A NOTE ON INNER COALGEBRA MEASURING AND DERIVATIONS

M. KOPPINEN

Introduction and results.

Recently, A. Masuoka [2] proved the following:

THEOREM. Let k be a field, C a k-coalgebra, A a k-algebra, and $B \subseteq A$ a k-subalgebra. For any measuring μ : $C \otimes B \to A$ there is a unique maximal subcoalgebra C^{μ} of C for which the restricted measuring $C^{\mu} \otimes B \to A$ is inner.

Another proof was found by M. Takeuchi and the author (see [2]). In this note the theorem is proved a third time. The new proof is rather constructive and gives some insight to the structure of C^{μ} . Also, it utilizes a connection with derivations $B \to A$, which enables us to deduce the following as a corollary to the proof:

COROLLARY. Let A, B, and C be as in the theorem and assume that all k-derivations $B \to A$ are inner. Then a measuring $\mu: C \otimes B \to A$ is inner if and only if its restriction $C_0 \otimes B \to A$ is inner, where C_0 is the coradical of C.

Another case where the question of μ being inner can be reduced to the coradical, was given in [1, 3.2].

In [3, 4.2] A. Nowicki showed that if A is an algebra over a commutative ring k and if all k-derivations $A \rightarrow A$ are inner, then so are all higher k-derivations. (Actually, Nowicki worked with rings, but the same proof applies.) Since a higher derivation can be regarded as a measuring by a certain coalgebra C, where C_0 acts trivially [4, p. 140], and since an inner higher derivation corresponds to an inner measuring (as follows easily from [3, 3.2]), the corollary generalizes Nowicki's theorem when k is a field.

Preliminaries.

For the preliminaries on coalgebras we refer to [4]; here we mention only some basic facts and notations. Let A, B, and C be as in the theorem. The coalgebra

Received January 13, 1994.

structure maps of C are denoted by Δ and ε , and as in [4], we write $\Delta(c) = \sum c_{(1)} \otimes c_{(2)}$. We denote $W^+ = W \cap \operatorname{Ker} \varepsilon$ for any subspace W of C. A k-linear map μ : $C \otimes B \to A$ is a measuring if $\mu(c \otimes 1) = \varepsilon(c)1$ and $\mu(c \otimes bb') = \sum \mu(c_{(1)} \otimes b)\mu(c_{(2)} \otimes b')$ for $c \in C$, $b,b' \in B$. The space $\operatorname{Hom}(C,A)$ of k-linear maps $C \to A$ is a k-algebra with respect to the convolution product defined by $(\sigma * \tau)(c) = \sum \sigma(c_{(1)})\tau(c_{(2)})$ for $\sigma, \tau \in \operatorname{Hom}(C,A)$, $c \in C$; the identity element is the map sending c to $\varepsilon(c)1$. In this paper σ^{-1} always means the inverse of σ under the convolution product. Any convolution invertible $\sigma \in \operatorname{Hom}(C,A)$ implements a measuring ι_{σ} : $C \otimes B \to A$ by the rule $\iota_{\sigma}(c \otimes b) = \sum \sigma(c_{(1)})b\sigma^{-1}(c_{(2)})$; these are called inner measurings.

Given a measuring μ : $C \otimes B \to A$ and a subcoalgebra $D \subseteq C$, we say briefly that μ is inner on D when the restricted measuring $D \otimes B \to A$ is inner.

A k-derivation $\delta: B \to A$ is a k-linear map that satisfies $\delta(bb') = b\delta(b') + \delta(b)b'$ for $b, b' \in B$, and inner derivations $B \to A$ are maps that send $b \in B$ to xb - bx for some fixed $x \in A$.

Construction of C^{μ} .

Let A, B, C, and μ be as in the theorem. We are going to find inductively certain subcoalgebras $C_0^{\mu} \subseteq C_1^{\mu} \subseteq \ldots \subseteq C_n^{\mu} \subseteq \ldots$ of C and certain convolution invertible maps $\sigma_n \in \text{Hom}(C, A)$. On each C_n^{μ} the measuring μ will be inner, implemented by the restriction of σ_n to C_n^{μ} . The maps σ_n will be compatible in the sense that σ_n and σ_m coincide on C_n^{μ} if $n \leq m$.

When C_n^{μ} and σ_n are all found, the subcoalgebra C^{μ} is defined as $C^{\mu} = \bigcup_n C_n^{\mu}$. The maps σ_n determine then a map σ : $C^{\mu} \to A$ that makes μ inner on C^{μ} .

