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EXTENSIONS OF FATOU THEOREMS
IN PRODUCTS OF UPPER HALF-SPACES

OLOF SVENSSON

Abstract.

We consider a multi-parameter maximal function and give a necessary and sufficient condition for its
boundedness on L, p > 1. We also prove that the maximal function with suitable restrictions on the
parameters is of weak type (1, 1).

0. Introduction.

The purpose of this paper is to generalize Nagel and Stein’s extension of Fatou
theorems to the multi-parameter case. We start with a brief description of their
one-parameter results. Let Pf(x,t) be the Poisson integral of a function f in
LF(R"), and let Q be a region in R%*! with 0e @, and put Q* = x + Q.

The problem is to characterize those regions Q for which Pf(x, t) have a limit
a.e. as (x,t) in Q approaches the boundary R" x {0}, i.e. when is it true that
1) lim  Pf(x,1) = f(xo), a.e.

(x,t)ef2>o
(x,1)~(x0,0)

A classical theorem of Fatou asserts that (1) is true when Q is the cone
C, = {(x,0)e R !: |x| £ at}. On the other hand, Littlewood showed that (1) will
not be true when Q contains a curve which approaches the boundary tangen-
tially.

But there are many regions Q2 not contained in any cone C, for which the
boundary limits exist a.e., as Nagel and Stein showed in [NS]. They gave
a characterization of the regions Q for which the associated maximal function
MgPf(x) = sup |Pf(y,t)|is suitably bounded. The sufficient condition on Q to

»,De2*
guarantee that ' — Mg Pf is of weak type (1, 1), and bounded on I*, p > 1, is that

2 Q@) = [{xeR"(x,neQ}| < Cr",
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and
3) Q+C,cQ

Conversely, if f - MgPf is of weak type (p, p), for some p > 1,then @ = Q + C,
satisfies |Q(t)] < Ct". In [NS] they also showed that for any curve approaching
the boundary tangentially, there is a region Q, satisfying (2) and (3), which
contains points on the curve arbitrarily close to the boundary. This shows that
this is really an extension of the classical Fatou theorem.

The original proof of Nagel and Stein has been simplified by Sueiro [Su] and
by Andersson and Carlsson [AC]. In [AC] it is proved that the distribution
functions of Mqu and M u are equivalent whenever Q satisfy (2) and (3), i.e.

) {Mgu > 2}| £ C{Mc,u > 4},

for all measurable functions u in R%*!. (Of course Mgu(x) = sup |u|.) The LF
Qx
estimates follows from this,

) IMaul, = C|[Mc,ul,.

These estimates can be applied to Poisson integrals, convolutions with other
approximative identities, estimates for HP-spaces (even when p < 1), etc. When-
ever we have estimates for Mc u we immediately get the same for Mqu.

One can also use (4) to deduce the local Fatou theorem of Mair, Philipp and
Singman [MPS], see §3.

We now consider the multi-parameter case, so instead of having t in R, we let
tbein (R,)" and Qaregionin R%*™ = R" x (R,)", with0eQ, and Q* = x + Q.

If xeR" we can write x = (x,,...,X,,), Where x;eR™, Z n; =n, and let
i=1
C, = {(x,)e R ™ |x;| < at;}.

i

P,(x;) is the n;i-dimensional Poisson kernel, and let Pf(x,t) = P, * f(x). The
maximal function My, is given by Mou(x) = sup |u(y,?)|.
(y,)enx
Our aim is to give a necessary and sufficient condition on the region Q for
f = MgPfto be of weak type (1,1) and bounded on L?, p > 1.

On I? this turns out well, as we can prove

We consider the product Poisson kernel in R%'™, P(x) = P, (x;), where
=1

THEOREM 1. If Q satisfies
(6) Q) = |xeR™ (x,t)eQ}| £ Ct}'---thm = Ct",

and
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™ Q+C,cQ,
then we get for 1 <p < 4+

®) Mgull, = C |Mc,ullp,
for all measurable functions u.

If we apply this tou = Pf, and use the well-known fact || M¢ Pfll, < C || f ||, see
e.g. [Z], we obtain [MoPf ||, = C| fll,.

