A NOTE ON INNER COALGEBRA MEASURING AND DERIVATIONS

M. KOUPINEN

Introduction and results.

Recently, A. Masuoka [2] proved the following:

THEOREM. Let k be a field, C a k-coalgebra, A a k-algebra, and $B \subseteq A$ a k-subalgebra. For any measuring $\mu: C \otimes B \to A$ there is a unique maximal subcoalgebra C'' of C for which the restricted measuring $C'' \otimes B \to A$ is inner.

Another proof was found by M. Takeuchi and the author (see [2]). In this note the theorem is proved a third time. The new proof is rather constructive and gives some insight to the structure of C''. Also, it utilizes a connection with derivations $B \to A$, which enables us to deduce the following as a corollary to the proof:

COROLLARY. Let A, B, and C be as in the theorem and assume that all k-derivations $B \to A$ are inner. Then a measuring $\mu: C \otimes B \to A$ is inner if and only if its restriction $C_0 \otimes B \to A$ is inner, where C_0 is the coradical of C.

Another case where the question of μ being inner can be reduced to the coradical, was given in [1, 3.2].

In [3, 4.2] A. Nowicki showed that if A is an algebra over a commutative ring k and if all k-derivations $A \to A$ are inner, then so are all higher k-derivations. (Actually, Nowicki worked with rings, but the same proof applies.) Since a higher derivation can be regarded as a measuring by a certain coalgebra C, where C_0 acts trivially [4, p. 140], and since an inner higher derivation corresponds to an inner measuring (as follows easily from [3, 3.2]), the corollary generalizes Nowicki's theorem when k is a field.

Preliminaries.

For the preliminaries on coalgebras we refer to [4]; here we mention only some basic facts and notations. Let A, B, and C be as in the theorem. The coalgebra
structure maps of C are denoted by A and ε, and as in [4], we write $A(c) = \sum c_{(1)} \otimes c_{(2)}$. We denote $W^+ = W \cap \text{Ker} \varepsilon$ for any subspace W of C. A k-linear map $\mu: C \otimes B \to A$ is a measuring if $\mu(c \otimes 1) = \varepsilon(c) 1$ and $\mu(c \otimes bb') = \sum \mu(c_{(1)} \otimes b) \mu(c_{(2)} \otimes b')$ for $c \in C$, $b, b' \in B$. The space $\text{Hom}(C, A)$ of k-linear maps $C \to A$ is a k-algebra with respect to the convolution product defined by $(\sigma * \tau)(c) = \sum \sigma(c_{(1)}) \tau(c_{(2)})$ for $\sigma, \tau \in \text{Hom}(C, A)$, $c \in C$; the identity element is the map sending c to $\varepsilon(c) 1$. In this paper σ^{-1} always means the inverse of σ under the convolution product. Any convolution invertible $\sigma \in \text{Hom}(C, A)$ implements a measuring $\iota_\sigma: C \otimes B \to A$ by the rule $\iota_\sigma(c \otimes b) = \sum \sigma(c_{(1)}) b^\sigma(c_{(2)})$; these are called inner measurements.

Given a measuring $\mu: C \otimes B \to A$ and a subcoalgebra $D \subseteq C$, we say briefly that μ is inner on D when the restricted measuring $D \otimes B \to A$ is inner.

A k-derivation $\delta: B \to A$ is a k-linear map that satisfies $\delta(bb') = b\delta(b') + \delta(b)b'$ for $b, b' \in B$, and inner derivations $B \to A$ are maps that send $b \in B$ to $xb - bx$ for some fixed $x \in A$.

Construction of C^μ.

Let A, B, C, and μ be as in the theorem. We are going to find inductively certain subcoalgebras $C_0^\mu \subseteq C_1^\mu \subseteq \ldots \subseteq C_n^\mu \subseteq \ldots$ of C and certain convolution invertible maps $\sigma_n \in \text{Hom}(C, A)$. On each C_n^μ the measuring μ will be inner, implemented by the restriction of σ_n to C_n^μ. The maps σ_n will be compatible in the sense that σ_n and σ_m coincide on C_n^μ if $n \leq m$.

When C_n^μ and σ_n are all found, the subcoalgebra C^μ is defined as $C^\mu = \cup_n C_n^\mu$. The maps σ_n determine then a map $\sigma: C^\mu \to A$ that makes μ inner on C^μ.

To start the construction, let $C_0 = \bigoplus D_a$ be the coradical as the sum of simple subcoalgebras. We define C_0^μ to be the sum of those D_a's on which μ is inner. Then μ is inner on C_0^μ, implemented by some $\sigma_0 \in \text{Hom}(C_0^\mu, A)$. We extend σ_0 to the whole of C: first we let it be $c \mapsto \varepsilon(c) 1$ on the remaining D_a's, and then we extend it to a linear map $C \to A$ in an arbitrary way. By [5, Lemma 14] σ_0 is then convolution invertible in $\text{Hom}(C, A)$.

