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INVARIANT SUBSPACES IN CERTAIN FUNCTION
SPACES ON EUCLIDEAN SPACE

S. S. PLATONOV

§1. Introduction and formulation of the main results.

Let G be a transitive group of transformations of the set M, # be some locally
convex space (LCS) consisting of functions on M,

n(g): f(x)— flg~'x)

be the quasiregular representation of G on the LCS #. A linear subspace H € %
we call an invariant subspace (ISS) if H is closed and invariant with respect to the
quasiregular representation . We shall also assume that an ISS H not coinciding
with the whole space #. One of the main problems in harmonic analisis on group
G is the problem of describing the invariant subspaces of some concrete function
spaces #. In particular we have the problem of describing the irreductible and
indecomposable invariant subspaces, where an [SS H is said to be irreductible if
there does not exist an invariant subspace H,; < H other then H itself and {0},
and H is said to be indecomposable if H + H; + H, for ISS’s H, H, such that
H, £ {0}, H, % {0} and H, n H, = {0} (here H, + H, is the closure of the
algebraic sum of H, and H,).

In this paper we study the case when M is the n-dimensional Euclidean space
R", G is the group of all orientation-preserving isometries, & is one of the spaces
C?, L%, C4, where C? is the space of all C?-class functions on R" with the usual
topology (d = 0,1,...,c0; in particular C° = C is the space of all continuous
functions, C* = & is the space of all infinitely differentiable functions), the spaces
C4 and L%, will be defined below. All functions will be complex-valued unless
otherwise stated. Let x =(x;,...x,)eR", 0=(0,...0), |x]=(%+
et xHY2

Denote by C, the space of continuous functions f(x) on R” such that

Ifx)le X -0
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as |x| - oo; C, is a Banach space (BS) with the norm

(1.1) il f) = sup | f(x)] e+,
xeR"
The space
C* = U Ck
k>0

is equipped with the topology of the inductive limit of the BS’s C,.
Let Z, be the set of nonnegative integers. If r = (r(,...r,)€Z", then we put
rl=ri+...+r,df =0%...00f
For deZ, denote by Cj the space of all functions f(x) such that
0feC, VreZ,, |rf=d
C¢is a BS with the norm

M a(f) = | ;d n(9'f).

The space
ci=|c
k>0

is equipped with the topology of the inductive limit of the BS’s C§.
Ford = oo let

Cr=6.=()Cl
d=0

The topology in ¢ is given by the family of seminorms (even norms) n;, 4, deZ .
The space
Ey=C3 = U Ex

k>0

is equipped with the topology of the inductive limit of the locally convex spaces
(LCS) é,.
Let the space L% consist of all measurable functions f(x) on R" such that

(1.2) Npilf) = (Jlf(X)l”e"‘"" dX>1/p < o,

where dx is the element of the Lebesgue measure, the integral is taken over the
whole space R", functions are taken to within values on a set measure zero. With
respect to the norm N, , the space L% is the BS. The space
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u=U L
k>0
is equipped with the topology of the inductive limit of BS’s L.

If # is a function spaces on the set M, E is a finite-dimensional normed space
over C, then the vector space # ® E is naturally indentified with the function
space of E-valued functions on M and is equipped with the topology of the tensor
products of LCS’s [2].

Let K = {geG:g0 = O} be the isotopy subgroup of the point O. The group
K is isomorphic to the group SO (n). An arbitrary irreductible representation of
SO(n)is determined by its highest weight, which can be identified with an integer
tuple 2 = (44,... 4,,)(m = [n/2] is the integer part of n/2) satisfying the conditions

(1.3) MZAz... 2y,
forn=2m+ 1 and

(1.3) A2 A2 Aoy 2|l
for n = 2m.

Let A be the set of highest weights of the group K. Denote by 4, the set of
highest weights of K of the form (1, 0,...0), where leZ for n = 2 and leZ, for
n=3. Let T' be the irreductible representation of K with highest weight
(1,0,...0), E' be the space of the representation T, and fix in E' a K-invariant
Hermitian form (&, 1) (¢,n€ EY).

Let # be a complete LCS consisting of functions on R". Suppose & is
invariant with respect to the quasiregular representation = and the mapping
g— n(g)f from G to . is continuous (f € #). Let # be the set of all functions
F(x)e # ® E'such that

(1.4) F(ux) = T(w)F(x) VYueKkK.

This space is equipped with the topology induced from # ® E'. In particular we
have the spaces ¥ C, &9, CI0.

For every invariant subspace H = & denote by H® the set of all functions
F(x)e # " such that the functions ¢, = (F(x), &) € H for all £ € E'. The subspace
H can be uniquely recovered from all subspaces H", namely, H coincides with
closure of the linear span of all functions (F(x), £y for Fe HY, e E1eZ, (orleZ
for n = 2). The subspaces H" will be called the cells of the invariant subspace H,
or simply the invariant cells. To describe an invariant subspace it suffices to
describe all its cells.

Below # is one of the spaces L%, (p = 1), C%, C4 (deZ, U {0}, in particular
Cy = C,,C? = &,). The spaces L, and C? will be called the spaces of type 1, the
spaces C? will be called the spaces of type 2.



118 S. S. PLATONOV

Let p be a complex number, and r a positive integer. Denote V,f”, the linear
subspace consisting of all functions F(x)e & such that (4 + pu2)'F = 0, where
A=02 +...+ 02 is the Laplace operator on R". If we denote by
(1.5) C, ={zeC:Rez=0,and Imz = O for Rez = 0}

then without loss of generality we can assume that ueC,.

It will be shown later that dim V) = r and that V) has a Jordan basis, i.c.
a basis Fy,...F, such that AF; = y?F, and AF, = —p°F, + F,_, for k = 2.
Besides we have that V) = 6%.

The subspace V") is the simplest invariant cell. A general invariant cell can be
described by the next theorem.

THEOREM 1. For every invariant cell HV of #¥ there exist the unique finite or
countable set of complex numbers {y;} (u; can occur with a finite multiplicity rj;
pi€ C ) such that HY is the closure in ' of the linear span of the subspaces V"),
where p runs through the set {y;} and r is the multiplicity of p in this set.

The set {g;} will be called the spectrum of the invariant cell H". There is the
description of spectrums of invariant cells.

Let & be a space of type 1. The set {y;} (u; = a; + ib;e C ) is a spectrum of
some invariant cell of #© if and only if the following condition hold:

(A) Foreacht > O the numbers y; = a; + ib; with |b;| < t, after renumbering in
order to increasing a; (0 < a, < a, < ...), either are such that

a,/Inn — oo

as n — oo, or form a finite set.

