\textbf{C}_4\text{-EXTENSIONS OF S}_n \text{ AS GALOIS GROUPS}

TERESA CRESPO*

\textbf{Abstract.}

For Galois embedding problems associated to extensions of a symmetric group by a cyclic group of order 4, we give an equivalent condition to their solvability and an explicit way to compute the solutions.

1. The solutions to the embedding problem.

Let S\textsubscript{n} denote the symmetric group of degree \(n \) and C\textsubscript{4} be a cyclic group of order 4, \(c \) a generator of C\textsubscript{4}. We consider the central extension

\[1 \to C_4 \to 4S_n \to S_n \to 1 \]

such that the following diagram of exact sequences is commutative

\[
\begin{array}{cccccc}
1 & \longrightarrow & \langle c^2 \rangle & \longrightarrow & 2^+S_n & \longrightarrow & S_n & \longrightarrow & 1 \\
\downarrow & & \downarrow j^+ & & \downarrow & & & & \\
1 & \longrightarrow & C_4 & \longrightarrow & 4S_n & \longrightarrow & S_n & \longrightarrow & 1
\end{array}
\]

where \(2^+S_n \) is the double cover of \(S_n \) which restricts to the non trivial double cover \(\tilde{A}_n \) of the alternating group \(A_n \) and in which transpositions lift to involutions and the morphism \(j^+: 2^+S_n \to 4S_n \) is injective. If \(\{x_s\}_{s \in S_n} \) is a system of representatives of \(S_n \) in \(2^+S_n \), we can also consider it as a system of representatives of \(S_n \) in \(4S_n \), by identifying \(2^+S_n \) with \(j^+(2^+S_n) \). The elements of \(4S_n \) can then be written as \(c^i x_s \), for \(s \in S_n \), \(0 \leq i \leq 3 \). We note that \(H := \{c^i x_s : s \in A_n, i = 0, 2\} \cup \{c^i x_s : s \in S_n \setminus A_n, i = 1, 3\} \) is a subgroup of \(4S_n \), isomorphic to \(2^-S_n \), the second double cover of the symmetric group \(S_n \) reducing to \(\tilde{A}_n \). We obtain then a commutative diagram

\[
\begin{array}{ccc}
2^-S_n & \longrightarrow & S_n \\
\downarrow j^- & & \downarrow & \\
4S_n & \longrightarrow & S_n
\end{array}
\]

* Partially supported by grant PB93-0815 of the DGICYT.
Received January 6, 1994.
Now, for a subgroup G of the alternating group S_n, we define $4G$ as the preimage of G in $4S_n$. We can see, for example, that $4C_4$ is isomorphic to $C_8 \times C_2$ and $4V_4$ to $H_8 \times C_4/\{ \pm 1 \}$.

Let now $E \mid K$ be a separable extension of degree $n \geq 4$, where K is a field of characteristic different from 2. Let \bar{K} be a separable closure of K, G_K the absolute Galois group of K, L the Galois closure of E in \bar{K}, G the Galois group of $L \mid K$. We consider G as a subgroup of the symmetric group S_n, by means of the action of G_K on the set of K-embeddings of E in \bar{K}. We will deal with the embedding problem

(*) \hspace{1cm} 4G \to G \simeq \text{Gal}(L \mid K).

In proposition 1 we give a criterium for the solvability of the embedding problem (*) and two different characterisations of its set of solutions. We note that, given a Galois realization $G \simeq \text{Gal}(L \mid K)$, the condition for the solvability of (*) is weaker that the condition for the solvability of the embedding problems given by the two double covers of the symmetric group (cf. Example 2).

We note that the symmetric group S_4 is a subgroup of the projective linear group $\text{PGL}(2, \mathbb{C})$ and the diagram

$$
\begin{array}{cccccc}
1 & \longrightarrow & C_4 & \longrightarrow & 4S_n & \longrightarrow & S_n & \longrightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
1 & \longrightarrow & \mathbb{C}^* & \longrightarrow & \text{GL}(2, \mathbb{C}) & \longrightarrow & \text{PGL}(2, \mathbb{C}) & \longrightarrow & 1
\end{array}
$$

is commutative.