To prove Theorem 1, we first show that (6) and (7) imply that
Qc Q x - x Q,, where §; satisfy the one-parameter conditions (2) and (3).
Hence, Mgou < Mg oo Mg u, and by repeated use of Fubini’s theorem and (5)
we obtain (8).

Conversely, we have

THEOREM 2. If, for some p = 1,
|{M9u > ,{}| < C[JML/{“L_’_]P’

or
4
{MoPf > ] < C[M}—] ,
then @ = Q + C, satisfies |9(t)] < Ct".

In brief, if Q + C, = Q, then My Pf is bounded on I, p > 1, if and only if (6)
holds.

The L'-case is more complicated. To get a weak type estimate we have to

restrict the parameters. To see why, we consider the strong maximal function in
RZ

1
M, f(x) = SuPTRTJm'
R

The supremum is taken over all rectangles containing x and having sides parallel
to the axis. It is well-known that the strong maximal function is not of weak type
(1,1). Thus M,Pf cannot be of weak type (1, 1), since clearly Mo Pf = M,f, for
positive f. If we take f = J,, the point mass at the origin, and let R be a rectangle
containing the origin with area |R|=1, then M6,=1 on R. Hence, if
R, =[0,2%] x [0,27%] then

{MS(SO g 1} =) U Rk-

k=—w
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So a weak type estimate implies that we may only have a bounded number of the
rectangles R;, i.e. for a fixed area we cannot allow rectangles of all shapes. What
we could possibly hope for is that it would be suffiient to allow a bounded number
of different shapes for rectangels of a given area. But this is not the case; in §2 we

1
prove that if R, = [0,2*] x [0,27 %], then f — sup f | f] is not of weak

x+ Ry leI
x+ Rx

type (1,1).
To describe our positive results, we let A be a region in R, and set
Mgu(x) = sup |u(y,?).

(y,)e>
ted

We want to find conditions on A (and ), so that the distribution functions of
M{ and M{ are equivalent. What we need is a covering lemma for rectangles
R(x) = {yeR™ |x; — y;| £t;}, where t € A. We say that A has the covering prop-
erty if for every family of rectangles {R,(x)} with |UR,(x)| bounded, t€ A, there
exists a subfamily {R,(x)} so that

) Y i w < .
and each rectangle is contained in a multiple of a rectangle from the subfamily, i.e.
(10) R(x) = Rep ().

By an argument similar to that in [AC], we prove in Section 2 that if A has the
covering property, and if Q satisfies (6) and (7), then |[{Mju> A}| <
C|{M{&u > 1}|. The covering property also guarantees that f — M{ Pf is of

C
weak type (1,1), and hence [{MAPf > }| < - | f1l;. If we take A to be the set

where the parameters are of comparable size, the standard covering lemma for
cubes shows that A = {teR": t; ~ t;} has the covering property.

We can extend this to larger regions A = ﬂ A;, where A; satisfies the same
i=1
conditions as the regions Q. Let A; be subsets of R™ N {t; > 0} with 0 A;, and set
Aft) = {(tys- s bire s tw)€ER™ i (ty,.. ., L) € A;}. The conditions we need are

(11) |A;(t)) = et
and
(12) A+ Cic A,

m
where Ci is the cone C: = {te R™ t; > 0, t;| < at;}. For such 4 = () A;, where
i=1
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A; satisfies the above conditions, we can prove that A has the covering property,
and we obtain our main result

THEOREM 3. If Q and A satisfy (6), (7), (11) and (12) then
{Mau > A} < C{MELu > A},

and
s > < ¢ 1Ll
We prove this theorem in §2.

1. The LP-theory, p > 1.
To prove Theorem 1 we need the following lemma.

LEMMA 1. If Q < R% ™ satisfies |Q(t)] £ Ct",and Q + C, = Q, then there exist
QR lsothat Q= Q) x -+ x Q,, |Q:(t)| £ Cthi, and Q; + C, = Q..