If # is a space of type 2 then the set {y;} is a spectrum of some invariant cell of
F Y if and only if the following conditions hold:

(B) There exists an entire nonzero function $(4) such that each number p; is the
root of ®(A) with the multiplicity p;, and

D) < AePI™H(1 + 1A)°

for any A, B, C > 0 (such function is the Fourier transform of distribution with the
compact supports).

Suppose that in each space #© we fix a cell H? of some invariant subspace,
depending on [ in general, and let o(/) be the spectrum of H®.

THEOREM 2. The cells H" are the cells of a single invariant subspace if and only if
the following conditions hold:

1) The spectrums o(l) differ only by the multiplicity rd) of the number 0 in o(l) for
various l.

2) Forl = 0 the multiplicity ri* V) is equal to r) or r) — 1.
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3) For | £ 0 the multiplicity ry ™" is equal to r) or r® — 1.
Only conditions (1) and (2) remain for n = 3.

Combination of Theorems 1 and 2 gives a complete description of invariant
subspaces of #. The description of irreducible and indecomposable subspaces
can be easily obtained from this theorems.

There are two variants for the spectrums of an irreductible subspace: (1) all
spectrums consist of the unique number u £ 0 with multiplicity 1; (2) the spec-
trum o(0) consist of the number 0 with multiplicity 1, the others spectrums are the
empty sets.

In the second case the corresponding irreductible ISS of & consists of all
constants. In the first case the corresponding irreductible ISS of & consists of all
functions f €& such that

(1.6) 4+ Rpf=0,

where ji is the complex conjugate number to u. Denote this subspace by &(ii). If
F is aspace of type 2 (i.e. # = C%), then the corresponding irreductible subspace
is the closure [£(7)] in #. But if fe[&()], then f is a weak solution of the
equation (1.6) and, by the regularity theorem, f € & since 4 is an elliptic operator.
Therefore [£(7)] = &(j7) and &(j1) is an irreductible ISS of #. If # is a space of
type 1 (i.e. # = C4 or # = LI, then the corresponding irreductible ISS of & is

(’t’a*(ﬁ) = g* N &)

(it is easy to see that &, (i) is closed in # since 4 is an elliptic operator).

The subspace H is indecomposable if and only if every spectrum o(!) consists of
the unique number u with some multiplicity. For pu # 0 the multiplicities of
w must be equal for all a(l); for g = 0 the multiplicities can be changed such that
the conditions of Theorem 2 hold.

If every spectrum o(/) consists of the number g with the multiplicity r then the
corresponding indecomposable ISS of & (and of any space # of type 2) consists of
all functions f € & such that

A+pf=0

Denote this subspace by &(i, r). The corresponding subspace of &, (and of any
space & of type 1) is &(i,r) N & .. We shall say that the indecomposable ISS’s
&(u,r) and &,(u,r) are general, the other indecomposable subspaces are excep-
tional.

If H is an exceptional subspace then every spectrum o(!) consists of the number
0 with some multiplicity d;. Hence an exceptional subspace can be described by
a sequence d,eZ, such that the conditions (2) and (3) of Theorem 2 are true.
Further we shall obtain the more clear description of such subspaces..

Letn = 3, then le Z ... Note that the subspace corresponding to the sequence
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dj=k—jfor 0 <j<kandd; =0 forj > k is the minimal invariant subspace
containing the cell V{9, and the cell V{% is the linear span of the functions

L x?, Ixl%, .. 270,

Consequently this ISS is spaned by the functions & [x|**~ 1 with
r=(ry,...r,) €z, |rl £ 2(k — 1). We denote this ISS by H,.

If m < k then the subspace H, ,, = H; n £(0,m) is determined by the sequence
di=mfor0<jsk—md;=k—jfork—m<j<kd;=0forj>k.

Every exceptional indecomposable subspace is the finite union of the subspa-
ces Hy ,, and of the subspace (0, d) (or & ,(0, d)), where d = lim d; as j —» . For
example, the sequence dy =d, = 5,d, =d; =4,d, = 3,d; = 2 for j 2 5 corre-
sponds to the exceptional indecomposable subspace H = Hg s U H7 4 U &(0, 2) of
any type 2 space %.

Now let n=2 Let z=x,+ix,eC, Z=x;—ix,, 0,=3%0,, +id,,),
0z = (0., — i0,,), then 4 = 40,0;. It is easy to see that the cel V) is spanned by
the functions z'**#* for | > 0 and z*z'*" for I < 0, where t = 0, 1,...k — 1.

Let

EY0,k) = {fed: o f =0}

Then & *(0, k) is an invariant indecomposable subspace and & * (0, k) corresponds
to the sequence d; withd; = kforj = 0,d; = k + jfor(—k) £ j < 0and d; = Ofor
j < (—k). The corresponding subspace of &, is &;(0,k) = &*(0,k)n &,. By
analogy let

&0, = {fes:#f =0},

€,(0,k) = 67(0,k)n &,,. Then the subspaces & (0,k) and &,(0,k) are deter-
mined by the sequence d; withd; = kforj £ 0,d; = k — jfor0 £j £ k,d; = Ofor
j > k. The subspace H, is defined as above. Let H ,, = H,n &% (0,m), H,,, =
H,n & (0,m). Every exceptional invariant subspace is the finite union of the
subspaces Hi,, and of the subspaces &*(0,d ) and & (0,d_) (or &(0,d ) and
6,0,d_)), whered, = lim d;d_ = lim d;

j— + o0 jm—®

It follows from Theoréms 1 and 2 that every ISS of # is the closure of the direct
sum of countable number of indecomposable subspaces.

The main purpose of this paper is te proof of Theorems 1 and 2. The methods of
this paper are similar to those of [4-8]. In §2 we study the problem of describing
the submodules of Harish Chandra modules. The results of §2 can be used not
only for describing the invariant subspaces, but also for others problems in
harmonic analisis on Lie groups. We note that the irreductibility of the subspace
&(p) for p + 0 was established by Helgason [3].
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§2. On submodules of the Harish-Chandra modules.

Let G be a Lie group, K a compact connected subgroup of G, g, and f, be the Lie
algebras of G and K respectively. Let gand f be the complexifications of go and f,,.

Let g — Ad(g) be the adjoint representation of G on g. Denote by A the set of
equivalence classes of irreductible finite-dimensional representations of K. For
A€ A denote by E* the corresponding f-module, and by T*(u) the corresponding
representations of K.