So, in this particular case, a Galois realisation of S_4 over a field K gives a projective representation of the absolute Galois group G_K. By solving the embedding problem associated to 2^+S_4, 2^-S_4 or $4S_4$ we lift this projective representation to a linear one. The results in this paper allows then, in particular, to obtain such a lifting for a Galois realization $S_4 \simeq \text{Gal}(L \mid K)$ for which the embedding problems $2^\pm S_4 \to S_4 \simeq \text{Gal}(L \mid K)$ are not solvable but $4S_4 \to S_4 \simeq \text{Gal}(L \mid K)$ is.

Proposition 1. Let $Q_E = \text{Tr}_{E \mid K}(X^2)$, d_E its discriminant and $w(Q_E)$ its Hasse-Witt invariant. The embedding problem $4G \to G \simeq \text{Gal}(L \mid K)$ is solvable if and only if $w(Q_E) = (2, d_E) \otimes (-1, a)$ for an element $a \in K^\ast \setminus L^\ast^2$.

If the condition above is satisfied, for a running over the set of elements in $K^\ast \setminus L^\ast^2$ such that $w(Q_E) = (2, d_E) \otimes (-1, a)$, we have:

1) The set of proper solutions to the embedding problem $4G \to G \simeq \text{Gal}(L \mid K)$ is equal to the union of the sets of solutions to the embedding problems $4G \overset{p^\ast}{\longrightarrow} G \times C_2 \simeq \text{Gal}(L(\sqrt{a}) \mid K)$, where the morphism $p^\ast : 4G \to G \times C_2$ is defined by
\(c^i x_s \mapsto (s, (-1)^{i}) \), \(0 \leq i \leq 3 \), \(s \in G \).

2) The set of proper solutions to the embedding problem \(4G \to G \cong \text{Gal}(L|K) \) is equal to the union of the sets of solutions to the embedding problems \(4G \to \mathbb{P} \cong G \times C_2 \cong \text{Gal}(L(\sqrt{ad_{E}})|K) \), where the morphism \(p^{-1}: 4G \to G \times C_2 \) is defined by

\[c^i x_s \mapsto (s, (-1)^{i}) \text{ if } s \in A_n \cap G, \ 0 \leq i \leq 3, \]
\[c^i x_s \mapsto (s, (-1)^{i+1}) \text{ if } s \in G \setminus (A_n \cap G), \ 0 \leq i \leq 3. \]

Proof. 1) Let \(\hat{L} \) be a solution field to the embedding problem \(4G \to \text{Gal}(L|K) \) and let \(L_1 = \hat{L}(c^2) \). We have \(\text{Gal}(L_1|K) \cong 4G/\langle c^2 \rangle \cong G \times (C_4/\langle c^2 \rangle) \). For \(K_1 = L_1^2 \), we have \([K_1:K] = 2\) and \(L \cap K_1 = K \) and so \(K_1 = K(\sqrt{a}) \) for \(a \notin L^*2 \).

Now, \(\hat{L} \) is a solution to the embedding problem \(4G \to \text{Gal}(L_1|K) \). The obstruction to the solvability of this embedding problem is the product of the obstructions to the solvability of the embedding problems \(C_4 \to C_2 \cong \text{Gal}(K_1|K) \) and \(2^+G \to G \cong \text{Gal}(L|K) \), where \(2^+G \) denotes the preimage of \(G \) in \(2^+S_n \). For the first, this is \((-1,a) \) and for the second \(w(Q_E) \otimes (2,d_E) \) ([4, Théorème 1]).

If now \(w(Q_E) \) is like in the proposition, for an element \(a \in K^* \setminus L^*2 \), the embedding problem \(4G \to \text{Gal}(L(\sqrt{a})|K) \) is solvable and, if \(\hat{L} \) is a solution to it, the commutativity of the diagram

\[
\begin{array}{ccc}
\text{Gal}(\hat{L}|K) & \longrightarrow & \text{Gal}(L|K) \times \text{Gal}(K(\sqrt{a})|K) \\
\cong & \downarrow & \cong \\
4G & \to & G \times C_2 \\
\end{array}
\]

implies that \(\hat{L} \) is also a solution to \(4G \to G \cong \text{Gal}(L|K) \).

2) It is enough to note that \((2,d_E) \otimes (-1,a) = (-2,d_E) \otimes (-1,ad_{E}) \) and that \(w(Q_E) \otimes (-2,d_E) \) is the obstruction to the solvability of the embedding problem \(2^{-G} \to G \cong \text{Gal}(L|K) \), where \(2^+G \) denotes the preimage of \(G \) in \(2^+S_n \). Then the proof follows like for 1).

