6 - q, q) be the signature of the form  $Q_b^-$ . We have  $q = r_2 + 2 \operatorname{sg}(b) + \operatorname{sg}(d)$ , where  $r_2$  is the number of non real places of E, and  $\operatorname{sg}(x)$  is equal to 0 for x > 0 and to 1 for x < 0. By comparing the form  $Q_b^-$  with the form  $Q_q = -I_q \perp I_{n+6-q}$ , we obtain

**PROPOSITION** 2. If  $K = \mathbb{Q}$ , the two following conditions are equivalent:

- 1) The embedding problem  $4G \rightarrow G \times C_2 \simeq \text{Gal}(L(\sqrt{b}) \mid K \text{ is solvable.})$
- 2)  $q \equiv 0 \pmod{4}$  and  $Q_b^- \sim_{Q} Q_q$ .

We now turn back to the general hypothesis that K is any field of characteristic different from 2.

Theorem 1. We assume that the quadratic form  $Q_b^-$  is K-equivalent to a form  $Q_q$  with  $q \equiv 0 \pmod{4}$ . Let  $P \in GL_{n+6}(K)$  such that

$$P^tQ_h^-P=Q_a$$

1) If q = 0, the solutions to the embedding problem

$$4G \xrightarrow{p^-} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{b}) | K)$$

are the fields  $\hat{L} = L(\sqrt{b})(\sqrt{r\det(M_b^-P + 1)})$  with  $r \in K^*/K^{*2}$ .

2) If q > 0, the solutions to the considered embedding problem are the fields  $\hat{L} = L(\sqrt{b})(\sqrt{r\gamma})$ , with  $r \in K^*/K^{*2}$ , where  $\gamma$  is given as a sum of minors of the matrix  $M_b P$  as in [1, Theorem 5].

In both cases, the matrix P can be chosen so that the element  $\gamma$  is non zero.

We shall see now an alternative method of resolution valid when G is a subgroup of  $S_n$  containing at least one transposition, which we assume to be (1, 2). We note that the advantage of this second method is that the quadratic forms we use have a smaller number of variables. As above, let  $L \mid K$  be a realization of the group G such that  $w(Q_E) = (2, d_E) \otimes (-1, a)$  for an element a in  $L^* \setminus K^{*2}$  and let  $d = d_E$ . We consider now the (solvable) embedding problem:

$$4G \xrightarrow{p^+} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{a}) \mid K).$$

We assume first that K = Q and consider the two quadratic forms

$$Q_a^+ = Q_E \perp \operatorname{Tr}_{K(\sqrt{a})|K} \perp \operatorname{Tr}_{K(\sqrt{a})|K}$$
$$Q_q^+ = \langle 2, 2d \rangle \perp I_{n+2-q} \perp (-I_q)$$

where  $q = r_2 + 2 \operatorname{sg}(a) - \operatorname{sg}(d)$ . By comparison of the two forms, we obtain

**PROPOSITION 3.** If  $K = \mathbb{Q}$ , the two following conditions are equivalent:

- 1) The embedding problem  $4G \xrightarrow{p^+} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{a})|K)$  is solvable.
- 2)  $q \equiv 0 \pmod{4}$  and  $Q_a^+ \sim_0 Q_q^+$

We now turn back to the general hypothesis that K is any field of characteristic different from 2 and assume that  $Q_a^+$  is equivalent to a form  $Q_q^+$  with  $q \equiv 0 \pmod{4}$ .

Let  $P_0$  be a matrix in  $GL_{n+4}(K)$  such that

$$P_0^t(Q_a^+)P_0 = Q_a^+$$

and R be the matrix in  $GL_{n+4}(K(\sqrt{d}))$  defined by

$$R = \begin{pmatrix} R_0 & 0 \\ 0 & I_{n+2} \end{pmatrix}$$
 where  $R_0 = \begin{pmatrix} 1/2 & 1/2 \\ 1/2\sqrt{d} & -1/2\sqrt{d} \end{pmatrix}$ 

Let  $P = P_0 R$  and  $M_a^+$  be the matrix

$$M_a^+ = \begin{pmatrix} M_E & 0 & 0 \\ 0 & M_a & 0 \\ 0 & 0 & M_a \end{pmatrix} \quad \text{where } M_a = \begin{pmatrix} 1 & \sqrt{a} \\ 1 & -\sqrt{a} \end{pmatrix}$$

and  $M_E$  is defined as above.

Theorem 2. If q = 0, the solutions to the embedding problem

$$4G \xrightarrow{p^+} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{a}) | K)$$

are the fields  $\hat{L} = L(\sqrt{a})(\sqrt{r \det(M_a^+ P + I)})$ , with  $r \in K^*/K^{*2}$ .