For every g-module V and for 1€ A let V* be the sum of all the f-submodules
isomorphic to E*. We call a g-module ¥V a Harish-Chandra module if

V= @ V*(direct sum of vector spaces). This definition differs slightly from the
Aed

definition of a Harish-Chandra module in {15], where A is taken to be all
irreductible finite dimensional representations of the algebra {.

Let Hom(E*, V) be the set of linear mappings from E* to ¥, and V¥ =
Hom,(E*, V) be the set of f-module homomorphisms from E* to V. Any element
x € V*can be represented as a sum of certain elements following the form ¥(y) for
certain ye E* and ¥ € V. Therefore, we can assume that the Harish-Chandra
module V can be uniquely recovered from all possible V¥, If H is a Harish-
Chandra submodule of V, i.e., H = @ (H n V*, then we have the set of sub-
spaces Aed

H" = Homy(E*,H) < V¥,

It turns out that in certain cases it is convenient to describe Harish-Chandra
submodules H of V by specifying the corresponding subspaces H® < V®, The
following problem arises naturally: given some subspace H'” in each V), find
conditions on the H” under which V contains a Harish-Chandra submodule
H such that

H® = Hom,(E*, H) < V¥,

This problem will be solved later.

The action of T on V is extended to the representation T(u) of the compact
group K. This is possible as V is a Harish-Chandra module.

Fix in each E* a K -invariant Hermitian form {¢,#) and let ef (15j=<ny)be
an orthonormal basis in E*. We note that for ¥ e VY, ye E*, ue K

2.1 P(THu)y) = TP

Since the representation Ad (u) of the group K on g, complete irreductible, there
exist an invariant complement p, of Ty, thatis g, = po + o and Ad(u)p, < po for
uek.

Let p be the complexification of p,. p becomes a [-module if we define
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kp = [k, p] for kef, pep. Let py,...p, be a basis in p. Denote by p* the dual
f-module to p, let p¥,... p¥ be the dual basis in p*.

For A, ue A let Hom(E*, E*) be the set of linear mappings from E* to E*. As
usually Hom(E*, E*) is a f-module (that is (kA)¢ = k(A&) — A(kE) for & € E¥). Let

(2.2) @: p* — Hom(E* E*
be a I-module homomorphism from p* to Hom(E*, E*). Let
a; = @(p¥)e Hom(E*, E*).
For ¥ e Hom(E?*, V) we define L(¢)¥ € Hom(E*, V) by

J

(2.3) (Le)2) = ), p;¥(a;(z)), VzeE"
=1
Denote by s(p*, Hom (E*, E*)) the set of f-module homomorphisms (intertwining
operators) from p* to Hom(E*, E*).
LEMMA 2.1. The operator L{p) maps V™ into V¥,

ProoF. Let YV = Homy(E*, V), @ = L(p)¥, kel. If
(2.4) [k, pj] = ;Trj(k)pn
tilen
kp} = —zr,-,(k)p:“,

and so

(2.5) kaj(z) — ajtkz) = =Y t; (K)o, (2).

We get from (2.4) and (2.5) that
kd(z) — dlkz) = 3 ([k, p1¥(,(2)) + p; P(k(x(2)) — a;(k2))) = O,
consequently ’
decHomy(E*, V) = VW,
Denote by Py(4, u) the set of linear operators of the form L().

PROPOSITION 2.2. Let V be a Harish-Chandra module. In each V® = Hom,(E*, V)
a subspace H" is singled out so that L{(p)(H?) < H™ for every L(g) € Po(4, u). Let
H be the linear subspace of V generated by all vectors W(y)for ¥ e H?,y e E*, J.e A.
Then H is a Harish-Chandra submodule of V and H? = Hom,(E*, H) for all J.€ A.
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PRrROOF. A) Let us consider the tensor product p ® Hom(E*, E%). Itis a f-mod-
ule as the tensor product of -modules, that is

(26) kip®A) =[kpl®A+pR(kA), pep, AeHom(E* E%).

An arbitrary element Iep ® Hom(E*,E*) can be represented as
I=p,®A; +... + pn ® A, where A;e Hom(E*, EY). It is easy to see that the
element I is an f-invariant (that is kI = OVkef)ifand only if 4; = ¢(p¥) for some
homomorphism ¢ € s(p*, Hom(E¥, E*). Consequently, there exist a one-to-one
correspondence between the invariants and the homorphisms.

B) Let p(u) be the representation of the Lie group K on p ® Hom(E*, E*)
induced by the action (2.6) of the Lie algebra f. The explicit form of this
representations is

pu)p ® A) = Ad(w)p ® THWAT"(u™"),

where Ae Hom(E*, E*). An element I e p @ Hom(E*, E* is a I-invariant if and
only if p(u)l = IVueK.
For pep, Ae Hom(E*, E*) let

2.7) L= JAd(u)p ® THWAT*u" ') du

where the integral is taken over the group K, du is the element of the Haar
measure on K. Since the Haar measure is an invariant measure, the element
I, 4 is a f-invariant and let ¢ be the corresponding homomorphism in
s(p*, Hom(E*, E%)). It is easy to see

2.8 (Lig)¥)(2) = JT(u)(p P(ATu"")z) du

where ze E*, ¥ e V), In particular let
A(x) = (et xye}, xeE*.

If %) (u) are the matrix elements of the operator T*(u) then

AT"u ™ Net = A <Z T‘s‘,‘)(u—‘)e‘s‘> =0 Nej = T (wej.

s

Thus (2.8) gives

(2.9) (L@)ef) = Jffi"(u)T(u)(p‘l”(e,4 ) du.

C) Recall that H is the linear subspace of V spanned by all vectors ¥(y) for
YeH®, ye E* A€ A. Let H be the linear subspace spanned by the vectors ¥(y)
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for ¥ e H®,y e E* with fixed A. Then H*is a f-submodule of Vand H = @®,_, H*
Hence H is a f-module.

Let us verify that Hom,(E*, H) = H?Y. Let ¥ e Hom,(E*, H). Then ¥(e})e H
(e}, €3, ... is the orthonormal basis in E*), hence

(2.10) Pef) = X cs.i'Psler),

where Y,e H?, ¢, € C. Let ue K, then (2.10) gives us that
@2.11) PY(THwe}) = ) 1PW)P(e) = Y ¢, P(THwe)) = Y. ¢, w5 W) (e]).
s, t

r s,t,j

Multiplying (2.11) by 7{})(u), integrating with respect to u and using the or-
thogonality relations for the matrix elements of irreductible representations we
get that

(2.12) Pei) = Y.cs,1Psled).