2. Computation of the solutions.

We will see now how to compute explicitly the solutions to this kind of embedding problems. Let then \(L|K \) be a realization of a subgroup \(G \) of \(S_n \) such that \(w(Q_E) = (-2,d_E) \otimes (-1,a) \) for an element \(a \) in \(L^* \setminus K^*2 \). We put \(d = d_E, b = ad \). We will see how to build up the solutions to the (solvable) embedding problem

\[4G \to G \times C_2 \cong \text{Gal}(L(\sqrt{b})|K). \]
We note that, if \(L(\sqrt{b}(\sqrt{r})) \) is a solution, then the general solution is \(L(\sqrt{b})(\sqrt{r}) \), with \(r \) running over \(K^*/K^{*2} \). To obtain a particular solution, we use the commutativity of the diagram

\[
\begin{array}{ccc}
4S_n & \xrightarrow{p} & S_n \times C_2 \\
\downarrow & & \downarrow \\
\tilde{A}_{n+6} & \longrightarrow & A_{n+6},
\end{array}
\]

where \(\tilde{A}_{n+6} \) is the nontrivial double cover of the alternating group \(A_{n+6} \) and the vertical arrow is obtained as the composition of the morphisms

\[
S_n \rightarrow S_n \times S_2 \hookrightarrow S_{n+2}
\]

given by \(s \mapsto (s, sg s) \) and taking \(S_n \) into \(A_{n+2} \) and

\[
A_{n+2} \times C_2 \hookrightarrow A_{n+6}
\]

obtained by identifying \(C_2 \) with the subgroup \(\langle (12)(34) \rangle \) of \(A_4 \).

We consider now the quadratic form

\[
Q_b^- = Q_E \perp Q_b \perp Q_b \perp Q_d
\]

where \(Q_b = \text{Tr}_{K(\sqrt{b})|K}(X^2) \) and \(Q_d = \text{Tr}_{K(\sqrt{d})|K}(X^2) \).

For \((u_1, u_2, \ldots, u_n) \) a \(K \)-basis of \(E \) and \(\{s_1, s_2, \ldots, s_n\} \) the set of \(K \)-embeddings of \(E \) in \(\bar{K} \), we consider the matrix

\[
M_b^- = \begin{pmatrix}
M_E & 0 & 0 & 0 \\
0 & M_b & 0 & 0 \\
0 & 0 & M_b & 0 \\
0 & 0 & 0 & M_d
\end{pmatrix}
\]

where

\[
M_E = (u_i^2)_{1 \leq i \leq n}; \quad M_b = \begin{pmatrix}
1 & \sqrt{b} \\
1 & -\sqrt{b}
\end{pmatrix}; \quad M_d = \begin{pmatrix}
1 & \sqrt{d} \\
1 & -\sqrt{d}
\end{pmatrix}.
\]

We have then \((M_b^-)'(M_b^-) = (Q_b^-)\) and the quadratic form \(Q_b^- \) is the twisted form of the identity form in \(n + 6 \) variables by the 1-cocycle

\[
G \times C_2 \rightarrow S_n \times C_2 \rightarrow A_{n+6} \rightarrow SO_{n+6}(K).
\]

The invariants or the quadratic form \(Q_b^- \) are \(\text{disc}(Q_b^-) = 1 \) and \(w(Q_b^-) = w(Q_E) \otimes (-1, b) \otimes (-2, d) \).

The solvability of the considered embedding problem is then equivalent to \(w(Q_b^-) = 1 \) and we can apply the results obtained in [1]. We get then an element
in \((L(\sqrt{b}))^*\) such that \(L(\sqrt{b})(\sqrt{\gamma})\) is a solution to the considered embedding problem as a coordinate of the spinor norm of an invertible element \(z\) in the even Clifford algebra \(C_{\text{L}(\sqrt{b})}^+(Q_b^-)\) of the quadratic form \(Q_b^-\) with scalar extension to \(L(\sqrt{b})\) ([1, Theorem 3]).

Let us examine now under which conditions this element \(\gamma\) can be written in term of matrices.

