MATH. SCAND. 76 (1995), 105-114

A SPATIAL CHARACTERIZATION OF o CONDITIONAL
EXPECTATIONS ON VON NEUMANN ALGEBRAS

CARLO CECCHINI

Abstract.

Representations of the predual of von Neumann algebras as spaces of densely defined sesquilinar
forms on the Hilbert space on which the von Neumann algebras itself operate are taken as a setting on
which to extend w-conditional expectations. This allows us to give a spatial characterization of
w-conditional expectations through a property which is a natural generalization of a characterising
property of norm one projections on von Neumann algebras.

1. Introduction.

In [1] the w-conditional expectation (g,) from a von Neumann algebra to a von
Neumann subalgebra M, with respect to a faithful normal state w on M (with
restriction wq to M) has been first introduced as a generalization of w preserving
norm one projections. In [4], of which this paper can be seen as a sequel, it has
been characterized as a dual map of a canonical state extension (cfr. [5] and [6])
perturbed with convenienient partial isometries in M. Our main result, stated
now for convenience in the simple case of matrix algebras, says that a positive
linear contraction ¢ from M to M, preserving w coincides with ¢,, iff for all a in
M and all normal states ¢, on M, we have:

&[Po(@0)/@]" alpo(bo)/w]) = [o/wo]" eu™ au)[po/wo],

where p,(¢o) is the canonical extension of ¢, to M with respect to w, u is the
partial isometry involved in the extension and the notation [¢/w] denotes, for
any pair of normal states ¢, w on a matrix algebra, the analytic extension of the
Connes’ cocycle for ¢ and w in the point i/2 (see [2] and [7]). The above formula
in the case in which [p,(¢o)/w] = [¢po/wo] and u is the identity reduces to:

el Po/w0]" aldo/wo]) = [Po/wo]" eu(@[Po/@o].

The case in which ¢, is a norm one projection occurs when the above formula
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holds for all normal states ¢, on M,. This can be seen by setting a = 1 and
recalling that any positive element in M, is of the form |[¢o/wo]1|? for some
normal state ¢, on M,.

For general von Neumann algebras the analytic extension of the Connes’
cocycle for two normal states ¢ and  (faithful) in the point i/2 does not always
exist (at least as a bounded operator). So, in order to generalize the above stated
characterization of w-conditional expectations to the general situation, after
giving the necessary preliminaries and establishing our notations in section 2,
section 3 will be devoted to the task of enlarging a von Neumann algebra by
embedding it in a representation of its predual as a linear space of sesquilinear
forms defined on a dense linear subspace of the Hilbert space on which the von
Neumann algebra itself acts. We shall also extend w-conditional expectations to
this representation. Finally section 4 will contain our main result.

2. Preliminaries and notations.

Let M be a von Neumann algebra acting on a separable Hilbert space H with
commutant M’, and w be a faithful state on M. We shall denote, as in [7], by
D(H, w) the dense linear subspace of all £ in H such that the functionala — {&,a)
on M is majorized by some positive multiple of w (or dominated by w). The action
of M’ maps D(H, w) into itself. Let now w be faithful; we shall denote by = the left
representation of M on a standard Hilbert space H with a cyclic and separating
vector € such that w(a) = {Q, n(a)R2) and by J the isometrical involution asso-
ciated to Q. Let ¢ be in (M*) . ; n(¢) shall be defined by n(¢)(n(a)) = ¢(a), For ain
M we set n'(a) = Jn(a)* J; so ' is the right representation for M. For each ¢ in
D(H, w) (cfr. [6]) there is a unique bounded linear operator R(¢): H — H such that
R(&)(a)Q = aé. For all ¢, n in D(H, w)R(E)R(n)* is in M’, and (see [3], 3.2)
R(&)*R(n)is in w'(M). We shall set =~ }(JR(E)* R()J) = O(&, 7). Let now ¢ be also
in (M), and (D¢ : Dw), the Connes’ cocycle for ¢ and w in M. If ¢ is dominated
by w the mapping t — (D¢ : Dw), admits a continuous extension to the strip S of
the complexes z with 0 < Im z < 1/2, which is analytic in its interior (see [7]); we
shall denote its value at i/2 by [ ¢/w] (see also [2]). In general, however, for all £ in
D(H, w) the mapping t — (D¢ : Dw),& admits a continuous extension to S analytic
inits interior. We shall denote again its value by [ ¢/w]¢&; so the mapping [ ¢/w] is
always a linear operator on D(H, w) commuting with M’'. The selfdual positive
cone in H containing Q, which is pointwise invariant under J, is the closure of the
set: {[n(¢)/n(w)]2: ¢ normal state dominated by w on M}.

