MATH. SCAND 76 (1995), 179-193

ON FLATNESS AND PROJECTIVITY OF A RING
AS A MODULE OVER A FIXED SUBRING

JUAN JOSE GARCIA and ANGEL DEL RiO*

Introduction and Preliminaries.

Let R be aring, G a group of automorphisms of R and R the fixed subring of G on

R. In [8], Jondrup studied when R is projective as a right RS-module. The first

aim of this paper is to continue Jondrup’s work. On the other hand in [10],

Lorenz gives a theorem relating the left global dimension of R and R¢ under some

assumptions. One of these assumptions is R to be flat as a right R®-module.

Lorenz theorem motivates the study of when R is flat as a right R®-module (see

[10, Remark 2.6]). This is our second aim.

While we are not aware of any result concerning the flatness of R as
R%-module, there are many results ensuring projectivity. For example, if G is
finite then R is projective as right R°-module if any of the following conditions
hold:

@ R is simple artinian and G is outer (Montgomery [ 11, Theorem 2.7]).

e The order of G is invertible in R and R is either a finite product of simple rings
or biregular right selfinjective (Handelman and Renault [7]).

e The order of G is invertible in R, R is right hereditary and one of the following
conditions hold: R is semiprime and right noetherian; R is a PI ring which is
finitely generated as a module over a subring of its center; R is an artinian
algebra; R is reduced, von Neumann regular PI ring and the order of G is
apower of 2; R is reduced von Neumann regular and finitely generated over its
center; R is commutative von Neumann regular; R is reduced von Neumann
regular and G is solvable (Jendrup [8]).

e The skew group ring RG = RnR + J, where

n=Y,c9andJ =Y, ca,0e RG|Y  s(ra,) = OforallreR}.

In particular this happens if RG is biregular and R has an element of trace
1 (Kitamura [9]).

* The second author has been partially supported by DGICYT (PB90-0300-Co02-02).
Received March 10, 1994.
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Our study starts with some necessary and sufficient conditions for R to be
projective (resp. flat) as right R°-module (under the assumption of G being
finitely generated when we consider flatness) by means of properties of some right
RG-modules. (See Theorems 3 and 5). The main tool to prove those theorems is
the basic fact that R has a canonical structure of right RG-module such that
Endgg(R) is isomorphic to RE.

If we assume that the module Rgg is quasi-projective part of the equivalent
conditions to projectivity or flatness of Rzc automatically hold. This fact is used
to improve the general theorems when Ry is quasi-projective (Corollaries 7 and
8).

By applying the previous results, we are able to give the main results of the
paper which consists in some sufficient conditions for Rge to be projective or flat
easier to check than the given in the necessary and sufficient theorems. For
instance we prove that Rgc is projective if any of the following conditions holds
for G a finite group of automorphisms of R.

e RnR is projective as RG-module, where 7 is the element Y ;. g of RG.

® RG is right hereditary, in particular this last happens if R is right hereditary
and has a central element of trace 1. (This extends Jendrup’s results mentioned
above).

® RG is semihereditary (in particular, if R is right semihereditary and has
acentral element of trace 1) and Rye is finitely generated as a right R°>-module.

® RG is biregular (This should be compared with Handelman-Renault and

Kitamura’s results).

Further we prove that Rye is flat when one of the following conditions hold:
o R#R is flat as right RG-module (see below for the definition of #).
e G is finite and RG has weak dimension at most 1 (in particular, if R has weak
dimension at most 1 and has a central element of trace 1).

We finish with some examples showing that some of this sufficient conditions
can not be aweakened. For instance, we give an example of an infinite group G of
automorphisms of a ring R such that RG is von Neumann regular and Rge is not
flat.

In this paper “ring” means associative ring with unit. If R is a ring, mod-R will
denote the category of right R-modules. The notation My will be used to
emphasize that M is a right R-module.

All over this paper R will stand for a ring and G for a group of automorphisms
of R. The action of g€ G on re R will by denoted by 9.

The fixed ring is the subring R® = {re R|r® = r for all ge G} of R.

The skew group ring is the ring RG defined as follows: As an abelian group RG
coincides with the free left R-module with basis G. Thus every element of RG has
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a unique expression Y, r,g, with r, = 0 for almost all g € G. The multiplication in
geG

RG is defined by the rule (rg)(sh) = rs? 'gh, for all r,se R and g, heG.