13

Proor. Fortin R" welet R, = {xeR"™ |x;| < t;},andset Q(t) = () (x + R,).
xef2t)

~ 1
The cone condition on Q clearly implies Q(t) Q((l + ;) t), and hence
19(1)] < Ct". Let Q,(t) be the projection of &(r) onto R™. We claim that
(13) Qi) < Ce.

for all ¢ in R™. To see this, observe that for each point x in €(t) we can find
a rectangle R,(x') so that x e R,(x') = €(t). Thus,

n

" t
1901 = f}—"—,.dxi

and hence |Q(t)] < Ct? as desired.
Now set Q)= | @.(s). Since @(s) increases with s;,j * i, we have

FHRES £
Qit;)= lim @s), and (13) implies |2:(t;)| < Ct™.

sj— o0, Fi
Si=t;

Furtermore, Q; = {(x;,t;) € R+ 1 x; € Qi(t;)} satisfies the cone condition since
the region built from Q(s), for fixed s 5, J F i, does.
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With this Lemma, and the one-parameter result, Theorem 1 follows easily by
repeated integration.

ProoF OF THEOREM 2. The ideas in this proof are from [NS]. Assume first that

(14) [{(Mau > )| < c[ ” j“""] .

For t in R% set R, = {xeR™ |x;| £ ;}, and Q, = {(x,y)e R ™ |x;| < t;, y; S t:},

and let u = yg, the characteristic function of Q,. Then M u = 1 on R(; 44, and
M u = 0 otherwise, and hence

IMc,ully = IR +qel = (1 + ) 2"

If we take x in R,, then u(x,f) =1, and x — Q(t) = {Mgu = 1} (Recall that
@ =Q + C,). Hence

(15) 190 < {Mgu 2 1}].
Now we claim that
(16) {M?)u g 1} (= {MQXQ(1+a)¢ g 1}.

For, if xe{Mgu = 1}, then there exist (x',t')e Q* such that C,(x,t)n Q, + 0,
where C,(x', t') is the cone with vertex at (x', t'). Take (x",t")e C,(x',t') » Q,. Then
t" < tand |x] — xj| £ o(t” — t') < at, and thus (X', ') € Oy 4 4-
By combining (14), (15) and (16) we have
1) < |{Mgsu 2 1}] £ |{Maxgu +ax = 1} £ ClIMc, 200 +ax 1} < Ct".

And the first part of Theorem 2 is established.
Assume next that

{MaPf > 2}] < c[”fT”]

Let u(x,y) = P, * xg,(x) = I1 P, * xg,(x;). We have Py(x;) 2 Cixg,(x;), and

i=1

P, (x;) =2 —- y" — r, [(x;). If we take x; in R, , and let y; < t; then

C C
Py * g, (xi) 2 Iz IXRyi(xi — 2)fr,(2)dz 2 y—"'_“ = -—,

Thus we have Pyg (x,y) 2 H - = C, if (x,y)€ @, and hence

{Moxg, > 3}l £ {MqPyr, > C}l < C |y, I} < Ct".
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If we combine this with (15) and (16), we obtain the desired result

1)l < Cr.

2. The L'-case.

We first prove that the covering property implies the equivalence of the distribu-
tion functions of Mg and M¢, when Q satisfies condition (6) and (7). To prove this,
following the ideas in [AC], we define the outer measure p, by po(E) =
{xeR™ QN E +0}|. Then clearly po({zeR" x A: [uz)| > 1}) = |{Mau > A},
and we also have

LemMA 2. If Q satisfies (6) and (7) then po(Q,(x)) = C|R(x)!.

Let us assume this for a minute and prove

PROPOSITION 1. If A has the covering property, and Q satisfies (6) and (7), then
(M > A}| < Cl{MAu > ).

PrROOF. Mju only depends on the values of u in R"x A so we set

E; = {zeR" x A: |u(z)] > 4}. Clearly, E; =« U Q,(x). We want to apply the
(x,t)eE

cvering property to the corresponding family, {Rl,(x)}, (x,t)e E,, to do this it is
required that |U R,(x)] < +o0, we can assume this since otherwise is
{M&u > A}| = + oo, and there is nothing to prove. Hence, we have a subfamily
{R,(x)} satisfying (9) and (10). Let {J,(x)} be the corresponding subfamily of
{Q.(x)}. It is clear that each Q,(x) is included in some 0..(x"). Hence

{MGu > 2} = po(Es) < pa(V Q%)) £ pa(V Gul(x))
< Y Ha(@a(x) £ Y. CIR()| £ C L IR ()]
S CluRX)| < C{MEu > A},

as desired.