Let now M, be a von Neumann subalgebra of M, w, = w | M,. Let H, be the
subspace of H closure of {a,€, a, in M, }, and E the orthogonal projection from
H to Hy. Then n(M,) acts standardly on H,, Qis a cyclic and separating vector for
n(My) in Hg and for all ay in M, we have En(ag)E|Hy = mo(ao), the left represen-
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tation of M, on H,. We shall often identify H, with the Hilbert space on which the
standard representation of M, acts. We shall endow with a subscript “0” all the
above defined objects when referred to M. As in [ 1] the w conditional expecta-
tion ¢, from M to M, is the mapping satisfying ny(e,(a))2 = JoEJn(a)Q2 for all
ain M. Let ¢, be a normal state on M,. We define (cfr. [4], [5] and [6]) the
canonical state extension p,(¢) of ¢y to M with respect to w by setting, for all
ain M, p,(do(a)) = o([Po/wo] ™ al po/we]) if ¢ is dominated by wy, and other-
wise by continuity. We shall denote by u(¢o, w) the (unique) partial isometry in
M with initial projection the identity introduced in [5] which satisfies the
equality Jr(u(@o, @))J [mo(¢o)/mo(wo)]1R = [m(puldo))/m(w)]€2.

3. Extending w-conditional expectations.

Let M be a von Neumann algebra acting on a separable Hilbert space H, and w be
a faithful state on M.

3.1. DerFINITION. We call M,(H, w) the vector space of all linear (not necessar-
ily continuous) operators T from D(H,w) to H which commute with M’ and
which satisfy the following condition:

*)

Sa

N N
Y <& Ty PR SUANS
n=1 n=1

for some o > 0 and all &, 1, in D(H, ).

The above condition (*) is nothing else than the continuity in the w — L, norm
of the linear map which maps 6(¢, n) into (£, Ty on the linear span of {6(&, %): &, 7
in D(H, w)}.

3.2. PrOPOSITION. For all ain M a|D(H, w) is in My(H, w).

Proor. Forall &, , in D(H, w) we have:

N

Y &man,y

n=1

N
2 w ROM@2)
n=1

< Z; R(1n) " &, n(a)9>‘ < In@Q||

N
Y. R &,
n=1

3.3, PROPOSITION. Let T be in M,(H,w). There is a unique m(T) in
(m(M),(H, n(w)) such that for all &,y in D(H, w) we have R(n)n(T)2 = Tyn. The map
T — (T) is linear, for all a in M we have n(a| D(H, w)) = n(a)| D(H, n(w)), and for
allain M and T in My(H,®) we have ©(aT) = n(a)n(T). It is also invertible, in the
sense that for all T in (m(M)),(H, n(w)) there is a T in My(H, ) such that n(T) = T.

Proofr. From [8] and [3] it follows that the linear space spanned by



108 CARLO CECCHINI

{R,(E)" Ry(n): &,n in D(H, w)} is dense in H. By (*) there is therefore a unique
vector Q4 in H such that:

N N N
< z R("u)-‘—R(én)Qa QT> = < 21 R(”n)+ém QT> = Z <£m Tnn>
n=1 n= n=1

for all &, #n, in D(H,w). Set now =n(T)n'(a)R2 = n'(a)2; for all n'(a) in
7'(M)(= n(M)). We note first that {n'(a)Q: a in M} = D(H, n(w)) and that n(T)
obviously commutes with n(M)'. Also, for all a,, b, in M we have:

N
L (mla) ﬂ(T)n'(bn)ml -

N
Y. (w(by) (@), n(T)Q>,
n=1

N
<|| X ) r@)Q
n=1

>

n(T)QI

which is (*) for the standard representation. Our construction implies, for &, 7 in
D(H,w), <& Rmn(T)Q) = (&, Ty, and by the density of D(H,w) in H the
equality R(n)n(T)Q2 = Ty follows.