R can be considered as a subring of RG by identifying re R with re, where
e denotes the identity of G. Then RG is free with basis G both as a left and right
R-module.

The ring R has a natural structure of R-RG-bimodule, given by: ar(sg) = a(rs)®
for all aeRC r,seR and geG. Furthermore, the canonical isomorphism
End(Rg) ~ R restricts to an isomorphism End(Rgs) ~ RS.

A subset X of R is said to be G-invariant if x? € X, for all xe X and geG.

Necessary and Sufficient Conditions.

For every M e mod-RG, we denote M® = {me M |mg = mfor all ge G}. Clearly,
MERY = M€, thus M€ is a submodule of Mgc. Furthermore, if f € Homgg(M, N),
then f(MY) < N°. (Note that this notation is consistent with the given for the
fixed ring, when R is considered as a right RG-module, because rg = r?, for all
reR and geG).

Let (—)% mod-RG — mod-R€ be the functor associating M e mod-RG to M¢
and f e Homgg(M, N) to the restriction S of f from M€ to N€.

For every M emod-RG, let cy: M® ®gc R —» M be the map given by
cy(m®@r) =mr (meM, reR).

For any N e mod-R¢, we define uy: N - (N ®ra R)° by uy(n) =n® 1.

LemMMAa 1. 1. The functor (—)¢ is naturally isomorphic to Hompgg(R, —):
mod-RG — mod-RE. Therefore (—)® isright adjointto T = — ® ge R: mod-R® —
mod-RG.

2. u 1yoa-re = (=)%o Tandc: To(—)¢ = 1,04-rg are respectively the unit and
counit of the adjunction pair (—)°, T).

3. crwo is an isomorphism for every set I.

4. ugaym is an isomorphism for every set I.

Proor. (1)Iswell known [3]and (2)follows by straightforward computations.
To show (3) it is enough to realize that (R?)® = (RSP and cgmn: (R @R
— R s the canonical isomorphism. Finally, by (2), (cgn) e ugane = 1gmys and
hence, uranye = Ugeyn is an isomorphism.

Let RG [ lsec Rg where, for any ge G, Ry is the additive subgroup of RG
formed by the elements of the form rg (r € R). The element of RG which has rqat
the g-th entry (g € G), will be denote by Z r,g. We will use this notation with

geG
a wide meaning, for instance, Z r,gh is the element of RG which has r, at the
geG

gh-entry (g € G).
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We endow RG with an structure of RG-bimodule by setting:

rg- i Sph = 2 rs¢”'  and i sphrg = i sy 'hy

heG geG heG geG

LEMMA 2. RGS ~ R as RG-R®-bimodule and ug is injective.

PRrROOF. To prove the first claim just check that the map ¢: R — RG given by
#(r) = Y. rg is a monomorphism of RG-R%-bimodules and that Im(¢) = RG®.

geG
By last lemma (czg)® o ug = 1g. Thus up is injective.

THEOREM 3. Let R be aring and G a group of automorphisms of R. The following
conditions are equivalent:

1. R is projective as a right R¢-module.

2. R ®gc R is isomorphic to a direct summand of a direct sum of copies of Rgg
and uy, is surjective (bijective).

3. There is a direct summand M of a direct sum of copies of Rgg such that
M€ ~ R as right R¢-module.

PrOOF. (1) =(2) Let p: (R%)" - R be a split epimorphism in mod-R. Then
pP®1:(RYP® e R > R®pc R is a split epimorphism in mod-RG and
(RN ®grs R ~ RV as a right RG-module. Furthermore, ugop = (p ® 1)°o
Ugeyn and, by Lemma 1, 4 gy is an isomorphism. Thus ug is an epimorphism.

(2)= (3) Ifug: R = (R ®gs R)%is an epimorphism and M is a direct summand
of a direct sum of copies of Ry isomorphic to R ® ge R, then M satisfies the
required condition.

(3) = (1) Let M be adirect summand of a direct sum of copies of Rgg, such that
MS ~ R as right R®-module. Then, there exists a split epimorphism f: R? - M
in mod-RG. Thus £ (RY)® - M ~ R is an split epimorphism in mod-R¢ and
(R(I))G ~ (RG)(".

To give necessary and sufficient conditions for Rzc to be flat we need the
following Lemma.