We suppose first \(K = \mathbb{Q}\). Let \((n + 6 - q, q)\) be the signature of the form \(Q_b^-\). We have \(q = r_2 + 2\sg(b) + \sg(d)\), where \(r_2\) is the number of non real places of \(E\), and \(\sg(x)\) is equal to 0 for \(x > 0\) and to 1 for \(x < 0\). By comparing the form \(Q_b^-\) with the form \(Q_q = -I_q \bot I_{n+6-q}\), we obtain

Proposition 2. If \(K = \mathbb{Q}\), the two following conditions are equivalent:
1) The embedding problem \(4G \rightarrow G \times C_2 \simeq \text{Gal}(L(\sqrt{b})|K)\) is solvable.
2) \(q \equiv 0 \pmod{4}\) and \(Q_b^- \sim_0 Q_q\).

We now turn back to the general hypothesis that \(K\) is any field of characteristic different from 2.

Theorem 1. We assume that the quadratic form \(Q_b^-\) is \(K\)-equivalent to a form \(Q_q\) with \(q \equiv 0 \pmod{4}\). Let \(P \in \text{GL}_{n+6}(K)\) such that

\[P^*Q_b^- P = Q_q.\]

1) If \(q = 0\), the solutions to the embedding problem

\[4G \xrightarrow{p^{-}} G \times C_2 \simeq \text{Gal}(L(\sqrt{b})|K)\]

are the fields \(\hat{L} = L(\sqrt{b})(\sqrt{r \det(M_b^- P + 1)})\) with \(r \in K^*/K^{*2}\).

2) If \(q > 0\), the solutions to the considered embedding problem are the fields \(\hat{L} = L(\sqrt{b})(\sqrt{r\gamma})\), with \(r \in K^*/K^{*2}\), where \(\gamma\) is given as a sum of minors of the matrix \(M_b^- P\) as in [1, Theorem 5].

In both cases, the matrix \(P\) can be chosen so that the element \(\gamma\) is non zero.

We shall see now an alternative method of resolution valid when \(G\) is a subgroup of \(S_n\) containing at least one transposition, which we assume to be \((1,2)\). We note that the advantage of this second method is that the quadratic forms we use have a smaller number of variables. As above, let \(L|K\) be a realization of the group \(G\) such that \(w(Q_k) = (2, d_k) \otimes (-1, a)\) for an element \(a\) in \(L^* \setminus K^{*2}\) and let \(d = d_k\). We consider now the (solvable) embedding problem:

\[4G \xrightarrow{p^{-}} G \times C_2 \simeq \text{Gal}(L(\sqrt{a})|K).\]

We assume first that \(K = \mathbb{Q}\) and consider the two quadratic forms
\[\mathbb{Q}_a^+ = \mathbb{Q}_E \perp \text{Tr}_{K(\sqrt{a})|K} \perp \text{Tr}_{K(\sqrt{-a})|K} \]
\[\mathbb{Q}_q^+ = \langle 2, 2d \rangle \perp I_{n+2} \perp I_{n+2-q} \perp (-I_q) \]

where \(q = r_2 + 2 \text{sg}(a) - \text{sg}(d) \). By comparison of the two forms, we obtain

Proposition 3. If \(K = \mathbb{Q} \), the two following conditions are equivalent:
1) The embedding problem \(4G \xrightarrow{p^*} G \times C_2 \simeq \text{Gal}(L(\sqrt{a})|K) \) is solvable.
2) \(q \equiv 0 \pmod{4} \) and \(\mathbb{Q}_a^+ \sim \mathbb{Q}_q^+ \).

We now turn back to the general hypothesis that \(K \) is any field of characteristic different from 2 and assume that \(\mathbb{Q}_a^+ \) is equivalent to a form \(\mathbb{Q}_q^+ \) with \(q \equiv 0 \pmod{4} \).

Let \(P_0 \) be a matrix in \(\text{GL}_{n+4}(K) \) such that
\[P_0^t(Q_a^+)P_0 = Q_q^+ \]

and \(R \) be the matrix in \(\text{GL}_{n+4}(K(\sqrt{d})) \) defined by
\[R = \begin{pmatrix} R_0 & 0 \\ 0 & I_{n+2} \end{pmatrix} \]
where
\[R_0 = \begin{pmatrix} 1/2 & 1/2 \\ 1/2\sqrt{d} & -1/2\sqrt{d} \end{pmatrix} \]

Let \(P = P_0R \) and \(M_a^+ \) be the matrix
\[M_a^+ = \begin{pmatrix} M_E & 0 & 0 \\ 0 & M_a & 0 \\ 0 & 0 & M_a \end{pmatrix} \]

where \(M_a = \begin{pmatrix} 1 & \sqrt{a} \\ 1 & -\sqrt{a} \end{pmatrix} \)

and \(M_E \) is defined as above.