The linearity of 7 is obvious from our construction, as well as the equality
n(a| D(H, )) = n(a)| D(H, n(w)) for all a in M.

For a in M we have, using our previous notations:

N N
< Y. R1.)*RER, n(aT)Q> = Y. <R()Q,aTy,>

=1 n=1

N N
= Y, <a"R()Q2, Ty = Y. {R(E)(a)* Q, Th,»
n= n=1

N
< ; R(1,)* R(£)€2, n(a)n(T)Q> ,

which by density implies n(aT) = n(a)n(T).
Let now T be in (n(M)), (H, n(w)); clearly if we define T by setting R(n)TQT =
Ty for all n in D(H, w), T is in M,(H,w) and o(T) =T.

3.4. REMARK. Our proofof prop. 3.3 implies also that if H contains a separat-
ing vector ¥ for M then condition (*) is automatically satisfied for all linear
operators from D(H,w) to H which commute with M’ (whose set therefore
coincides with M,(H, w)). In this case T is completely characterized by the vector
TY (in other words Y is separating also for M,(H, w)); moreover, in general T is
completely characterized by n(T)Q2. So we can establish a linear bijection be-
tween the vectors in H and M,(H, w), and remark that M,(H,w) is therefore
nothing else than one of the possible concrete spatial realizations of L*(M, w).
This allows us to look at M,(H, w) as a Banach space with || T'||, = ||n(T)Q| for
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T in M,(H,w) as a L*(M, ®) norm. Prop. 3.3 implies that if there is an isomor-
phism A from a von Neumann algebra M, acting on a Hilbert space H; to a von
Neumann algebra M, acting on a Hilbert space H,, and w; (i = 1, 2) are normal
faithful states on M; such that w,(a) = w,(A(a)), then A can be extended to a linear
mapping (which we shall also denote by 1) from (M,),(H,, w,) to (M,),(H;,®,)
such that, for all a in M and T in (M,),(H, w), A(aT) = Ma)AT).

We also note that if ¢ is in (M%), then [¢/w] is in M,(H,w) and
[n(¢)/n(w)] = n([p/w]); the selfdual positive cone in H containing Q, is the set
{n([$/w])Q: ¢ normal state on M}.

3.5. DerFINITION. We shall denote by M;(H, w) the set of all complex valued
sesquilinear mappings g on D(H, w) x D(H, w) of the form q(&, ) = (T &, Ton)
with T}, T, in M,(H, ) for all &,# in D(H, w).

We shall often denote the above defined mapping g by [¢(T}, T3)].

3.6. LeMMA. M,(H,w) is a linear space. Let ¢ in M* be such that for a in
M¢(a) = (D, n(a)P,) with &, ®, in H, and take T, T, in M,(H, w) such that
(T)Q =Jb, n(T,)Q2 =JP,. Then the mapping i which maps ¢ into
w(d) = [q(Ty, T,)] is a linear bijection from M* to M ,(H, w).

Proor. We have: u(@)¢, n) = (Ti¢, Tny = (TiR(EL, TRmRL)
= (REOUTHL, R T)R) = <RI Py, RiJD,> = ¢(0(n). It is now
enough to note that {6(&, n):¢,n in D(H,w)} is weakly dense in M and that all
elements in M#* are of the form a — (@, n(a)®P,) with @, &, in H to get our
claim.

Lemma 3.6 tells us M(H, w) is one of the many possible spatial realizations of
M=; it becomes a Banach space with the norm ||u(d)|; = l|¢| for ¢ in M*. We
shall denote the embedding of M,(H, ) into M,(H, ) by setting g7 = [q(I, T)]
(for a in M we shall make no distinction between a and a| D(H, w)).