Since ¥ and ¥, are homomorphisms from E* to V we get from (2.12) that

¥Y=Yc,,¥eH?.

D) We verify that H is a g-submodule of V. Let pep. Since each ve H is a linear
combination of the vectors v} = ¥(e}) with ¥ e H?, it suffices to show that

pvieH.
Since V is a Harish-Chandra module we get that
(2.13) pv} =3 (pv})

ned

where (pv}), € V*. The orthogonality relations for the characters of irreductible
representations give us that

(2.14) (pvf)u = fi”(u)T(u)(pvf) du,

where y*(u) = ) t%(u) is the character of the representation T*.

If L(p)e Po(l’, W) then L(p)¥ € H® and (2.8) gives us that
(L(p)P)ey) = J W) T(w)(p¥P(e}) ducH.

Hence (2.14) gives us that (pv),e H and pv}e H.

We note that the results of this paragraph are the generalisation and the
simplification of the results §1 of [5].
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§3. Transition to the spaces # .

Asin §1 # is one of the spaces C%, C4, I, (p 2 1,deZ, L {c0}). We denote the
spaces C* and Cy by & and &,,. The spaces C? and L%, are the spaces of type 1, the
spaces C? are the spaces of type 2.

If ¢ and f are functions on R", then convolution ¢ * f is defined by

o* f(x)= L" oY) f(x — y)dy.

PROPOSITION 3.1. Let the spaces %, and F, have the same type and F, < F,.
There is a one-to-one correspondence between the 1SS of #, and ¥, obtained by
assigning to the ISS H < &% its closure [H] in F,. The same correspondence is
obtained by assigning to the ISS W < &%, the subspace W N F, « F,.

PROOF. Assume that #, = C’i, &, = I%,. The other cases of #; and %, can be
treated analogously.

Denote by C” the set of infinitely differentiable function on R" with compact
support. Let ¢ e CZ. It is easy to verify that if feLf, then ¢ * feC% and the
mapping f — ¢ * f from L%, to C4 is continuous.

Recall that a sequence of functions ¢, € CZ is said to be an approximating unit
if the following conditions hold:

1) 0.2 0;

2) [an@a(x)dx = 1 for every n,

3) every neighborhood of zero contains the supports supp ¢, for sufficiently
large n.

A standard argument shows that if f e I’ or C‘i, then ¢, * f — f in LF, or Ci,
respectively.

Let H be the ISS of C4. We shall show that [H]n C% = H. If fe[H] n C}
then for some net we have that f, — fin L, and f, € H. Let ¢, be an approximat-
ing unit. For every k the net ¢, * f, in C’i and, since ¢, * f, € H, it follows that
or* feH. The sequence ¢ * f — f converges to @g* f in C‘,’k whenever
k — cotherefore f e H.

If H,+ H, are ISS’s of C‘fk then [H,] #+ [H,] since [H;]n C‘j’k =
H, + [H,] n C4 = H,, it follows that the mapping H — [H] is an injection.

If W is an ISS of L, then W, = W~ C4 is an ISS of C4. For every fe W the
functions ¢, * f € Woand ¢ * f — fin L%,. Therefore [W,] = W and the mapping
H — [H] is a surjection.

Let z be the representation of the group G on the complete locally convex space
Z (here G can be an arbitrary Lie group, K be a compact subgroup; g, and f, be
the Lie algebras of G and K, g and f be the complexifications of g, and ;). The
vector £ e & is said to be smooth (or analytic) if the mapping g — n(g)¢ of G into
& is infinitely differentiable (respectively analytic). The vector £ e # is said to be
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K-finite if the linear span of all vectors n(u)¢ with u € K is finite-dimensional. Let
&, be the set of all smooth K-finite vectors of #, &, be the set of all analytic
K-finite vectors of #. #, and &, are Harish-Chandra modules with respect to
the action of g induced by the representation x.

If H is a closed n-invariant subspace, then H, = Hn%,and H, = Hn %,
are Harish-Chandra submodules of %, and %, respectively. The subspace H, is
dense in H. If & is a Banach space then Hy is dense in H also [1], but if & is
a complete locally convex space then H, can be a nondence subspace. We note
that, if W, is a Harish-Chandra submodule of % 4, then its closure W = [W, ] is
a n-invariant subspace of &.

Now let G be the group of isometries of R", 7 be the quasiregular representation
of G on some complete locally convex function space. It follows from §2 that to
describe the Harish-Chandra submodule H, of &, it suffices to describe the
subspaces

H¥ = Hom(E*, H,) < Hom(E*, #,) = #».

From a homomorphism ¥ e %% we construct a function F(x) on R" taking
values in E*. By definition

(.1) G Fx)> =[P(E1x) VEeE,

where ¢,) is an invariant Hermitian form in E*,
For an E*-valued function F(x) on R" to correspond to some homomorphism
YeFW, it is necessary and sufficient that the following two conditions hold:

(3.2) F(ux) = THu)F(x) VueK;

(3.3) (EF(x)yeF, VEeE

The homomorphism ¥ will be identified with the corresponding function F(x) in
what follows and the space # ¥ is identified with the set of all E*-valued functions

satisfying the conditions (3.2) and (3.3). Respectively the space &2 is identified
with the set of all E*-valued functions F(x) satisfying the conditions (3.2) and

(EF(x)eF, VEeE™

The irreductible representation of K = SO (n) is determined by the highest
weight A = (4y,... 4,,), where m = [n/2], the numbers A;eZ and the conditions
(1.3), (1.3") hold.

LEMMA 3.2. Let F(x) be a nonzero E*-valued function on R" satisfying the
condition (3.2). Then A€ Ay (that is A, = ... = 4,, = 0).

ProoF. Let aft)e G be the translation of R™ aff)(x) = x + te,, where
e, =(0,...0,1), teR". Every point xeR" can be represented in the form
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x = uo(t)0, where u € K. Then F(x) = T*u)F(«(t)0), hence the function F(x(t)0)is
nonzero and for some t € R" the vector & = F(a(t)0) # 0.

Let K, = {ue K :ue, = e,}. The subgroup K, is isomorphic to SO(n — 1). If
ue K, then

THu)¢ = THu)F((t)0) = Fux(t)0) = F((t)0) = ¢&.

The one-dimensional subspace of E* spanned by the vector ¢ is a K -invariant
subspace and the representation of K; = SO(n) in this space has the highest
weight (0, . .. 0). On the other hand it is well known [1] that the restriction of T*
to the subgroup K, is a direct sum of nonequivalent representations of K; and
the representation with highest weight (0,...0) is contained in this sum if and
only if

A2024,202...24,-,2024,20,

hence A = (1,0,...0) where | = 4,.
Let

Ef = {(€E*: THu)é = & VueK,}.