LEMMA 4. Ry is finitely presented if and only if G is finitely generated.
PROOF. Let &: RG — R be the map given by &> gr,) = Y, r, (). r,g€RG).

geG geG geG
& is a homomorphism of right RG-modules and Ker(®) is generated by

{x — 1|xe X}, if X is a set of generators of G (cf. [1, Lemma 2.2]). Thus, the
necessary condition is obvious.

For each subgroup H of G, we define I = { Y gr,

geG

Y. g =0f0rallgeG}.

heH
Note that if xe H, then 1 — xelj.
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Clearly Iy + Iy S Iyand IyR < Iy. Letoa = ) gr,elyand 6e€G. Then ao =

geG
Y gry-1= gs, where s,=r5,-.. If geG, then Y sp,= Y ry, =
geG geG heH heH
a
(Z Fhgo - 1> = 0. In other words, Iy is a right ideal of RG.
heH

Furthermore Iy < I = Ker(¢) for all subgroup H of G, because if

=Y gryelyand {a,|xeG/H} is a set of representatives of right isomorphic
geG

classes of G/H then ) r, = 3, (Z r,,,,x> =0.

geG xeG/H \heH

If Ryg is finitely presented, Ker(®) = Y (1 — x)RG is finitely generated and

xeG

hence there exists a finite subset F < G such that Ker(®) = Z (1 —x)RG.IfHis

xeF

the subgroup generated by F, then Ker(®)=1I,;. If xeG — H, then
1 — xeKer(®) but 1 — x¢ ;. Thus G = H is finitely generated.

THEOREM 5. Let R be aring and G a finitely generated group of automorphisms of
R. The following conditions are equivalent:

1. R s flat as a right R%-module.

2. R ®gc R ~ lim M; where each M;e mod-RG is a finite direct sum of copies of
Rgpg and ug is surje—étive (bijective).

3. R®gs R =~ lim M; where each M; e mod-RG is a direct summand of a direct
sum of copies of R ,:G and ug is surjective (bijective).

4. Thereisan M = lim M;inmod-RG, such that each M; is isomorphic to afinite
direct sum of copies ofﬁ and MS ~ Rge.

S. There is an M = lim M; in mod-RG, such that each M; is isomorphic to
a direct summand of a direct sum of copies of R and M¢ ~ RgS.

PrOOF. (1) =>(2) Assume that Ry is flat, then R ~ lim N; where N; is isomor-
phic to (RS)" for some positive integer n;. Let g: im (N; (>§ re R) = (lim N;) ® gc R
be the canonical isomorphism. Then R® re R =~ Iim (N; @3 rc R) and
N; ® re R = R™ On the other hand, by Lemma 1 uy isan iso?norphism forevery
i. Consider the following commutative diagram:

limuNI

lim N, —  lim(N;®xs R)°
UlimN, l l f
(mN) ®roR)®  —— (lm(N; ®xo R)°

Where f:lim (N; ® gs R)® — (lim (N; ® g R))® is the canonical homomor-
phisms. limuy, is an isomorphisms since, by lemma 1, so is uy, and f is an
isomorphism because Ry is finitely presented (Lemma 4),(—)¢ ~ Homgg(R, —)
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(Lemma 1) and [15, Proposition V.3.4]. Thus u);,, is an isomorphism and hence
ug is an isomorphism.

(2) = (3) and (4) = (5) are obvious and if (2) (resp. (3)) holds, then M = R ® gc R
satisfies (4) (resp. (5)).

(5)=(1) Let M = lim M; in mod-RG, such that M; is isomorphic to a direct
summand of a direct sum P; of copies of R. Set P,=M;®N; and
0— N; > P,—> M; -0 a split exact sequence. Then, one has a commutative
diagram with exact rows:

0 > N®gsR > Pf®@reR > Mf ®gaR — 0
cN,l Cp,l "Mxl
0 - N,' - Pi - Mi -0

By Lemma 1, cp, is an isomorphism for every i. Thus, ¢y, is a monomorphism
and cyy, is an epimorphism, for every i. By symmetry both are isomorphisms.
Consider the following commutative diagram with canonical homomor-
phisms:
(imM)°®rcR L2~ lim Mf ®xo R

ClimM, l T h

lim M; lim (M ® e R)

limca,

Since — ® go R preserves direct limits, h is an isomorphism. By the previous
paragraph, ¢y, is an isomorphism for every i and hence lim(cy, ) is an isomor-
phism. Since Ry is finitely presented (Lemma 4), f is an isomorphism (Lemma
1 and [15, Proposition V.3.4]) and hence ¢y (u,) is an isomorphism. Therefore,
¢y is an isomorphism and since (cp)® o pe = 1p6, Upe is an isomorphism and
hence ug is an isomorphism.