3.7. DerINITION. For g in M,(H, w) as above we define n(q) by setting, for a, b
in M:

(@) (w'(@)R, 7' (b)Q2) = {n(Ty)m'(a)2, m(T3)m'(b)€2).
3.8. LEMMA. n(q)isin(n(M)),(H, n(w)), and if T is in M,(H, @), then ™™ = n(q").
Proor. Immediate.

Let now M, be a von Neumann subalgebra of M, w, = w| My, and let us use
our established notations and their natural generalization to M, and w,.

3.9. LeMMA. Let q be in M (H,w), &o, no in D(Ho, mo(wo)). We define Eq by
setting:
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(Eq)(Cos10) = @) (I Jo&o,JJoMo).

Then E is a linear mapping from M(H,w) to (mno(My))(Ho, mo(wy)), and
Eq® = qony(e,(a)) for all ain M.

ProoOF. Since @ is a cyclic and separating vector in EH for En(My)| EH =
mo(Mp) we identify EH with H,. There are ao, by in M, such that &, = m(a,)2
and 1o = my(bo)R. So Jo&o = mo(ag )R = nag)R, and JJy&, = Jnlag)Q =
7'(ag)Q (resp. Jono = m(bg )2 and JJono = n'(bo)R2), which is in D(H, ni(w)). So the
right hand side of our equality is well defined. We also have (cfr. lemma 3.6.):

m(g)(J oo, JJono) = 1™ ()OI Jolo, JJono)) = 1™ *(g)(ag bo)
= p” M (@)olag bo)-

On the other hand 64(So,70) = no(agbok so m(q)(JJo&o,IJoM0) = #_1(‘1)
(5 1860 10))) = Ho(k™'(@)0)(B0(C0,m0)- So Eq is the element of
(mo(Mo))1(Ho, mo(wo)) satisfying (Eq)($o, o) = tol(1 ™ (9))o)(&o, Mo) for all &y, 1o in
D(Ho, mto(wo)).

Let now a be in M and q = ¢°. Then (Eq)(&o,n0) = {JJo&o, m(@)JJono)> =
{CosJoEJm(@) I Jono > = (o, To(&(@)0) = qoTo(e(@))Eo,M0) = qomo(e(@)(Eos o) =

qom(e(@)(&o,M0)-
Let 7y denote the mapping from (M), (H, w) extension of the (faithful) isomor-

phism from M, to ny(M,) as in def. 3.7.

3.10. DermiTION. We denote by E the mapping from M;(H,w) to
(My)1(H, w,) defined by E(q) = n, (E(q)) and call it the 1-w-conditional expecta-
tion for M and M,.

3,11. THEOREM. The above defined mapping E is a linear contraction, which
extends the w-conditional expectation ¢, from M to M, both on M(H, ) and on
M,(H, w).

(Our last statement means, more precisely, that if T is in M,(H, w) then there is
a Ty in (M,),(H, @) such that E(@") = g™ and | T, < | T|,).

ProoF. It is an immediate consequence of lemma 3.9. that E is a linear
extension of ¢,. As noted in lemma 3.9. for all g in M,(H, w) Eq is the element of
(0(Mo))1(Ho, mo(wo)) satisfying (Eq)(£o, 110) = tol(k™ '(9))0)(&o, o) for all &g, 1o in
D(Ho, mo(wo))-

So, since {8o(&o, M0): €0, 10 in D(H, o)} is weak operator dense in M, we have
IEqlly = llpo "EI = lle™ @oll < lle™ @Il = liglls-

Let now T be in M,(H,w). Then (Eq")(o,n0) = {JJo&0o, (T)IJoNo) =
qo BT TVEIo(E( p1), so we can set Ty = 1y 1(Jo EJn(T)JEJ,).

So [ Toll2 = IJoEJMT)JEJ 2| < (TRl = [Tl
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As already noted in [1] not only is ¢, in general not a norm one projection, but
also its range can fail to be the whole of M,; moreover, given an operator a, in its
range, in general there is no ain M such that ¢,(a) = ao and ||a]| = |lao || (With any
reasonable norms for a, and a). The following proposition shows us that the
correct spaces for the analogues of these properties to hold are M,(H,w) and
(Mo),(H, o).

