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POLYNOMIALS INVOLVING THE FLOOR FUNCTION

INGER JOHANNE HALAND and DONALD E. KNUTH

Abstract.

Some identities are presented that generalize the formula

x= 3 x| = 3] el o+ [P+ 30 el ) + )
to a representation of the product xox;...x,-;.
1. Introduction.

Let| x |be the greatest integer less than or equal to x, and let {x} = x — | x |be the
fractional part of x. The purpose of this note is to show how the formulas

(1.1 xy =|x]y + x{y]—xJ ]+ {x}Hy}
and
(1.2) xyz = x|yl z] |+ ylzlx] ] + z[x|y]]
= xJlz)] = W) lelx ) — zlxLy] ]
+[x]Ly]lz]
+ {xHolzl} + {Hezlxd} + {ZHx )}
+ {x}{yHz}

can be extended to higher-order products xox; ... x,—;.
These identities make it possible to answer questions about the distribution
mod 1 of sequences having the form

(1.3) aynlagn...|og—ynlogn]]...}, n=12....

Such sequences are known to be uniformly distributed mod 1 if the real numbers
1,a4,...,0 are rationally independent [1]; we will prove that (1.3) is uniformly
distributed in the special case a; = a, = ... = o, = aifand only if o* is irrational,
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when k is prime. (It is interesting to compare this result to analogous properties of
the sequence

(1.4) oolayn]loan].. Joyn), n=12...,

where o, ay,...,a are positive real numbers. If k = 3, such sequences are
uniformly distributed mod 1 if and only if «, is irrational [2].)

2. Formulas for the product xox,...x, ;.

The general expression we will derive for x¢x;...x,_; contains 2"*! —pn — 2
terms. Given a sequence X = (xo, Xy,..., X, 1) we regard x,  ;as equivalent to x;,
and for integers a < b we define

1, if a=b;

X X@TDP | otherwise.

Thus X1:4 = leXZLX3_’_J and X4:("+1) = X4LX5L. . .an,lLXOJJ. . J_I USing thlS
notation, we obtain an expression for xyx; ...Xx,_ by taking the sum of

(22) {Xslzsz} {st'.33} . {Xsk:(sl +n)} _ (___ l)kLXS;:mJ LXS):S3.J. . 'I_Xsk:(81 +n)—‘

@.1) X = {

over all nonempty subsets S = {s,....s,} of {0,1,...,n— 1}, where
§y < ++» < 8. This rule defines 2"*! — 2 terms, but in the special case k = 1 the
two terms of (2.2) reduce to

(23) {Xsiz(sx+n)} + Lxslz(s|+n)J= Xs;:(sﬁ-n)

so we can combine them and make the overall formula n terms shorter. The
right-hand side of (1.2) illustrates this construction when n = 3.

To prove that the sum of all terms (2.2) equals x¢Xx; ... X, -, we replace { X**}
by X*? —| X** | and expand all products. One of the terms in this expansion is
XoXy...X,-y; it arises only from the set S = {0, 1,...,n — 1}. The other terms all
contain at least one occurrence of the floor operator, and they can be written

(2.4) Xy X o [ X2 g, e Xy [ X Xy Xy [ X

where u; £v; <uy v, <uz <--- Lv, <n We want to show that all such

terms cancel out. For example, some of the terms in the expansion when n =9
have the form

X[ X7 [xaxs| XO7 [ X710 = x| x| x5 |xaxs| x6] X7 x8[ Xo0]]],

whichis (2.4)withu; = 1,vy = 2,u, = 4,v, = 6,u3 = v3 = 7.Itiseasy to see that
this term arises from the expansion of (2.2) only when Sis one of the sets {1,2, 4, 5,
6,7}, {1,4,56,7},{1,2,4,5,7}, {1, 4, 5, T}; in those cases it occurs with the
respective signs —, +, +, —, so it does indeed cancel out.
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In general, the only sets S leading to the term (2.4) have
S={slu; s <v;} u{v;lu; =v;} U T, where Tis a subset of U = {v;|u; + v;}.
If U is empty, all parts of the term (2.4) appear inside floor brackets and this term
is cancelled by the second term of (2.2). If U contains m > 0 elements, the 2™
choices for S produce 2™~ ! terms with a coefficient of +1 and 2™~ ! with
a coefficient of — 1. This completes the proof.