If $C_0^\mu = 0$ then we set $C_n^\mu = 0$ for all n, i.e., $C^\mu = 0$. Assume now that $C_0^\mu \neq 0$ and fix $c_0 \in C_0^\mu$ with $\varepsilon(c_0) = 1$.

Let $n \geq 0$ be fixed and assume that we have found C_n^μ and σ_n. Denote $W = C_n^\mu \wedge C_0^\mu$. Then $C_n^\mu \subseteq W \subseteq C$ and W is a subcoalgebra [4, 9.0.0(i)]. Since $(C_n^\mu)^+$ is a coideal of C_n^μ, and hence of W, the space $\tilde{W} = W/(C_n^\mu)^+$ is a coalgebra and the natural map $W \to \tilde{W}$ is a coalgebra map; we denote the map by $c \mapsto \tilde{c}$. If $c \in C_n^\mu$ then $\tilde{c} = \varepsilon(c) c_0$. Easily follows $A(\tilde{c}_0) = \tilde{c}_0 \otimes \tilde{c}_0$, hence

$$(*) \quad A(c_0) \equiv c_0 \otimes c_0 \pmod{(C_n^\mu)^+ \otimes W + W \otimes (C_n^\mu)^+}.$$

More generally, if $c \in W$ then $A(c) \in C_n^\mu \otimes W + W \otimes C_0^\mu$, hence $A(\tilde{c}) \in \tilde{c}_0 \otimes \tilde{W} +$
\[\bar{W} \otimes \bar{c}_0, \] and one obtains easily that \(\Delta(\bar{c}) = -\varepsilon(c)\bar{c}_0 \otimes \bar{c}_0 + \bar{c}_0 \otimes \bar{c} + \bar{c} \otimes \bar{c}_0. \) For \(c \in W^+ \) this gives

\((**)\quad \Delta(c) \equiv c_0 \otimes c + c \otimes c_0 \mod (C_n^n)^+ \otimes W + W \otimes (C_n^n)^+).\)

Define a measuring \(\nu: C \otimes B \rightarrow A \) by

\[(***)\quad \nu(c \otimes b) = \sum \sigma_n^{-1}(c_{(1)}) \mu(c_{(2)} \otimes b) \sigma_n(c_{(3)}),\]

since \(\sigma_n \) implements \(\mu \) on \(C_n^n \), we have \(\nu(c \otimes b) = \varepsilon(c)b \) for \(c \in C_n^n, b \in B \). In particular, \(\nu(c_0 \otimes b) = b \) and \(\nu((C_n^n)^+ \otimes B) = 0 \). Then from \((***)\) follows for any \(c \in W^+ \) that

\[\nu(c \otimes bb') = \sum \nu(c_{(1)} \otimes b) \nu(c_{(2)} \otimes b') = b\nu(c \otimes b') + \nu(c \otimes b)b' \quad \text{for} \quad b, b' \in B,\]
i.e., \(\nu(c \otimes -) \) is a derivation \(B \rightarrow A \). Let \(V = \{ c \in W^+ | \nu(c \otimes -) \text{ is an inner derivation} \} \). Notice that \(V \) is a subspace and \((C_n^n)^+ \subseteq V\).

We define \(C_{n+1}^+ \) to be the unique maximal subcoalgebra of \(W \) contained in \(C_n^n + V \). Then \(C_n^n \subseteq C_{n+1}^+ \).

Let \(C_{n+1}^+ = C_n^n \oplus V' \) where \(V' \subseteq V \). Fix a basis \(\{v_1, v_2, \ldots\} \) of \(V' \), and for each \(v_i \) fix \(x_i \in A \) such that \(\nu(v_i \otimes b) = x_i b - bx_i \) for \(b \in B \). Let \(\tau: C_{n+1}^+ \rightarrow A \) be the linear map with \(\tau(c) = \varepsilon(c)1 \) for \(c \in C_n^n \) and \(\tau(v_i) = x_i \) for each \(i \). Using \((*)\) and \((***)\) and the facts that \(C_{n+1}^+ = k C_0 \oplus (C_n^n)^+ \oplus V' \) and \(V' \subseteq W^+ \), one sees easily that \(\tau \) has a convolution inverse given by \(\tau^{-1}(c) = \varepsilon(c)1 \) for \(c \in C_n^n \) and \(\tau^{-1}(v_i) = -x_i \) for each \(i \). Similarly one sees that \(\nu \) is inner on \(C_{n+1}^+ \), implemented by \(\tau \). As \(\sigma_0 \) above, \(\tau \) extends to a convolution invertible map \(C \rightarrow A \). When we set \(\sigma_{n+1} = \sigma_n \ast \tau \), then for any \(c \in C_{n+1}^+ \), \(b \in B \), we have