It follows from the proof of Lemma 3.2 that dim E} = 1for Ae Apand dim E§ = 0
for ¢ Ay.

COROLLARY 3.3. Let F(x) be an E*-valued function satisfying the condition (3.2),

A€ Aqg, &g is a nonzero vector of Efy. Then there exists a complex-valued function
f(¢t), te R, such that F(ut)0) = f(t)&,.

It follows from Lemma 3.2 that #* = {0} for ¢ A,. It will be assumed below
that 4 = (1,0,...0)e A, and we will write F, #{ and so on. If H is an ISS of
Z then H, is a Harish-Chandra submodule of #,, hence H, is the linear span of
the functions{¢&, F(x)) for FeHY, € E', leZforn=2and leZ, forn > 3.

The subspaces # ¥ and the invariant cells H” of H were defined in § 1. We note
that H® = H®, hence H is the closure of the linear span of the functions (&, F(x))>
for FeHY, ¢eE!, leZ, for n =3 or leZ for n = 2. In particular H can be
uniquely recovered from all the cells H" of H.

Let go and f, be the Lie algebras of the Lie groups G and K respectively,
go = Iy + po is a Cartan decomposition. The Lie algebra g, is identified with the
set of (n + 1) x (n + 1) matrices of the form

Zy

(3.4)
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where Aeso(n, R), z = (zy,...2,) € R". Then f, and p, consist of the matrices

0 zy

A : 0 :

f0= 0 L) p0= z
0 00 O ... 00

Let p; be the matrix (3.4) with z; = 1 and 0 elswere. The matrices p;, ... p, form
a basis in po.

Let g, f and p be the complexifications of gg, £, and p,. Note that [f, p] < pand
p is an irreductible -module with highest weight (1,0,...0). The dual f-module
p* is isomorphic to p and the basis p,...p, is equal to its dual basis.

Using the method from §2 we must study the homomorphisms from
s(p*, Hom(E*, EY). If ¢ e s(p*, Hom(E*, E%)) then the operator L(¢): #» — F®
was defined in (2.3) and the action of this operator has the form

m

(3.9) (L9F)x) = Y, «X(p;F)x)],

i=1

where p; F is the action of an element of the Lie algebra on the function induced by
the representation 7, a; = ¢(p;) € Hom(E*, E*), o} e Hom(E*, E*) is the operator
adjoint to o, that is

a¥é,nd =& am) YEeEneE”

Let E,, E, and E; be arbitrary f-modules. Then the following sets of interwin-
ing operators are isomorphic as vector spaces:

S(E;,Hom(E, E,)) ~ s(E,, Hom(Ej3, E,)).

The isomorphism is obtained by assigning to the intertwining operator
¢: E; > Hom(E, E,) the intertwining operator y: E; - Hom(E3;, E,) defined
by

Y(vy)vs = @vs)v, Vv, €E; v3€E;.
We note also that the f-module Hom(E,, E,) is isomorphic to E¥ ® E,. Then
s(p*, Hom(E*, E%) ~ s(E*, Hom(p*, E*) ~ s(E*,p ® E).

Let 1 = (4y,... 4,), w; be the row with 1 in j-th place and O elswere. It isknown [9]
that p ® E* is isomorphic to the direct sum

j=1

Jj=1

k k
@ (E}.+wj(_BEA—wj) or El@[@ (El+wj®E}.—wj):I

for even or odd n, respectively (if one of the rows 4 + w; or A — w; does not satisfy
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the conditions (1.3) and (1.3’) then the corresponding term is replaced by zero).
Hence s(p*, Hom(E*, E*)) % {0} ifand onlyif 4 = A + wjor u = A — w;for some
j,or u = Aand nis odd. Under these conditions dim(p*, Hom(E*, E*) = 1.

Let A, pe A, and 4 = (1,0,...0). For Py(4,u) % {0} it is necessary (but not
sufficient) that u =1+ w, or y = 4 and n is odd. Under these conditions
dim Py(4, u) < 1. We choose some operators (nonzero if Py(4, ) + {0}):

XPePy(A A+ wy), XPePy(hi—w), XPePy2A).

It will be shown in the next section that Py(4, 1) = {0}; therefore, the operator
X does not need to be considered. If H? are the cells of a single invariant
subspace H < & it follows from Lemma 2.1 that

XOHY) = HU*Y and  XOHY) < H V.

PROPOSITION 3.4. Suppose that in each space F a linear subspace HY is
singled out such that

XOHY) = HY*Y, XOHY) < HYY,

Let H be the closure in & of the linear span of all functions {&, F(x)) for Fe HY,
EeE\leZ, orleZ for n = 3 and n = 2 respectively.
Then H is an invariant subspace and its cell H" is a closure of HY in #©.

PROOF. Let H, be the linear span of the functions (¢, F(x)) for Fe HY, ée E!,
leZ, (orleZforn = 2). By Proposition 2.2, H is a Harish-Chandra submodule
and HY coincides with the set of all functions F(x)e#® such that
(&, F(x)> e HyV ¢ E. Since H, is a Harish-Chandra submodule of %, then H is
an invariant subspace of #.

Lete;(1 =<1 < m) bean orthonormal basis in E', 7;,(u) be the matrix elements of
the representation T'(u) in this basis. We construct the vector-valued function
F(x) = Y Fi(x)ej, where

Fi(x) = '/? ijr(u_l)f(uX) dx,

the integral is taken over the group K, r is a fixed number. It is easy to see that F(x)
satisfies condition (3.2) and F/e %, consequently F(x)e #®. The continuous
mapping f — F from & to #© arises, and we denote it by T,.

We show that I',(H) = H" for every ISS H = #. If f e H then I',(f)e H®.
Conversely, let Fe HY, F(x) =) Fi(x)e;. Then F/(x) = <{e;, F(x)> and hence
F/e H. It remains to observe that I',(F") = F, what is easily obtained by using the
orthogonality relations for the matrix elements of irreductible representations.

It is obvious that I',(H, ) = HY. Since H, is dense in H, then HY = I'(H,) is
dense in H® = I',(H).
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LEMMA 3.5. Let the spaces #, and %, have the same type and %, < &,. Thereis
aone-to-one correspondence between the invariant cells of " and %" obtained by
assigning to the cell H® = #Q its closure [H] in %,. The same correspondence is
obtained by assigning to cell W® < F the cell W n F" = F{.