To start the construction, let $C_0 = \bigoplus_{\alpha} D_{\alpha}$ be the coradical as the sum of simple subcoalgebras. We define C_0^{μ} to be the sum of those D_{α} 's on which μ is inner. Then μ is inner on C_0^{μ} , implemented by some $\sigma_0 \in \operatorname{Hom}(C_0^{\mu}, A)$. We extend σ_0 to the whole of C: first we let it be $c \mapsto \varepsilon(c)$ 1 on the remaining D_{α} 's, and then we extend it to a linear map $C \to A$ in an arbitrary way. By [5, Lemma 14] σ_0 is then convolution invertible in $\operatorname{Hom}(C, A)$.

If $C_0^{\mu} = 0$ then we set $C_n^{\mu} = 0$ for all n, i.e., $C^{\mu} = 0$. Assume now that $C_0^{\mu} \neq 0$ and fix $c_0 \in C_0^{\mu}$ with $\varepsilon(c_0) = 1$.

Let $n \ge 0$ be fixed and assume that we have found C_n^μ and σ_n . Denote $W = C_n^\mu \wedge C_0^\mu$. Then $C_n^\mu \subseteq W \subseteq C$ and W is a subcoalgebra [4, 9.0.0 (i)]. Since $(C_n^\mu)^+$ is a coideal of C_n^μ , and hence of W, the space $\bar{W} = W/(C_n^\mu)^+$ is a coalgebra and the natural map $W \to \bar{W}$ is a coalgebra map; we denote the map by $c \mapsto \bar{c}$. If $c \in C_n^\mu$ then $\bar{c} = \varepsilon(c)\bar{c}_0$. Easily follows $\Delta(\bar{c}_0) = \bar{c}_0 \otimes \bar{c}_0$, hence

$$\Delta(c_0) \equiv c_0 \otimes c_0 \pmod{(C_n^{\mu})^+ \otimes W + W \otimes (C_n^{\mu})^+}.$$

More generally, if $c \in W$ then $\Delta(c) \in C_n^{\mu} \otimes W + W \otimes C_0^{\mu}$, hence $\Delta(\bar{c}) \in \bar{c}_0 \otimes \bar{W} +$

 $\bar{W} \otimes \bar{c}_0$, and one obtains easily that $\Delta(\bar{c}) = -\varepsilon(c)\bar{c}_0 \otimes \bar{c}_0 + \bar{c}_0 \otimes \bar{c} + \bar{c} \otimes \bar{c}_0$. For $c \in W^+$ this gives

$$\Delta(c) \equiv c_0 \otimes c + c \otimes c_0 \pmod{(C_n^{\mu})^+} \otimes W + W \otimes (C_n^{\mu})^+.$$

Define a measuring $v: C \otimes B \rightarrow A$ by

$$(***) v(c \otimes b) = \sum_{n=0}^{\infty} \sigma_n^{-1}(c_{(1)}) \mu(c_{(2)} \otimes b) \sigma_n(c_{(3)}).$$

Since σ_n implements μ on C_n^{μ} , we have $v(c \otimes b) = \varepsilon(c)b$ for $c \in C_n^{\mu}$, $b \in B$. In particular, $v(c_0 \otimes b) = b$ and $v((C_n^{\mu})^+ \otimes B) = 0$. Then from (**) follows for any $c \in W^+$ that

$$v(c \otimes bb') = \sum v(c_{(1)} \otimes b)v(c_{(2)} \otimes b') = bv(c \otimes b') + v(c \otimes b)b' \quad \text{for} \quad b, b' \in B,$$

i.e., $v(c \otimes -)$ is a derivation $B \to A$. Let $V = \{c \in W^+ | v(c \otimes -) \text{ is an inner derivation}\}$. Notice that V is a subspace and $(C_n^p)^+ \subseteq V$.

We define C_{n+1}^{μ} to be the unique maximal subcoalgebra of W contained in $C_n^{\mu} + V$. Then $C_n^{\mu} \subseteq C_{n+1}^{\mu}$.

Let $C_{n+1}^{\mu} = C_n^{\mu} \oplus V'$ where $V' \subseteq V$. Fix a basis $\{v_1, v_2, \ldots\}$ of V', and for each v_i fix $x_i \in A$ such that $v(v_i \otimes b) = x_i b - b x_i$ for $b \in B$. Let $\tau: C_{n+1}^{\mu} \to A$ be the linear map with $\tau(c) = \varepsilon(c)$ 1 for $c \in C_n^{\mu}$ and $\tau(v_i) = x_i$ for each i. Using (*) and (**) and the facts that $C_{n+1}^{\mu} = k c_0 \oplus (C_n^{\mu})^+ \oplus V'$ and $V' \subseteq W^+$, one sees easily that τ has a convolution inverse given by $\tau^{-1}(c) = \varepsilon(c)$ 1 for $c \in C_n^{\mu}$ and $\tau^{-1}(v_i) = -x_i$ for each i. Similarly one sees that v is inner on C_{n+1}^{μ} , implemented by τ . As σ_0 above, τ extends to a convolution invertible map $C \to A$. When we set $\sigma_{n+1} = \sigma_n * \tau$, then for any $c \in C_{n+1}^{\mu}$, $b \in B$, we have