Finally, R 5 (R ® go R)® =~ (M ® go R)® @M L lim(MF) and MY is pro-
jective for every i. Thus Rye is flat.

REMARK 6. At the end of this paper we give an example of a ring R and a group
of automorphisms G of R, such that RG is von Neumann regular and Rye is not
flat. This shows that the assumption of G to be/ﬁnitely generated can not be
dropped in Theorem 5. Indeed, let # = Y .. g€ RG and M = RAR. M is gener-
ated by Ryg, that is, there is an epimorphism f: R¥) - M in mod-RG. Moreover,
in this case, Mg is flat and hence f is a pure epimorphism. Thus, Mgg is
isomorphic to a direct limit of modules which are direct sums of copies of R [17,
Theorem 7.34.2]. In other words, My¢ satisfies condition (5) of Theorem 5.
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A particular case.

Recall that a module My is said to be quasi-projective if for every submodule N of
M and every homomorphism f: M — M/N there is an endomorphismg M - M
such that pog = f where p: M — M/N is the canonical epimorphism.

If Rgg is quasi-projective then it satisfies the conditions of [ 14, Theorem 2.1].
This implies that uy is an isomorphism for every N e mod-R®. From Theorem
3 and 5 we obtain the following two corollaries.

COROLLARY 7. Let R be a ring and G a group of automorphisms of R such that
RRgg is quasi-projective. Then Ryq is projective if and only if R ® gc R is isomorphic
to a direct summand of a direct sum of copies of Rgg-

COROLLARY 8. Let R be aring and G a group of automorphisms of R such that
Rgg is quasi-projective. Consider the following conditions:

1. Rge is flat

2. R®gc R ~lim M; where M; is a finite direct sum of copies of Rgg-

3. R®rcR ~ lim M; is a direct summand of direct sum of copies of Rgg.

In general (1) :z2) = (3). If G is finitely generated, then all the conditions are
equivalent.

If Rg¢ is not quasi-projective, neither Corollary 7 nor Corollary 8 hold as the
following example shows.

A A
ExaMPLE 9. Let A be a noetherian ring, R = ( 0 A) and G the group of
. 1
automorphism of R generated by the inner automorphism associated to ( 0 1) .

Then R® = {(“ b)
0 a

1 0
Let e1=(0 0) and e2=<(0) ?) Since rge(e;) = {reR|e,r =0} =

a,beA}.

0 1 . . . ..
< 0 0) RS is not a direct summand of R§c, e, RE is not projective. Therefore,

neither is R, and, since R¢ is noetherian, Re is not flat either. But (R ® g R)g¢
:r(e1RG ('B ezRG) ®RG R~ elR (‘B ezR = RRG'

Last corollary leads to the question of when Ry is quasi-projective. That
question has been considered in [5] and [16]. A simple checking of that condi-
tions is given in the following Proposition:

PROPOSITION 10. The following conditions are equivalent:
1. Rgg is quasiprojective.
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2. For every G-invariant right ideal I and every r € R, such that v* — rel for all
g€ G there exists an a€ R such that r — ael.

3. ForeveryreR,(r+ R%n Y (¥ —r"R +0.

g.heG

PrOOF. (1)=>(2) Let I be a G-invariant ideal and r e R, such that ¥ — re I for
all ge G. Then I is a submodule of Rgg and r + I €(R/I)°. The map f: R — R/I
given by f(x) = (r + I)x(x € R) isa homomorphism of right RG-modules. There-
fore, there exists ge Endgg(R), such that f = pcg, where p: R > R/I is the
canonical epimorphism. Put a = g(1)eR. Then,ae R% and p(a) = f(1) =r + I,
as required.

(2)=(3) Plainly I = ) (* —r")Ris a G-invariant right ideal and r¥ — re|,
g,heG
for all geG. By hypothesis there is aeR® such that r —ael. Then

r—ae(r+R%n Y (=R
g, heG

(3)=(1) LetI be a submodule of R and f: Homgg(R, R/I). By Lemma 1 there
existsan r 4+ I €(R/I)° such that f(x) = (r + I)x for all xe R. Let ae R such that
r—ae Y (¥ —r"R and g:R—R given by g(x) = ax for all xeR. Then

g,heG

geEndgg(R) and pog = f.