ProOF OF LEMMMA 2. We first observe that €(¢) increases in ¢ and if
R,(x) N (t) + 0, then x e Q*(Ct). Thus,

pa(Q:(x) = {yeR™ @ N Qi(x) + B}
= {yeR" 2() nR(x) + B}| < [{ye R xe Q(Cn)}|
=|{yeR" —ye 2 %(Cn}| £ C|R(x)|
COROLLARY 1. If A has the covering property, and Q satisfies conditions (6) and

(7) then |{M4Pf > 2}| < Cﬂiﬂl—.
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Proor. First note that the covering property implies the weak type (1,1) of the

Hardy-Littlewood ~ maximal  function  Hf(x) = sup R ( i J Ifl=
1 ted X Rix)
su * f(x).
AL
The Poisson kernels P, (x;) can be estimated by
P, Xi é 23 A Xi
xS ¥ 2 '|xR D)
hence
1
Px< 2=dt...p—im i ) . (X
= L Rap] MRt 0 TR K ()

= v] ilX).
Z IR Al XR,,( )

Jj

Thus we have

(17) sup P, * f(x) < 22 Isup———yr.i

ted ted |R21t| i
It is enough to prove that H/ is uniformly of weak type (1, 1) to be able to sum in
weak L'. Let T; be the map defined by Tj(y)=27'y. Then H'f(x)=
H(f o T; ')(Tj(x)). Hence H’ are uniformly of weak type (1, 1) and, by (17), so is
sup P, * f(x). From this and the inequality P,(x + z) < C,P,(x), |z| £ at, the weak

ted

type (1,1) for Mé‘u Pf follows. By letting u = Pf in Proposition 1 the Corollary
follows.

To prove Theorem 3, it remains to show that A has the covering property. This
is a consequence of the following lemma and its corollary.

LEMMA 3. If A satisfies conditions (11) and (12), then for each D < oo,
An{t;t; £ D} is included in the union of finitely many sets T, i=1,...,m,
keZ™ 1, suchthat if s,t € Ty then s; < t; impliees s; < Ct;, | < j £ m. The number
of sets T, and the constant C depend only on the constant in (11) and on « in (12).

*f(x) = Y2 IHIf (x).

More precisely, we will construct T such that for each i, At;)n
{(trse- s tiyen s tm)€R™ L 1, < 17} = | Ti(1), if t; < D.
k

COROLLARY 2. If A satisfies (11) and (12), then A has the covering property.

ProoF oF LEMMA 3. First assume that m = 2, and for simplicity we assume
a = 1. We want to show that A,(¢,) N {t,: t, < t,}is contained in a finite union of
intervals and that the number of intervals depend only on the constant in (11).
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Let

N

Ayfty) = U Jo =ttty + Ll {tet > )= U I (t>),

t1€A(t2) k=1
where I,(t,) are pairwise disjoint intervals, and |I(t)] = t,. (12) gives A,(t,)
< A,(21,), and by (11), |4,(t,)] £ |45(2t,)] £ 2Ct,. Thus Ni, £ |A4,(t,)| £ 2Ct,,
and hence N < 2C. We arrange I,(t,) so that if s, € [,(t;) then s; > s, > -+- > sy.
We want to construct sets T;(t,) so thatif s, ¢, € Ty(t,)and s4, 1, € A,(t}), for some
t), <t,,then sy, € Ti(t,) for some k'. This is in general not true for the intervals
I(t,). The problem is that an interval can split into several intervals as ¢,
decreases, and we want to group these intervals together. Let M be the set of
“splitting points”, i.e.

M = {(t,,t,): t, £ D, t, & Alt,), t, € Int(A,(2,))}.

We observe that for fixed ¢, there are finitely many (¢}, t5) in M with, t5 € 13¢5, t,[,
since if (t},t5)e M then ]t} — 415, t7 + $t.[ x Ry A M = (¢, 13), and Jt; — 4t5,
t, + 3t,[ = Ay(t,) U [4ts,t;]. So the first coordinate of the points in
M (R, x Jit,,1,[) are contained in disjoint intervals in A,(t,) of length it,,
and since |A,(t,)| £ Ct, there can only be finitely many such points.

Let 2 = {t,:t, < D,(t,t;)e M forsomet,} = {D;} and D, = D. Assume D;is
ordered so that Dy > D; > D, > ---. The only possible limit point of 2 is 0. If
2 is finite and Dy = min Dj, then set Dy, = 0.