Proor. We know (by Proposition 3.1) that the correspondence
H - [H] = W is a bijection between the ISS’s of #; and &, and in addition
Wn%, =H. Let H” be a cell of the ISS H < %,, W =[H] < %,. Then
W® =r,([H]) = [H"]. It is clear that W® n %, = H", hence, the mapping
H™ - [H"] is an injection.

IfFW® < FPisacellof thecell W < #,,then H = W N %, is a dense subspace
of W and H® = I'(H) is dense in W®, hence the mapping H” — [H"] is
a surjection.

COROLLARY 3.6. To prove Theorems 1 and 2 is suffices to prove these theorems
for some space of type 1 and for some spaces of type 2.

§4. Proof of Theorems 1 and 2.

Fix notation as in §3. Let F(x)e # . By Corollary 3.3 F(x(t)0) = f(t)&,, where
f(t)is a complex-valued function, te R, &, € E} and ||&, || = 1. It follows from (3.2)
that F(x) can be uniquely recovered from f(t). We introduce the mapping
D" F(x) — f(t). The action of the operators X%, X$ and the Laplace operator
A on F(x)can be expressed in terms of f(t), that is we find the operators D'A(D")~*,
D'*ix¥P((DH~, D'XYP(DY) ! (for brevity we denote them simply by 4, X, X{).
We find an explicit form for this operators.

Let x = ux(t)0, ue SO(n). Then F(x) = T'(u) f(t)é,. The Laplace operator in
polar coordinates has the form

(4h)(x) = 0%h + (n — )r=0,h + r~*(Lh),

where Lis the Laplace operator on the unit sphere $" . If x = ua(t)O thenr = |t|,
therefore

(AF)(x) = T'W)[o7 f(©) + (n = Dt~ '8, f(©)1C0 + fOLT' W)o).

Let e; (1 <j<n) be the orthonormal basis in E' and let e; = &, Then
T w) = Y t{}(u)e;. It is known [10, Ch. IX, § 5] that

L) = =10 + n — 2)(u),
hence

LT (w)éo) = —I(L + n — T'w)é,.
We get that
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“4.1) AHO =0 +m— D18, f — Il +n— 2t %f.

Then computations of the operators X, X{ is analogous to the computations
of the corresponding operators in [6, §5]. Let R(p) be the rotation through the
angle ¢ in the plane (x,, x,, ) of R". The product a(t)R(¢)x(s) can be represented
in the form R(Y)x(t')R(¢"), where ¢, t' and ¢’ are functions of the parameters ¢,
¢ and s. If s assumed to be small, then to within small quantities of first order

(4.2) «()R(pafs) = R(Y1s)alt + t15)R(9 + ,9),

wheret, = cos@,y; = —t 'sing, ¢; =t~ ! sin ¢. This decomposition replaces
the decomposition (5.7) in [6]. The other computations are obtained by repeat-
ing word-for-word the computations in [6]. Finally, we get that X$ = 0 and

(4.3) XN =0.f@) = It f(),
(4.4) XON)O) = 0.f(®) + (I + n— 2t f(2).

It follows from the explicit form of X'?, X and 4 that they are connected by the
following relations:

XUHOXOf = Af, XU VXO = Af.

LEMMA 4.1. Suppose that H{® is a linear subspace of F4° such that A(H{®) <
HY and let H" be the closure of H? in @), Then H" is an invariant cell.

Proor. Weintroduce the collection of subspaces HY < #$ forall[(leZ, for
n>3 or leZ for n=2). We have already the subspace H%, for | > I, let
HY = x4 bx¢ 2 xWHY andforl < lplet HY = XU+ Vx| xUopgio
Then (4.5), and the fact that 4 commutes with operators X{ give us that
XPHY) < HYEY. Then, by Proposition 3.4, HY is an invariant cell.

Let %, denote the Banach space consisting of measurable complex-valued odd
functions h(t), te R, such that the norm

© 1/2
n2,x(h) = (L |h(t)|?e dt)

is finite. The space £, = () %, is equipped with the topology of the inductive
k>0
limit of the BS’s .%,.
Let S, denote the space consisting of continuous even complex-valued func-
tions A(t), t € R, such that [h(t) e * — 0 as t — o0. The space S, is a BS with the
norm

Mi(h) = sup [h(t) e "

120
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The space S, = () Sy is equipped with the topology of the inductive limit of the

k>0
BS’s S;.

Let C(R) be the space of all complex continuous functions on R and let &(R) be
the space of all complex infinitely differentiable functions on R with the usual
topologys, Co(R) and &(R) (or C,(R) and &,(R)) are the subspaces of all even
(respectively, all odd) functions.

The proof of Theorem 1 consists of two steps: the first step is the proof of
Theorem 1 for I = 0 and the second step is the proof for arbitrary I. The problem
of describing the invariant cells of %#‘© will be reduced to the problem of
describing the linear subspaces of %, and &(R) that are closed and invariant
with respect to the transformations

(4.6) h(t) — 3(h(t + 5) + h(t — s)) VseR.

This subspaces will be called the generalized invariant subspaces (GISS’s), it will
always be assumed that every GISS does not concide with the whole space .#,, or
é,(R).

The problem of describing the GISS’s of &£, was solved by Rashevskii [4]. The
GISS’s of #, are in a one-to-one correspondence with the sets o of complex
numbers satisfying the condition (A) in § 1. Corresponding to a set ¢ is the GISS
that is the closure in %, of the linear span of the functions

4.7 sin ux, xcosux = d,sinux, &, 'sinpx,

where u runs through the set o, r is the multiplicity of u in 6. For u = 0 the
functions (4.7) must be replaced by

(4.8) x, x3, ... x¥1

PRrOPOSITION 4.2. The GISS’s of &4(R) are in a one-to-one correspondence with
the sets ¢ < R satisfying the condition (B) in § 1. Corresponding to a set o is the
GISS that is the closure in & (R) of the linear span of the functions (4.7) for u £ 0
and (4.8) for u = 0.

ProOF. A linear subspace W < &(R) will be called an invariant subspace (ISS)
if W is closed and invariant under the transformations h(f) — h(t + s) VseR.
A linear subspace W is said to be symmetric if follows from f(t)e W that
f(—t)e W. Weintroduce the mapping P: h(t) — 3(h(t) — h(—t)). If W is a symmet-
ric ISS of £(R) then H = P(W)is the GISS of &,(R). Conversely, if H is an GISS of
&1(R)then let W be the closure of the linear span of the functions h(t + s)for he H,
seR. Wis a symmetric ISS of &(R) and, since P(h(t)) = 3(h(t + s) + h(t — s))e H,
P(W) =H.