Working Sufficient Conditions.

Theorem 3 (resp. Theorem 5) gives necessary and sufficient conditions for Rze to
be projective (resp. flat) which have been improved in Corollary 7 (resp. Corol-
lary 8) for the case of Ry being quasi-projective. But, maybe it is not easy to
check if a given module is a direct summand of a direct sum of copies of Rgg (resp.
a direct limit of modules which are finite direct sums of copies of Ry¢). Therefore
it would be nice to have easier checking sufficient conditions. The rest of the
paper is aimed to find such conditions.

If G is finite there is a map, called the trace map, tr: R — R given by

tr(r) = Y, r.
geG
We start with a necessary and sufficient condition for the case when G is finite

and there is an element in R of trace 1. To do that we need the following well
known Lemma.

LemMA 11 ([3]). The following conditions are equivalent:
1. Ry is projective.
2. G is finite and 1 etr(R).

ProOOF. The same as in [3, Proposition 1.7]. Note that in the given reference
the condition G to be finite is originally assumed, but the same proof shows that if
Ry is projective, then G is finite.
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PROPOSITION 12. Let R be aring and G a group of automorphisms of R. Consider
the following conditions:

1. G is finite, 1 etr(R) and Rye is projective.

2. R ®ga R is projective as right RG-module.

3. There exists a projective right RG-module M, such that M¢ ~ Rgc and
M = MCR.

4. G is finite and Ry is projective.

Then (1) = (2) = (3) = (4).

PrROOF. (1)=>(2) Assume that G is finite, 1 etr(R) and Rge is projective. By
Theorem 3, R ® ge R is isomorphic to a direct summand of a direct sum of copies
of Rge. By Lemma 11, Ry is projective and hence (R ® ge R)g¢ is projective.

(2=@3) Let f:(R)Y >R be an epimorphism in mod-R®. Then
f®1L(RYPYR@rcR— R®gcR is an epimorphism in mod-RG. Therefore,
f ® 1 splits and hence the following is a commutative diagram with exact rows:

(RO — R - 0
U(RGHD l l uRr
(R ®ge R)¢ Ten (R®raR)® — 0

By Lemma 1wz is an isomorphism. Therefore, uy is surjective and, by Lemma
2 it is an isomorphism. Thus, M = R ® e R satisfies the conditions of (3).
(3)=(4) Let f: R™%) - M be the map given by f(("n)mems) = 2, mr,. By

meMG
Lemma 1, f is a homomorphism of right RG-modules, which is an epimorphism

by the assumption M = MYR. Therefore, f splits and hence Mg is a direct
summand of a direct sum of copies of Rgg. By Theorem 3, Ryq is projective.

On the other hand, there exists an N e mod-RG, such that M @ N ~ RG” for
some set . Then M® @ N¢ ~ ((RG)®)™. If G is infinite, then (RG)® = 0 and hence
M€ = 0 which yields a contradiction with (3).

The implication (4) = (2) of last Corollary does not hold if R has not an element
of trace 1 as the following example shows, even if Rz and ggR are
quasi-projective.

ExAMPLE 13. Let K be a field of characteristic 2 and F a Galois extension of
K of order 2. Let G = (o) the Galois group of F over K. Let R = K x F and
geAut(R) given by (a,b) = (a,b°). Since R¢ = K x K is semisimple, Rge is
projective. But (R ® g R)rg = R? is not projective because 14 tr(R).

Let R be any ring.r.gl.dim(R) (resp. w.dim(R)) will denote the right global
(resp. weak) dimension of R. Recall that R is said to be right hereditary (resp.
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semihereditary) if every (resp. finitely generated) right ideal of R is projective.
Right hereditary rings are those which satisfies r.gl.dim(R) < 1.

A ring R is said to be biregular if for every r € R, there is a central idempotent
ee R, such that RrR = Re.