For each D, there is a t; and an L(D;) such that I, . ;(D;) L {t,} L Li(D;) is an
interval and we want to consider this as one interval I,(D;). To achieve this, we
modify the definition of the sets I (D;) with A 2(D;) replaced by AyD o
{ty: (t;, D;)e M}, and replace the intervals I,(D;), with these new ones. Now we
can start the construction of the sets Ti(t,).

The sets T,(D,) are defined as

Ti(Do) = Ii(Dy), 1 Sk < N.

Assumenow that T,(D;)is defined and that D; . ; < t, < D;. Then we define Ti(t,)
as

Ti(ty) = Li(t;) v (BN Ay(t2))

where
B = J{T(D): Li(t2) ~ T{D;) + 0}.

If Ti(t5),..., T, _ 1(t,) are defined, then we set
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Ti(t2) = Av (B N (/Tz(tz)\’fol 72(&)))

k-1
where A = I,\ U Ti(t,), and [ is the smallest integer with 4 + @, and
i=1
B = U {T(D;): A~ T(D)) + 0}.

This ends the construction of the sets T,(t,). Let T,2 = {(ty, t,): t; € Ti(t,)}. To
prove that the sets T, has the desired property we first check if t,,s, € Ty(t,)
implies |t; — 5;] < Ct,. Assume first that ¢, and s, are in the 4 part of T;(t,) (if
k = 1 then the A part means I(t,)). Then clearly |t; — s{| < 2Ct, < 2Ct,. If we
take t; in the A part and s, from the B part of T;(t,), then the construction of T,
gives that there exists a D, t, < D;, with s,,t, €l k'(D ;), and this gives

ls; — t;] < 2CD; < 2Cs,.

Ifs; <ty arein both the B part, and ¢} in A part thens; < t; < t}, and the former
case gives |s; — t;] < |s; — t;] £ 2Cs,. So we have that if s,t; € Ti(t,), then
sy — t;] = 2Ct;.

Now take t, € Ti(t,), and s, € Ty(s,) with s, <t,. We want to show that
|s; — t;] £ 2Ct,. If s; £ ty, then the conclusion of the Lemma is clearly true. If
sy > ty, then we must have that s, € Ty(t,), and hence |t; — s{] < 2Ct,. This
completes the proof in the case m = 2.

If m > 2, it follows from Lemma 1 that A;(t;) is contained in a product of m — 1
sets Ai(t;),

Ai(t) = [ 4dey),
j=1
*i
where each A/ satisfies

|Ai(t)| £ Ct;, and A + C, = AL

. Nj P
From the case m = 2, we know that Al(t)n{t;:t; <t;} = () T(t), and if
k=1

s;€ T U(s;), t;€ T (), then s; < t; implies s; < Ct;.

We define T} for keZ" ™!, 1 < k; < N;,j+iby
te Tt k = (kyy...,kis. ., k), iff £;€ TH(E)).

Then it is obvious that if t,se T}, then s; < t; implies s; < Ct;, and Lemma 3 is
proved.
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PROOF OF COROLLARY 2. Let R = {R,(x)} be a given family of rectangles where
teA, and with |UR(x)| bounded. If |[R(x)] < N and teAn {t; <t;}, then
t; £ N'" The sets AJ(N'/™) are contained in finitely many intervals, and hence
there is a D; such that sup A(N'/") < D,. Thus, if te A n {t; < t;} thent; < N/
implies t; £ D;. Let D = maxD; So, we can assume ; =D, 1 i <m, and
choose the subfamily by the usual selection principle. We divide {R,(x)} into
different groups where t € T, and fix ke Z™ ! and i. We order R,(x) according to
decreasing t; value and successively add rectangles to the subfamily R,(x), when
they are disjoint from the ones already chosen.

If R,(x) is not chosen, then there is a R,(x'), with 62t R,(x') N R(x) + .
Lemma 3 gives that t; £ Ct), since t; < t;, and we get

R(x) = ﬁsc:’(xl):

whichis (10). Since R,(x) are disjoint Y xz,. < 1,t€ Ty, for fixed i and k. Hence (9)
follows since we have a finite number of T}’ s.