Notice that we used no special properties of the floor function in this argument.
The same identity holds when |x| is an arbitrary function, if we define

{x} =x —|x].
The formulas become simpler, of course, when all x; are equal. Let
1 if k=0;
k __ ? ’
= = {xLx“"’”J, if k>0;
and let
(2.6) a = {x*, b =|x*]

Then an identity for x" can be read off from the coefficients of z" in the formula

@7 Xz ayz +2a,2" +3a32° + -

1—xz 1—a;z—ayz®2—asz®—--

blz + 2b222 + 3b323 + ..
1+ byz+ byz* + b3z + -7

which can be derived from (2.2) or proved independently as shown below. For
example,

x? = a? + 2a, — b? + 2b,;
X3 = a3 + 3a,a, + 3a; + b} — 3b.b, + 3bs;
x* = a} + 4ala, + 4a,a; + 2a3 + 4a,
— b% + 4b%b, — 4b,by — 2b3 + 4b,,.
In general we have
(2.8) x" = py(ay,az,...,8,) — pu(—by, —b,,..., —b,),

where the polynomial

ki +hkp+othy—Din
2.9 yAyen.yy) = ai'az? ...a"
GO Pl @)= B e Kkl k] 1oz

contains one term for each partition of n.
It is interesting to note that (2.7) can be written
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W 0w o
dz 1—xz dz l—ayz—az>—-+ dz 14biz+byz2+---"

hence we obtain the equivalent identity

1 _ 1+b12+b222+b323+"’
1—xz 1—a;z—ay2®2—azz®—---"

(2.10)

This identity is easily proved directly, because it says that a; + b, = xb, _; for
k = 1. Therefore it provides an alternative proof of (2.7). It also yields formulas
for x" with mixed a’s and b’s, and with no negative coefficients. For example,

x?=a? + a, + a;b; + by;
x* = a3 + 2a,a, + ay + (a3 + ay)b, + aib, + bs;
x* = a} + 3ala, + 2a5a; + a2 + a, + (a} + 2a,a; + as)b;

+ (a + ay)b, + a by + by,

3. Application to uniform distribution.

We can now apply the identities to a problem in number theory, as stated in the
introduction. Let [0..1) = {x]0 £ x < 1}.

LEMMA 1. For all positive integers k and I, there is a functionfi (y1, Y25 - -5 Yi~1)
from[0..1¥ ! to[0..1) such that

x:k Xk X x2 xk—-l

PrOOF. Let

(3'2) ijn(al’ Azyee 5Oy 1) = pn(aba25 LR an) — ha,

be the polynomial of (2.9) without its (unique) linear term. Then

1. 1.
(3.3) ‘—“=‘-—ﬁpk(ab-u,ak—l)+Hpk(‘b1,---,“bk—l)-

We proceed by induction on k, defining the constant f; ; = 0 for all [. Then if
y; = {x//k!l} and [; = k!l/j! we have

a; = {l;‘)‘;‘l‘} = {l;((G— Dy - fj.tj()’um,yj‘—l))}

and
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X x lj—-1 {xj} iJ
b;=|l.—|=1|— |+ — 4 —
! {’ ’fJ jt I;J i;[ L)

-1 .
Y [{(] =Dy = i, nyi- ) + ILJ (mod kl),

i=1 J

because of the well-known identities

-1

(3.4 (I} = (1)}, Lix)= 3 Lx + il
i=0

when [ is a positive integer. Therefore (3.1) holds with

(3.5) S Y1)

| _ 1, _ _
:{k_lpk(al.k,h---,akﬂ,k,l)—ﬁpk(—'bl,k,t,---,—bk~1,k,l)},

where
(3.6) Aj 1= {((f - 1)!J’j - fj.ku/jz()’l,- . -,Yj—l))k”/j!},
_ Ki/jt—1 ]‘l
(3.7) bj 1= Z [{(I = D = Sy yi- 0} + WJ
i=1 !

For example,
f2.300) = {(a} — B})/6},
S3.102) = {Bayay + a3 — 3818, + B7)/3},

where a; = {6y}, 0, = (32 =350}, Br=ly + el +y+&]+... + Ly + 2
and B, = {z — f2.30)} + 3]+ [{z — f2.:0)} +3J.

LEMMA 2. The function f, ; of Lemma 1 does not preserve Lebesgue measure, and
neither does {klmf, ;} for any positive integer m.