COROLLARY 14. Let R be aring and G a finite group of automorphisms of R. R is
projective as right R-module if some of the following conditions hold:

1. RnR is a projective as a right RG-module, where n = ) ,.c g € RG.

2. RG is right hereditary.

3. Risright hereditary and R has a central element of trace 1.

4. RG is right semihereditary and Ry is finitely generated.

5. R isright semihereditary, has a central element of trace 1 and Rgc is finitely
generated.

6. Rgg is a generator.

7. RG is biregular.

PRrOOF. (1) Let M = RnR. Then M% = Rn = (RG)® ~ Rge and M = MCR.
Thus, Rge is projective, by Proposition 12.

(2) is a direct consequence of (1).

(3) is a direct consequence of (2) and [12, Proposition 2.3].

(4) By (1), it is enough to prove that RnRy is finitely generated. Let X be
a finite set of generators of Rgc. Let re R and setr = ), x xa, for some a, € RS.
Then rn = ,.x xna,. Therefore, {xn|xeX} is a finite set of generators of
R7nRgg.

(5) The same argument used to prove [12, Proposition 2.3] proves that if R is
semihereditary and R has an element of trace 1, then RG is semihereditary.
Therefore, (5) is a consequence of (4).

(6) From Lemma 1 it is easy to deduce that if Ry is a generator then
RG = (RG)°R = RxR. It only remains to apply (1).

(7) is a direct consequence of (1).

COROLLARY 15. Let R be a ring and G a finitely generated group of automo-
rphisms of R. The following conditions are sufficient for R R 10 be flat.
1. RAR is a flat as right RG-module, where & = Y ge RG.

geG
2. G is finite and RG has weak dimension at most 1.

3. Gisfinite and R has weak dimension at most 1 and a central element of trace 1.

PrOOF. (1) Let f: R® — RAR be the map given by f(rs)ser) = Y ser S7Ts. f 18
an epimorphism of right RG-modules. Since RiRy¢ is flat f is a pure epimor-
phism. Moreover, by Lemma 4, Ry is finitely presented. By [17, Theorem
7.34.2] R7iRR¢ is isomorphic to a direct limit of finite direct sums of copies Rgg.
Then M = R#AR satisfies the conditions of Theorem 5(4).
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(2) Isadirect consequence of (1) because if G is finite, then RAR is a submodule
of RG.

(3) Consider R as a G-graded ring by setting R, = Ry, for all ge G. If R has
a central element x of trace 1, then {x?| g € G} is a separability system of RG in the
sense of [13]. Then, by [13, Proposition 3.5] and [4, Theorem 2.8],
w.dim(RG) = gr.w.dim(RG) = w.dim(R) < 1, where “gr.w.dim” means “graded
weak dimension”. It only remains to apply (2).

Examples and Comments.

Note that if R7Rgg is projective then Rge is projective (the same proof as the
given for Theorem 14(1) proves this fact). But this is included in Theorem 14(1).
Indeed, in that case, as a consequence of Proposition 12, G has to be finite.
Similarly, the proof of Corollary 14(6), does not use that G is finite, but it is not
difficult to see that if Ry is a generator, then G has to be finite.

S. Jondrup [8] has proved that Rye is projective if R is hereditary, G is finite
with invertible order in R and one of the following conditions hold: R is
semiprime and right noetherian; R is PI ring and is finitely generated algebra over
a subring of its center; R is artinian algebra; R is commutative von Neumann
regular; R is reduced von Neumann regular and finitely generated over its center;
Risreduced von Neumann regular Pl ring and the order of G is a power of 2; R is
reduced von Neumann regular and G is solvable. Corollary 14(3) generalizes
these results.

If the assumption Rge to be finitely generated on (4) or (5) of Corollary 14 is
removed, then Rzs could not be projective as Examples (4) and (5) on [8] shows.
More examples of this kind can be found in [7] where there are examples of
regular right self-injective rings R of arbitrary type with 2 invertible in R, which
have a group of automorphisms G of order 2 and Rye is not projective.

It worth to mention that if G is finite, RG is hereditary if and only if R is
hereditary and r.gl.dim(RG) < oo (cf. [18, Lemma 2.2]). A recent characteriz-
ation of when RG has finite right global dimension for R right FBN and left
coherent appears in [18]. On the other hand, if G is infinite cyclic, then
r.gl.dim(R) £ r.gl.dim(RG) = r.gl.dim(RG) + 1.