Theorem 2. If \(q = 0 \), the solutions to the embedding problem
\[4G \xrightarrow{p^*} G \times C_2 \simeq \text{Gal}(L(\sqrt{a})|K) \]
are the fields \(\hat{L} = L(\sqrt{a})(\sqrt{r \det(M_a^+P + I)}) \), with \(r \in K^*/K^{*2} \).

If \(q > 0 \), the solutions to the considered embedding problem are the fields \(L(\sqrt{a})(\sqrt{r\gamma}) \), where the element \(\gamma \) is given as a sum of minors of the matrix \(M_a^+P \) as in [1, Theorem 5].

In both cases, the matrix \(P \) can be chosen so that the element \(\gamma \) is non zero.

Proof. The element \(\gamma \) defined in the theorem provides a solution to the embedding problem \((\hat{G} \cap A_n) \rightarrow (G \cap A_n) \times C_2 \simeq \text{Gal}(L(\sqrt{a})|K(\sqrt{d})) \), where \((\hat{G} \cap A_n) \) denotes the preimage of \(G \cap A_n \) in the non trivial extension \(A_n \) of \(A_n \) by \(C_4 \) (cf [3]).

Now, the way in which we have chosen the matrices \(P_0 \) and \(R \) gives that the element \(\gamma \) is invariant under the transposition \((1, 2)\). Then, as in [2, Theorem 5],
we obtain that \(L(\sqrt{a})(\sqrt{\gamma}) \) is a solution to the embedding problem \(4G \rightarrow C_2 \simeq \text{Gal}(U(\sqrt{a})|K) \).

Example 1. We consider the polynomial \(f(X) = X^4 + X + 1 \) with Galois group \(S_4 \) over \(\mathbb{Q} \). Let \(x \) be a root of \(f \), \(E = \mathbb{Q}(x) \) and \(L \) the Galois closure of \(E \) in \(\mathbb{Q} \). We have \(d_E = 229 \), \(w(Q_E) = (-1, -229) \) and so the embedding problems \(2^+ S_4 \rightarrow S_4 \simeq \text{Gal}(L|Q) \) and \(2^- S_4 \rightarrow S_4 \simeq \text{Gal}(L|Q) \) are not solvable. Now Proposition 1 and [5, III théorème 4] give that the embedding problem \(4S_4 \rightarrow S_4 \simeq \text{Gal}(L|Q) \) is also not solvable.

Example 2. We consider now the polynomial \(f(X) = X^4 - 3X^2 + 2X + 1 \) with Galois group \(S_4 \) over \(\mathbb{Q} \) and take \(E \) and \(L \) as in example 1. We have \(d_E = -16.83 \) and \(w(Q_E) \odot (2, d_E) = -1 \) in 2 and 83 and \(w(Q_E) \odot (2, d_E) = 1 \) outside these two primes. The embedding problem \(2^+ S_4 \rightarrow S_4 \simeq \text{Gal}(L|Q) \) is then not solvable. We have \(w(Q_E) \odot (-2, d_E) = -1 \) in 2 an \(\infty \) and \(w(Q_E) \odot (-2, d_E) = 1 \) outside these two primes. The embedding problem \(2^- S_4 \rightarrow S_4 \simeq \text{Gal}(L|Q) \) is then also not solvable.

Now, \(a = 83 \) satisfy \(w(Q_E) \odot (2, d_E) \odot (-1, a) = 1 \), and so the embedding problem \(4S_4 \rightarrow S_4 \simeq \text{Gal}(L|Q) \) is solvable. Moreover, we have \(r_2 = 1 \) and so the general solution is given by \(\tilde{L} = L(\sqrt{a})(\sqrt{r \det(M_a^+ P + I)}) \), for \(M_a^+ \) and \(P \) the matrices in theorem 2.

Acknowledgement. I thank J. Quer for pointing out to me a mistake in a previous version of this work and for providing Example 2.

References

DEPARTAMENT D'ALGEBRA I GEOMETRIA
FACULTAT DE MATEMATIQUES
UNIVERSITAT DE BARCELONA
GRAN VIA DE LES CORTS CATALANES 585
08007 BARCELONA
SPAIN