Finally, the proof of Prop. 4.2 follows from the Schwartz’s results [ 11] that the
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ISS of £(R) are in a one-to-one correspondence with the sets ¢ — R satisfying the
condition (B) in §1 and corresponding to a set ¢ is the ISS that is closure of the
linear span of the functions

t t __ t -1 ut -1 _ut
et te' =0, ... 70" =0,""e".

PROOF OF THEOREM | (THE CASE [ = ().

(a) By Corollary 3.6 it is sufficient to prove Theorem 1 for the spaces C{?’ and
&9, The spaces C{’ and £ consists of complex-valued functions F(x)satisfying
the condition

4.9) F(ux) = F(x) VueKk.
The mapping
4.10) D° F(x)+ f(t) = F(a(t)0)

is an isomorphism of the topological vector space C’ onto S and of £ onto
&o(R). For the space C’ it is obvious and for the space £'” it is the special case of
Corollary Chapter in [12].

(b) We show that the linear subspace H® = C{ (or H® = &) is an invari-
ant cell if and only if H'? is closed and invariant under the transformations

(4.11) F(x)l——»fF(gux)du VgegG,

where du is the element of the Haar measure on K, the integral is taken over the
group K.

Indeed, if H? is the cell of the ISS H then the functions F(gux) e H, hence H® is
invariant under (4.11). Conversely, let W be a closed subspace of C{’ (or £?’) that
is invariant under (4.11). Let H be the closure of the linear span of the functions
F(gx) with Fe W, geG. Then H is an ISS and the mapping

r: F(x)HfF(ux)du
is a projection of H onto H'?. It is obvious that
I'(F(gx)) = JF(gux) dueW.
Then H® = W,
Since every g € G can be represented in the form g = u,o(t)u,, where uy,u, € K,

then H is invariant under the transformations (4.11) if and only if H is
invariant under (4.11) for g = a(s) VseR.
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(c) Let T, be the translation by the vector x € R" (that is T,(y) = y + x). For
F(x)e CY (or F(x)e &) define

v(x,y) = jF(T}u’I}O) du.

It is obvious that
uux, y) = v(x,uy) = v(x,y) Vuek,
in particular

o(—x,y) = v(x, —y) = v(x, y).

If F is a C?-class function then u(x, y) satisfies the Darboux equation

4;0(x,y) = 4,0(x, y),

where A is the Laplace operator. It is obvious that u(x,0)= F(x). Let
u(t, s) = v(e(t)0, a(s)0), t, s € R. Then u(t, s) satisfies the differential equation

4.12) D, y(t,s) = Du(t, s),

where D, = 02 + (n — 1)t 10, is the Bessel differential operator, with the initial
conditions

4.13) u(t,0) = f(x(t)0) = h(t);
(4.14) d,u(t,0) = 0.

Let (z°h)(t) = u(t, s). It follows from (4.12)(4.14) that t° is the Delsart-Levitan
operator of generalized translation corresponding to Bessel operator [14]. The
closed subspace # < S, has the form # = D°(H”)) for some invariant cell
H® < C© if and only if # is invariant with respect to the transformations 1°
VseR.

In [7] we have described the closed subspaces # < S, that are invariant with
respect to operators of generalized translation corresponding to the Bessel
operator. It turns out that such subspaces are in one-to-one correspondence with
the sets o of complex numbers satisfying the condition (A) in § 1. Corresponding
to a set o is the closure in S, of linear span of he functions

(4.15) Jn-a(u) G g(ut), o T D),

where u runs over o, r is the multiplicity of u in g, j, — 1 (ut) is the even eigenfunction
of the operator D, with the eigenvalue (— u?) that is normalized by the condition
Jn-1(0) = 1 (let us observe that
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n n
2=
’ <2>

Jn—1(ut) = - J%—l(llt),
(u)2~1
where J,(t) is the Bessel function). For u = 0 functions (4.15) must be replaced by
(4.16) 1, 3, % ... t¥°2

The proof of this results is obtained by reduction to the problem on describing the
GISS’s of Z,,.

Arguing as in [ 7], we get the description of the closed t°-invariant subspaces of
8o(R), only in this case the problem of describing the GISS’s of ¥, must be
replaced by the problem of describing the GISS’s of &;(R). We get that the closed
t°-invariant subspaces of &,(R) are in a one-to-one correspondence with the sets
o < C, satisfying the condition (B)in § 1. Corresponding to a set a is the subspace
J thatis the closure in & 4(R) of the linear span of the functions (4. 15) (or (4.16) for
u=0).

It remains to observe that the functions (4.15) or (4.16) are the basis of the
solution space of the differential equation (4 + p?Yh = 0, where 4 = D, is the
Laplace operator in 8© that is the basis of V%). Since V) contains only one (to
within multiplication by a number) eigenfunctions of the operator 4 (which is
Jn-1(ut)), it follows that V{9 has a Jordan basis. This completes the proof of
Theorem 1 for the spaces C’ and .

Let us pass to the general case leZ, (or leZ for n=2). Let F(x)eC®,
f(t) = D'(F). The action of the operators X% has the form (3.5), hence the
operators X can be considered as continuous mappings of C*¥ onto C¢~ D¢+
(or of C% onto C¢~ V¢V for every d 2 1. The action of the operators X¢ in
terms of f(t) has the form (4.3) and (4.4). We remark that, if n = 2, then the
operators X are defined for every le€Z, and if n < 3, then the operator X is
defined for [ = 0 and X" is defined for [ > 1.

LemMa 4.3. The following properties are true (if the corresponding operators are
defined):

(1) dim V" =rand V) = C,;

(2) Ker X = {0} for > 0,Ker X =V, for 1 < 0;

(3) Ker X9 = V¥, for 1 2 0,Ker X = {0} for 1 <0;

@) XOW®O) =V D wherer, =rforp£0orforp=0andl>0,r, =r—1
foru=0andl £0;

(5) XPW®) =veD wherery =rforp+0orforp=0andl <0,ry=r—1

foru=0andlz=0.
Proor. Let Xf = 0, then it follows from (4.4) that f(t) = Ct~**"~2) (C is
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a constant). For I = 0 the function f has a discontinuity at ¢ = 0 and hence does
not belong to C®. Therefore, Ker X{ = {0}. Arguing similarly, we get
Ker X = {0} for | < 0. Then, for ] £ 0, XF = 0 ifand only if X{ " VXYF =0
or, by (4.5), A4F =0. Therefore, KerX® =V® for 1<0. Similarly,
Ker X = V{; for I 2 0. This proves (2) and (3).