Proor. It suffices to prove the second statement, for if f,, were
measure-preserving the functions {mf, ,} would preserve Lebesgue measure for
all positive integers m. Notice that {klmf, ;} = {mpi(ay i.1>---» T 1.x.1)}, Decause
Pi(=b1k1r---» —bi_1.x1) is an integer. The triangular construction of (3.6)
makes it clear that a, ; j,...,d, - 4, are independent random variables defined
on the probability space [0. . 1)* !, each uniformly distributed in [0. . 1). There-
fore it suffices to prove that {mp,(ay,. .., a; )} is not uniformly distributed when
a,...,a - are independent uniform deviates.

We can express p(dy,...,d,_,) in the form

kayai—y + a1qi(@y, ..., 4 5) + kayax 5 + axqa(as, ..., 3) + - + %kal%/Za
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for some polynomials q,,..., g - )2, Where the final term $ka;,, is absent when
kisodd. Thenwe canlet y; = a;forj < tkand y; = a; — g, (@}, .., a;—;)/kfor
j >4k, obtaining independent uniform deviates y,,...,y._, for which
mpi(ay,...,a; ) equals

(3.8)  glyi,-s k1) = mkyy_y + mkysyi, + - 4+ (%k)’f/z[k even]).

For example, g4(yy, y2,¥3) = 4y1ys + 2y3 and g5(y1, V2, V3, Va) = 5y1¥s + 5y2)3
whenm = 1.

The individual terms of (3.8) are independent, and they have monotone
decreasing density functions mod. 1. (The density function for the probability
that {kxy}e[r..t + dt]is ) ¥2{ 4 In74; dt.) Therefore they cannot possibly yield
a uniform distribution. For if f(x) is the density function for a random variable
on [0..1), we have E(e*™*) = [} e*™*f(x)dx + 0 when f(x) is monotone; for
example, if f(x) is decreasing, the imaginary part is

JM sin(2nx)(f(x) — f(1 — x))dx > 0.
0

If Y is an independent random variable with monotone density, we have
E(eZni{X+Y)) — E(elni(X+Y)) — E(eZniX)E(EZniY) :*: 0 But E(eZniU) — 0 When U iS
a uniform deviate. Therefore (3.8) cannot be uniform mod 1.

Now we can deduce properties of sequences like

(any* = an|an|...|an]...]]
as n runs through integer values.

THEOREM. If the powers o?,...,0* "' are irrational, the sequence {m(an)* —
km(an)*}, for n = 1,2,..., is not uniformly distributed in [0.. 1) for any integer m.

Proor. This result is trivial when k =1 and obvious when k = 2, since
{(an)* — 2(an)?} = {an}?. But for large values of k it seems to require a careful
analysis. By Lemma 1 we have

k-1, k—1
(3.9) {m(an)* — km(an)*} = {kmfk. 1 ({%} 2 {%})}’

and Lemma 2 tells that {kmf, ,} is not measure preserving.

Let S be an interval of [0..1), and T its inverse image in [0..1)*"! under
{kfi.1}, where u(T) + p(S). Itis easy to see thatif (yy,...,y-)e Tand yy,..., ye—y
are irrational, there are values &;,...,6,_; such that [y;..y; +&) x -+ x
[Vk—1--Vk—1 + &—1) € T Therefore the irrational points of T can be covered by
disjoint half-open hyperrectangles. We will show that (3.9) is not uniform by
using Theorem 6.4 of [3], which implies that the sequence ({an°'},..., {o;n®}) is
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uniformly distributed in [0. . 1)° whenever ay,.. ., o are irrational numbers and
the integer exponents e;,...,e; are distinct. Thus the probability that
{(an)* — k(an)*} € S approaches y(T) as n — oo; the distribution is nonuniform.

COROLLARY. Ifthe powers o?,...,a*~ ! are irrational, the sequence {(an)*}, for
n=1,2,...,is uniformly distributed in [0.. 1) if and only if o* is irrational.

ProoF. If o* is irrational, {o*n*/k} is uniformly distributed in [0..1) and
independent of ({an/k!},..., {o* " 'n*~1/k!}), by the theorem quoted above from
[3]. Therefore the right-hand side of (3.1) is uniform.

If o is rational, say o =p/q, assume that {(an)*} is uniform. Then
{g(a*n* — k(an)*} = { —qk(an)*} is also uniform, contradicting what we proved.

We conjecture that the theorem and its corollary remain true for all real a,
without the hypothesis that a2,...,«* ! are irrational.
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