\[\mu(c \otimes b) = \sum \sigma_n(c_{(1)}) \nu(c_{(2)} \otimes b) \sigma_n^{-1}(c_{(3)}) = \sum \sigma_n(c_{(1)}) \tau(c_{(2)}) b \tau^{-1}(c_{(3)}) \sigma_n^{-1}(c_{(4)}) = \sum \sigma_{n+1}(c_{(1)}) b \sigma_{n+1}^{-1}(c_{(2)}).\]

Finally, on \(C_n^n \) the maps \(\sigma_n \) and \(\sigma_{n+1} \) coincide. Thus, \(C_{n+1}^+ \) and \(\sigma_{n+1} \) are as required. This completes the construction of \(C_n^n \).

Maximality of \(C_n^n \).

Let now \(D \) be any subcoalgebra of \(C \) such that \(\mu \) is inner on \(D \). Let \(D_0 \subseteq D_1 \subseteq \ldots \) be the coradical filtration of \(D \). We are going to show that \(D_n \subseteq C_n^n \) for all \(n \), where \(C_n^n \) is as constructed above; this will then imply \(D \subseteq C_n^n \), thus completing the proof of the theorem.

Trivially \(D_0 \subseteq C_0^n \). Fix \(n \geq 0 \) and assume that \(D_n \subseteq C_n^n \). Now, \(\mu \) is implemented on \(D \) by some \(\rho \in \text{Hom}(D, A) \) and on \(C_n^n \) by the restriction of \(\sigma_n \), hence for \(d \in D_n \subseteq C_n^n \), \(b \in B \),
\[\mu(d \otimes b) = \sum \rho(d^{(1)})b \rho^{-1}(d^{(2)}) = \sum \sigma(d^{(1)})b \sigma^{-1}(d^{(2)}). \]

So, if we denote \(\beta = \sigma^{-1}_n \cdot D \ast \rho \in \text{Hom}(D, A) \), then \(\beta(D_n) \) and \(\beta^{-1}(D_n) \) centralize \(B \).

By (***), for any \(d \in D \), \(b \in B \),

\[\nu(d \otimes b) = \sum \sigma_n^{-1}(d^{(1)})\rho(d^{(2)})b \rho^{-1}(d^{(3)})\sigma_n(d^{(4)}) = \sum \beta(d^{(1)})b \beta^{-1}(d^{(2)}). \]

Let \(d \in D_{n+1} = D_n \wedge D_0 \) (wedge in \(D \)). Then \(\Delta(d) = \sum d_i \otimes d'_i + \sum d''_i \otimes d'''_i \)

where \(d_i \in D_n, d''_i \in D_0 \), and \(d'_i, d'''_i \in D \). We have

\[\nu(d \otimes b) = \sum \beta(d_i)b \beta^{-1}(d'_i) + \sum \beta(d''_i)b \beta^{-1}(d'''_i) \]

since \(\beta(d_i) \) and \(\beta^{-1}(d'''_i) \) centralize \(B \). Hence,

\[\nu(d \otimes b) = bx + yb \quad \text{for} \quad b \in B, \]

where \(x, y \in A \) depend on \(d \) but not on \(b \). If \(\varepsilon(d) = 0 \), then \(\nu(d \otimes 1) = \varepsilon(d)1 = 0 \), hence \(y = -x \), which gives \(\nu(d \otimes b) = bx - xb \). In other words, for any \(d \in D_{n+1} \), \(\nu(d \otimes -) \) is an inner derivation. Since also \(D_{n+1} \subseteq C_n^\mu \wedge C_0^\mu = W \), we conclude that \(D_{n+1} \subseteq C_{n+1}^\mu \).

Proof of the corollary.

Assume that all derivations \(B \to A \) are inner. Then in the construction of \(C_n^\mu \) we have \(V = W^+ \), hence \(C_n^\mu + V = W \), and \(C_{n+1}^\mu = W = C_n^\mu \wedge C_0^\mu \). It follows that \(C_n^\mu = \bigwedge^{n+1} C_0^\mu \), so,

\[C_n^\mu = \bigcup_n C_n^\mu = \bigcup_n \bigwedge^n C_0^\mu \]

is the unique maximal subcoalgebra with coradical \(C_0^\mu \). This implies the corollary.

REFERENCES