Since the operators X% commute with A then

4.17) Xg’(l/;ff’,) e V“”,i b,

Proof of statement (1), (4), (5) is carried by induction in |/|. Assume that n = 3,
hence | = 0. The case when n = 2 and I < 0 can be treated analogously.

Let! = 0. We know that dim ¥V} = r. If Fe V% then F € C, for some k > O and
F is a solution of the elliptic equation (4 + u?)'F = 0, hence (see [13], Appendix
5) F is an analytic vector of the representation 7. Thus V9 < C{), and (1) holds
true. The operator X'? is not defined and (4) is meaningless.

Let u+0, then it follows from (4.17) that X'O(V)) < V() and Ker
XP V9 = {0}. Hence dim V9 < dim V}). On the other hand it follows from
XOWN) < VO that dim V" < dim V9 (it is true and for u =0). Hence
XPWO) =V and dim V) = r.

Let u = 0, Fe V°. Then by (4.5) XV4" ' XQVF = A’F = 0 and it follows from
(2)that A" Y(X?'F) = 0and XPF e V§!)_ . Hence XP(V%) = V{!)_ and, since
dimKer X = 1and dim V§!)_, <r — 1, XQ(V,)) = V§1)_ .

Suppose! > 0and Lemma 4.3 istruefor ! — 1. Thusby (5) X{ " V(v 1) = v,
for u # 0and X4§ ™ V(V{ 1) = V. Since Ker X{ ™9 = Vg7V thendim V) = r
forevery e C. Since the operator X{ ™V maps C¢," onto CY, then V) = C{,.
Statements (4) and (5) can be treated as (5) for [ = 0.

PROOF OF THEOOREM 1 (GENERAL CASE).

(a) By Corollary 3.6it is sufficient to prove Theorem 1 for the spaces C, and C.
Proof is carried by induction in |l|. Assume that [ = 0, the case | < 0 is quite
similar. We note that V) = C{, (see Lemma 4.3). Since C,4 < C4 then
V9 = €Y. For the spaces C,, and C Theorem 1 are proved quite similar and we
consider the space C,.

Let (XYf)(t) = h(t). It follows from (4.4) that

(4'18) f(t) = t—(H'”"'z)J‘t h(s)sl+n—-2ds-
0

We introduce the mapping A: C¢~ Y - C¥ by (4.18). Thus A(XYF) = F for
FeCi® d > 1. We fix an integer d = 1.

(b) Suppose now that Theorem 1 holds true for [ — 1. Let H*® be the closure of
XOH ) in CP. Let W1 be the closure of X“(H*Y) in C¢~ V. We verify that
W is an invariant cell.
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Let H be anISS of C,, such that H® is the cell of H and let H! ™V = C{ ™ be the
other cell of H. By assumption H* V) can be describeed by its spectrum ¢ = C
and H~ " is the closure of the linear span of the subspaces V"), where pea, r is
the multiplicity of u in ¢. Assume that the number O belongs to ¢ and k is the
multiplicity of 0. Let the set ¢’ be obtained from ¢ replacing the multiplicity k of
0 by (k — 1) (if k = 0 than we put ¢’ = ). Denote by H{ ! the invariant cell of
C!~Ycorresponding to ¢'. Let Fy, ... F, be a Jordan basis of V', . Let H§ ~" be
the linear subspace spanned by the vector F, (if k = 0 then we put H{ ~ = {0}).
Thus H™Y = H{~Y @ HY ™Y (the direct sum of linear spaces).

Let u # 0, peo. It follows from V!V < H'™ Y that V) = X{~D(V¢ ) <
H*and XOWV") = VI "D < WD, For pu = 0 it follows from Vg,V < H!™V
that X0 OV = V-, < H*® and X9V ) = Vi Y, = WY, Hence
HY-D e Wi,

On the other hand XY(H") = H'~Y and W~V < H'~Y), Thus we obtain
that H "V c Wi~V c H¢-Y = H{"Y @ H " and there are only two possi-
bilities for W~V namely W'~V = H{ Y or W'~V = H®~D hence W! " Visan
invariant cell.

(c) Let HI® & H4® be invariant cells of C4®, W® (v = 1,2) be the closure of
XOHI) in CL™Y. We verify that W{ V& W/ 1. Note that HI® <
AW Y) = H? hence the closure of AW~ Y)in CP isequal to HP. If W~V =
WV then H{ = HY in contradiction to Lemma 3.5.

(d) Let H*® be an invariant cell in C4¥ and let W'~V = C{~ " be constructed
as in (b). Let W'~ be describe by the set 0. Denote by H{ the subspace of
Ci® that is closure of linear span of the subspaces W), where pea,r is the

u,r

multiplicity of u. Since V) = C¥, and 4(VY) < V) then, due to Lemma 4.1,
H{" is invariant cell. It is obvious that the closure of X“(H{®)in C{, ™ coincides

with W1 hence H!Y = H4® that completes the proof of Theorem 1.

Proor oF THEOREM 2. By Corollary 3.6 it is sufficient to prove Theorem 2 for
the space C,, and C. Let us consider the space C,, the space C can be considered
quite similar.

Let H" be the invariant cells of a single ISS H = C,, and H" can be described
by a set o(l). If V), < H® and V!V < H**V then XP(V{) = H*V and
XUy ey c HY, but due to Lemma 4.3
(4.19) XP0) = VD, XU = v

u,r 2 By S1°

where ry =r,orr,=r—lands; =sors; = s— 1 depending on y and I It
follows from (4.12) that the multiplicities r and s of u in the sets o() and o(l + 1)
must be equal for x4 # 0,smust beequaltororr — 1foru = 0and! = 0,r must be
equaltosors — 1for u = 0andT £ 0. Hence the sets ¢(/) must satisfy conditions
of Theorem 2.
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Conversely, suppose that in each space C{ we fix an invariant cell H?, let o(/)
be the spectrum of H", and assume conditions (1)~3) of Theorem 2. Let HY be
the linear span of the subspaces V) (u € o(1),  is the multiplicity of u in a(1)). Then
it follows from Lemma 4.3 that X{(HY) = H{* Y. Let H be the closure in C,, of
the linear span of the functions (&, F(x)) for all Fe HY, e E', 1eZ, (or leZ for
n = 2). It follows from Proposition 3.4 that H is an invariant subspace and H"
are the cells of this subspace.
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