$$\mu(c \otimes b) = \sum \sigma_n(c_{(1)})v(c_{(2)} \otimes b)\sigma_n^{-1}(c_{(3)})$$

$$= \sum \sigma_n(c_{(1)})\tau(c_{(2)})b\tau^{-1}(c_{(3)})\sigma_n^{-1}(c_{(4)})$$

$$= \sum \sigma_{n+1}(c_{(1)})b\sigma_{n+1}^{-1}(c_{(2)}).$$

Finally, on C_n^{μ} the maps σ_n and σ_{n+1} coincide. Thus, C_{n+1}^{μ} and σ_{n+1} are as required. This completes the construction of C^{μ} .

Maximality of C^{μ} .

Let now D be any subcoalgebra of C such that μ is inner on D. Let $D_0 \subseteq D_1 \subseteq ...$ be the coradical filtration of D. We are going to show that $D_n \subseteq C_n^{\mu}$ for all n, where C_n^{μ} is as constructed above; this will then imply $D \subseteq C^{\mu}$, thus completing the proof of the theorem.

Trivially $D_0 \subseteq C_0^{\mu}$. Fix $n \ge 0$ and assume that $D_n \subseteq C_n^{\mu}$. Now, μ is implemented on D by some $\rho \in \text{Hom}(D, A)$ and on C_n^{μ} by the restriction of σ_n , hence for $d \in D_n \subseteq C_n^{\mu}$, $b \in B$,

$$\mu(d \otimes b) = \sum \rho(d_{(1)})b\rho^{-1}(d_{(2)}) = \sum \sigma_n(d_{(1)})b\sigma_n^{-1}(d_{(2)}).$$

So, if we denote $\beta = \sigma_n^{-1}|_D * \rho \in \text{Hom}(D, A)$, then $\beta(D_n)$ and $\beta^{-1}(D_n)$ centralize B. By (***), for any $d \in D$, $b \in B$,

$$v(d \otimes b) = \sum_{n} \sigma_n^{-1}(d_{(1)})\rho(d_{(2)})b\rho^{-1}(d_{(3)})\sigma_n(d_{(4)}) = \sum_{n} \beta(d_{(1)})b\beta^{-1}(d_{(2)}).$$

Let $d \in D_{n+1} = D_n \wedge D_0$ (wedge in D). Then $\Delta(d) = \sum_i d_i \otimes d_i' + \sum_i d_i'' \otimes d_i'''$ where $d_i \in D_n$, $d_i''' \in D_0$, and d_i' , $d_i'' \in D$. We have

$$v(d \otimes b) = \sum_{i} b \beta(d_{i}) \beta^{-1}(d'_{i}) + \sum_{i} \beta(d''_{i}) \beta^{-1}(d'''_{i}) b$$

since $\beta(d_i)$ and $\beta^{-1}(d_i''')$ centralize B. Hence,

$$v(d \otimes b) = bx + yb$$
 for $b \in B$,

where $x, y \in A$ depend on d but not on b. If $\varepsilon(d) = 0$, then $v(d \otimes 1) = \varepsilon(d) 1 = 0$, hence y = -x, which gives $v(d \otimes b) = bx - xb$. In other words, for any $d \in D_{n+1}^+$, $v(d \otimes -)$ is an inner derivation. Since also $D_{n+1} \subseteq C_n^{\mu} \wedge C_0^{\mu} = W$, we conclude that $D_{n+1} \subseteq C_{n+1}^{\mu}$.

Proof of the corollary.

Assume that all derivations $B \to A$ are inner. Then in the construction of C^{μ} we have $V = W^+$, hence $C_n^{\mu} + V = W$, and $C_{n+1}^{\mu} = W = C_n^{\mu} \wedge C_0^{\mu}$. It follows that $C_n^{\mu} = \bigwedge^{n+1} C_0^{\mu}$, so,

$$C^{\mu} = \bigcup_{n} C^{\mu}_{n} = \bigcup_{n} \bigwedge^{n} C^{\mu}_{0}$$

is the unique maximal subcoalgebra with coradical C_0^{μ} . This implies the corollary.

REFERENCES

- 1. M. Koppinen, A Skolem-Noether theorem for coalgebra measurings, Arch. Math. 57 (1991), 34-40.
- A. Masuoka, Existence of a unique maximal subcoalgebra whose action is inner, Israel J. Math. 72 (1990), 149–157.
- 3. A. Nowicki, Inner derivations of higher orders, Tsukuba J. Math. 8 (1984), 219-225.
- 4. M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
- 5. M. Takeuchi, Free Hopf algebras generated by coalgebras, J. Math. Soc. Japan 23 (1971), 561-582.