Y

A COUNTEREXAMPLE. If A4 = | ) (24,27 %), then M{ is not of weak type (1, 1). To
k=0

. k
see this, we construct w, flu, | =1, so that {Mu, 21} =1+ 5 We let

E, = [0,1], and E, will be a union of 2* intervals with length 272 If E,_, is
defined, then for each component I = [a,a + 427 2] of E,_ ;, take two subin-
tervalsof I, I, = [a,a+ 2" %], 1, = [a + 3-27%*,a + 4-27 %7, and let E, be the
union of these intervals. Then we have E, < E;_, - < E,, |E,] = 27%. We set

1
fi =2 Zro.nyxs Then ILflly = 1. Set (v, 6 = 7o J S
t

Re(x)
k k

We will show that {MZu, =1} o ) [0,27] x E;, and ||J [0,2'] x E,

i=0 i=0

k )
1 + 5. Fix k and let I be one of the components of E;,i < k,let R =[0,2'] x I,
R =27"

1 . . o
I—ﬂﬁﬁcl=2‘~2"fxsk=2'~2"-2k Q2% -,
R I

Hence M u, = 1 on [0,2] x E,;, i < k. Thus,
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{MEu = 1} 2

k
U [0,27 x Eil
i=0

k—1 k-1
= [0,27 x E;| + |[0,2"] x Ek\( U [0,27 x E.)I
i=0 i=0
k-1 )
= U [0’21] X Ei + |[2k—132k] X Ekl

i=0

k—1 ' k
=|U02]IxEf+}="=1+7.
i=0 2
Hence Mj is not of weak type (1, 1).

In this example, the non-boundedness of M, is due to the fact that A contains
t, with t, arbitrary large. Since we are interested in boundary convergence, we
would like a counterexample where all ¢; are arbitrary small. This also follows
with the same method, if we rescale 4, i.e. let A = {472'(2¥ 272 2! < k < 2!,
1> ly}. Then as above, we obtain || Mé‘:]lLHL:‘w = C- 2" for each Iy, and hence
Mé‘: is not of weak type (1, 1).

Also by a slight change in the argument we can generalize the example to sets
Ay = {(25 f(2Y}, for any f where xf(x) is decreasing. (In the example
f(x) = x~2). The difference is that in the construction of the sets E;, we subdivide
so that E, consist of 2™ intervals, where n, satisfies + < 2"2k- f(2¥) < 1.

3. A local Fatou Theorem.

Let u be defined in R%"!. A function u, define in R%"!, is said to be
non-tangentially bounded a.e., if for a.a. xo in R" there is a cone C3°, such that u is
bounded in C;°. If u is harmonic and non-tangentially bounded a.e. then the
classical local Fatou theorem [C] asserts that u has non-tangential limits a.e.
This has been extended by Mair, Philipp and Singman [MPS] to our approach
regions .

THEOREM. If Q satisfies |Q(t)] < Ct",and Q + C, < Q, and if u has non-tangen-
tial limits a.e. then  lim  u(x,t) exists for a.a. xo in R".

(x,t)~(x0,0)
(x,1)e>o

This follows easily from the inequality (4), {Mou > A}| < C|{Mc,u > A}|.

Let u*(x) = limu. We first assume that u* = 0, and that u(x,¢) = 0 if |[x| > N,
Co
set

u(x,t) ift<e
0 otherwise

u(x,t) = {
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That u(x,t) -0 in C, as ¢ —»0 implies |{M¢ u® > i}| -0, £ >0, and hence
{Mgt* > A}| -0, £¢—0. Since |{limsup|u| > A}| £ [{Mouf > A}| -0, €0,
Q2

Q
u —— 0 a.c.

If u* % 0, choose a sequence 4] + oo, such that |{x: [u*(x)| = 4}| = 0.
Let

u(x,t) if Ju(x,t)] £ A4 and |x| £ 4
0 otherwise

u(x, t) = {

and

%* 3 *, < <
ur(x) = u*(x) if |u (x?| <A and |x| £ l,"
0 otherwise

Then clearly u, —<=— u¥. From the Nagel-Stein theorem Pu} 2, u¥ a.e. Hence
W = w, — Puf —%,0, and from the previous case we have @, —— 0. Thus,
w, = i + Puf —250 + u¥, and from this we obtain the desired result

u——u*.
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