The previous comment can be used, in combination with Corollary 14(2) or
Corollary 15(2), to compute r.gl.dim(RG) in some cases. For example, if R and
G are as in Example 9 r.gl.dim(RG) = oo, if K has non-zero characteristic, and
r.gl.dim(RG) = 2, if K has characteristic 0. Because, otherwise RG would be
hereditary and by Corollary 15, Rz would be flat which is not the case.

Example 9 shows that the conditions R right hereditary and Rgze finitely
generated does not implies projectivity nor even flatness on Rge.

Assume that G is finite and RG is von Neumann regular. By Corollary 14, if
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Rge is finitely generated, then it is projective. If R is right self-injective as well, the
converse holds by [ 7, Theorem 11]. Nevertheless, if R is not right self-injective the
converse does not hold as the following example shows.

ExXAMPLE 16. Let A be a commutative von Neumann regular ring and I a pro-
jective nonfinitely generated ideal of 4. Let R = (;‘ i) and G the group of
automorphisms of R generated by the inner automorphisms associated to
<0 l) and (1 0). Then R® ~ A and Rye ~ A% @ I? is projective but not

1 0 0 -1
finitely generated because I, is projective but not finitely generated.

Recall that a ring extension 4/B is called Frobenius if Ay is finitely generated
and projective and A ~ Hom(Ag, Bg) as B-A-bimodules. Moreover, 4/B is
a Frobenius extension if and only if there is a homomorphism of B-B-modules
h: A — B, and elements ry,...,r,, Sy, 52,...,S,€ A, such that a = Y '_, r;h(s;a) =
Y| h(ary)s;, for every a€ A.

Kitamura [9] has proved that if G is finite, RG is biregular and 1 e tr(R), then
R/R%is a Frobenius extension. Corollary 14(7) shows that the condition 1 e tr(R),
in Kitamura’s result is not needed, to deduce that Rzc is projective. Next
Proposition shows that 1 etr(R) is not needed at all.

PrOPOSITION 17. Let G a finite group of automorphism of a ring such that RG is
biregular. Then R/R® is a Frobenius extension.

PrOOF. Let e be a central element of RG such that RnR = eRG. Set
e= )" rmsi =Y ro 1 Y gectiSt =01 secgrisi. Let re R. Then

Im = ern = ZT= 1 dec ZheG ris? ' grh = Z:":] deG ZheG st gh =
= Z:l= 1t ZUEG ZreG (sir)'a = ZT: 1 ri tr(s,-r)n
Therefore, r = Y 7_, r; tr(s;r). Similarly one prove that r = Y 7_ tr(rr))s;.

We finish with an example which shows that we can not avoid to assume that
G is finitely generated in Theorem 5 and Corollary 15.

ExaMPLE 18. An infinitely generated group G of automorphisms of a ring
R such that, RG is von Neumann regular but Ryc is not flat.

Let K be a countable field of characteristic different from 2. Let us denote by
Ny the set of nonnegative integers and by N the set of positive integers. Let 4 be
the ring of square matrices indexed by N, with entries in K which has only finitely
many nonzero entries in each row. For every ne N, let o, be the inner automo-
rphism of A defined by a, = 1 + e,€ 4 where ¢, is the matrix having 1 at the
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(0, n)th entry and O elsewhere. Let H be the group of automorphisms of 4 gener-
ated by {a,|ne N}. It is not hard to see that A” = K1 + Y,y Ke,.

Let A be the product ring. The nth entry of an ae A" will be denoted by a,.

Now we are going to give a set of automorphisms of A¥. To do so we are going
to introduce some notation.

Let G be any group and G° the monoid obtained by adjoining a zero to G. That
is, G° = G U {0}, where 0 is a symbol not representing any element of G and the
multiplication in G° extends the multiplication in G by defining a0 = 0a = 0 for
all aeG.

Let X be any set. For every family {a,|xe X} of elements of G° such that
a, # 0 for at most one xe X, we set Y . ya, =0 if a, =0 for all xeX and
erx a, = aifa, # 0. Let S be the set of matrices indexed by X with entries in G°
which have at most one nonzero entry in each column. The (x, y)th entry of an
element aeS will be denoted by «(x,y). Then S become a monoid with the
standard product of matrices; that is, the product of two elements o, S is
defined by (o, B)(x, ¥) = Y .cx %, 2)B(z, y). We will denote that monoid by My(G).