If q > 0, the solutions to the considered embedding problem are the fields  $L(\sqrt{a})(\sqrt{r\gamma})$ , where the element  $\gamma$  is given as a sum of minors of the matrix  $M_a^+P$  as in [1, Theorem 5].

In both cases, the matrix P can be chosen so that the element  $\gamma$  is non zero.

PROOF. The element  $\gamma$  defined in the theorem provides a solution to the embedding problem  $(\widehat{G \cap A_n}) \to (G \cap A_n) \times C_2 \simeq \operatorname{Gal}(L(\sqrt{a}) | K(\sqrt{d}))$ , where  $(\widehat{G \cap A_n})$  denotes the preimage of  $G \cap A_n$  in the non trivial extension  $A_n$  of  $A_n$  by  $C_4$  (cf [3]).

Now, the way in which we have chosen the matrices  $P_0$  and R gives that the element  $\gamma$  is invariant under the transposition (1, 2). Then, as in [2, Theorem 5],

we obtain that  $L(\sqrt{a})(\sqrt{\gamma})$  is a solution to the embedding problem  $4G \xrightarrow{p^+} G \times C_2 \simeq \operatorname{Gal}(L(\sqrt{a})|K)$ .

EXAMPLE 1. We consider the polynomial  $f(X) = X^4 + X + 1$  with Galois group  $S_4$  over Q. Let x be a root of f, E = Q(x) and L the Galois closure of E in Q. We have  $d_E = 229$ ,  $w(Q_E) = (-1, -229)$  and so the embedding problems  $2^+S_4 \to S_4 \simeq \operatorname{Gal}(L \mid \mathbb{Q})$  and  $2^-S_4 \to S_4 \simeq \operatorname{Gal}(L \mid \mathbb{Q})$  are not solvable. Now Proposition 1 and [5, III théorème 4] give that the embedding problem  $4S_4 \to S_4 \simeq \operatorname{Gal}(L \mid \mathbb{Q})$  is also not solvable.

EXAMPLE 2. We consider now the polynomial  $f(X) = X^4 - 3X^2 + 2X + 1$  with Galois group  $S_4$  over Q and take E and L as in example 1. We have  $d_E = -16.83$  and  $w(Q_E) \otimes (2, d_E) = -1$  in 2 and 83 and  $w(Q_E) \otimes (2, d_E) = 1$  outside these two primes. The embedding problem  $2^+S_4 \to S_4 \simeq \operatorname{Gal}(L \mid \mathbb{Q})$  is then not solvable. We have  $w(Q_E) \otimes (-2, d_E) = -1$  in 2 an  $\infty$  and  $w(Q_E) \otimes (-2, d_E) = 1$  outside these two primes. The embedding problem  $2^-S_4 \to S_4 \simeq \operatorname{Gal}(L \mid \mathbb{Q})$  is then also not solvable.

Now, a=83 satisfy  $w(Q_E)\otimes (2,d_E)\otimes (-1,a)=1$ , and so the embedding problem  $4S_4\to S_4\simeq \operatorname{Gal}(L\mid \mathbb{Q})$  is solvable. Moreover, we have  $r_2=1$  and so the general solution is given by  $\hat{L}=L(\sqrt{a})(\sqrt{r\det(M_a^+P+I)})$ , for  $M_a^+$  and P the matrices in theorem 2.

ACKNOWLEDGEMENT. I thank J. Quer for pointing out to me a mistake in a previous version of this work and for providing Example 2.

#### REFERENCES

- 1. T. Crespo, Explicit construction of  $\tilde{A}_n$ -type fields, J. Algebra 127 (1989), 452–461.
- 2. T. Crespo, Explicit construction of 2S<sub>n</sub> Galois extensions, J. Algebra 129 (1990), 312-319.
- T. Crespo, Extensions de A<sub>n</sub> par C<sub>4</sub> comme groupes de Galois, C.R. Acad. Sci. Paris 315 (1992), 625-628
- 4. J.-P. Serre, L'invariant de Witt de la forme Tr(x2), Comment. Math. Helv. 59 (1984), 651-676.
- 5. J.-P. Serre, Cours d'arithmétique, Presses universitaires de France, 1970.

DEPARTAMENT D'ALGEBRA I GEOMETRIA FACULTAT DE MATEMATIQUES UNIVERSITAT DE BARCELONA GRAN VIA DE LES CORTS CATALANES 585 08007 BARCELONA SPAIN