Let S = My(Aut(A4)). For every seS, the map M, A¥ - A" given by
M(r)y = Y men F'ms(m, n), is a ring endomorphism of AY. Furthermore, the map-
ping s —» M, is a homomorphism of monoids from S to the monoid of ring
endomorphisms of A". In particular, M restricts to a group homomorphism from
the subgroup U(S) of units of S to Aut(A4¥). It is not hard to see that U(S)is formed
by the elements in S having exactly one nonzero entry in each row and each
column. This notation has the advantage that we can give automorphisms of A"
by giving matrices so that the action of those automorphisms can be represented
by standard matrix multiplications and the composition of two of those automo-
rphisms can be computed by a standard matrix product. In the remainder this
fact will be used often without specifically refering to it. Some computations are
left to the reader.

For a e Aut(A), let I, denote the n x n matrix having f§ at every entry of the
diagonal and zeroes elsewhere

Forevery ne N, let s, € U(S) be the matrix which has a block decomposition as
follows

A, O
s,=| 0 A4,
0 o, IznA 1 . . .
here 4, =| _ . 0 € M,n(Aut(A)). By using standard matrix multi-
o, dan-1

plications it is not hard to see that s,s, = s.s, and s> =1 for all n,meN.
Therefore the group G of automorphisms of 4" generated by {g, = M, |neN}is
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commutative and g2 = 1 for all g€ G. Thus, G is locally finite and the order of
every finite subgroup of G is a power of 2.

Let R be the subring of A" formed by the elements r € A", such that there exist
two numbers n, m, such that r, = r,, ,m for all k = n. Itis not hard to see that R is
G-invariant. Thus, we can consider G as a group of automorphisms of R. By using
the fact that A is von Neumann regular we deduce that R is von Neumann regular
too. Therefore, RG is von Neumann regular (cf. [1]).

It only remains to prove that Rge is not flat.

Let re RS. Let n, m be numbers such that r, = ry ;= for all k = n. Then, for
every | 2m and every k= n, r, = () = (rr+2)* = (rn)*. In other words,
r€ A¥=for every k = n, being H,, the group of automorphisms of 4 generated by
{0 U+ 1, - - - }. But, if ke N, there exists an | = m, such that k + 2' > nand hence
re = (Fk+21)*" = ey 21 In other words, the sequence r is periodic of period 2™ and
its entries belong to A%~ Furthermore, if k — 1 = ay + a;2 + a,2* + ..., with

a;e{0,1}, then r, = (r)*1 %2 "' For every ke N, let hy = oy %0y % ... where
k—1=aq+ a2+ a,2* +...,with q;€ {0, 1}. We conclude that

R¢ = {reR|thereexistsanme Ny,such thatr, e Afmandr, = (r,)"*forallke N}

For any meN let R,, = {reR|r;e A" and r, = (r)" for all ke N}. Thus
RS = lim R,, where m runsin N. But the map f,,: A" - R,, given by f,.(a), = a™
isa rin_é isomorphism andf,,(A¥) = R,. By straightforward computations one
has that A¥" = ®27 ;! x, A° where x, is the matrix having 1 at the (k, 0)-entry
and 0 elsewhere. Furthermore, x, A¢ ~ A as aright R¢-module. Therefore, A=
isfree as a right A°-module and, hence R,, is free as aright R,-module. Thus, R is
flat as a right R;-module. If Rgc were flat then Rg, will be flat too and we are
going to see that this is not true.

The claim is equivalent to see that R« is not flat. But {reR|r, = 0 for all
n % 0} is isomorphic to a direct summand of R 4= which is isomorphic to A as
aright A”-module. Thus, it is enough to see that 4 4 is not flat. Furthermore, A4 is
isomorphic to a countable direct product of copies of 4¥. Recall that a ring S is
said to be left coherent if every finitely generated right ideal of S is finitely
presented. It is well known that S is coherent if and only a direct product of |S|
copies of S is flat as right S-module [2, page 243]. Thus, since A” is countable, if
A 4u were flat, then A¥ would be coherent (note that A is commutative) and this
is not the case because the annihilator of e, in A" is not finitely generated.

REMARK. In last example we have assumed that the field K has characteristic
different from 2 to be able to check that the conditions of [1, Proposition 1.1]
hold. Actually this assumption is not needed because, with some more work it is
possible to check that the conditions of [1, Proposition 2.97 hold without any
assumption on the characteristic of K.
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