3.12. PrROPOSITION. Let Ty be in (My),(H, wq). There is then a T in M,(H, w)
such that E(@") = qoTo and || Toll» = | T,

Proor. Using the linear bijection established in 3.4. between the vectors in
H and M,(H,w), we let T be the operator in M,(H,w) such that
TR = JJono(To)2. Clearly | Toll, = ITll2, and for o, 7o in D(Ho, mo(wo)),
No = 7p(bo)Q with by in M, we have:

(Eq")(Co,10) = <JJo&o, m(T)J Jom(bo)R2)
= (JJo&o, (T n(b$)Q) = (JJo&o, Jn(bg ) n(T)QD
= (JJo&o, In(bg Momo(To)2) = {&o,Jom(bg)Jomo(To)2)
= (&0, mo(To)ombg o) = (o, mo(To)Mo> = gomo(To) o, o),

which implies our claim.

4. A spatial characterization of @ conditional expectations.

4.1. THEOREM. Let E be the 1-w-conditional expectation from M,(H,w) to
(My)(H, wg) preserving w. Then, for all a in M and all normal states ¢, on My

E([4([p(¢0)/®], alpu(do)/@])]) = [do([Po/@o], eult™ a)[do/wo])]
with u = u(¢e, ).

ProoF. Let us recall first that if &4(no) is in D(Ho, 7o(we)) then there is some
bo(co) in My such that &g = mo(bo)Q (&o = no(bo)). Then clearly JJo&, =
JJomo(bo)Q = Jng(bg)Q = Jn(bg )2 = m'(bo)R2, and similarly JJono = 7'(co)Q.
We have therefore, for all a in M and &, 5, in D(H,, mo(wo)):

E([q([poldo)/ @], alpo(po)/@])])Eo, o)
= [q(Lpu(@o)/@], alpu(Po)/ @I JoSo, I Joto)
= {n([po(@o)/@] Jo&o, malpu(@o)/@]) Joto
= (n([po(¢o)/ @] (o), n(alpy(po)/w]m'(co)E2>
= (T (bo)m([pu(do)/ @)L, n'(co)m(@)m([puldo)/@])E2>
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= (T (bl ([ pu(P0)/ @], W (co)(a)J [ po(Do)/0])2)

= ((bo)n(w)Imo([po/wo )&, '(co)n(a)r(u) I mo([Po/wo 12>

= (bl mo([$o/wo])R, m'(co)m(u™ au)mo([$o/wo])2)

= {Jm'(con(u” au)d Jomo([Po/wo 2, J7'(bo) Jomo([$o/w0o1)2>
= (nleq Wnlu™ aw)J Jomo([$o/wo )2, n(bg Womo([Po/wo 12>

= (JIn(u™ au)d Jomo([Po/wo])R2; molco)mo(bg Momo([Po/@0])2)
= (Jomo(co)mo(bg )omo([Po/wo]) 2, Jo EJm(u™ au)d Jomo([do/@o 12D
= (Jomo(co)mo(bg Womo([Po/@o )R, mo(ew( " au)mo([do/wo])R2
= {mo(bo)mo([Po/wo )R, mo(colmolen(t ™ au))mo([Po/wo])2>

= {mo([Po/@o 1) (bo)2, mo(ew(u " aumo([do/wo)molco)2)

= <mo([Po/@o )0, Mole,(u ™ aw))mo([Po/wo o>

= [go([Po/wo], eult™ au)[do/wo)1(€o, Mo)-

Our claim now follows immediately.

4.2. COROLLARY. Let p,(¢o) be dominated by w. Then for all a in M
ta(lPu($0)/@] " alpu($o)/@]) = [do/wo] ™ e,(u™ au)[po/wo].

Proor. Immediate.

4.3. THEOREM. et o be a linear weakly continuous contraction from to M, and
Z a contradiction from M(H, w) to (My)(H, w¢) such that for all a in M and all
normal states ¢, on My we have (setting u = u(¢q, w)):

Z([q(Lpa(o)/]; alpu($0)/w])]) = [do([Po/wo], o(u™ auw)[po/wo])],

Then o is the w preserving w-conditional expectation g, from M, to My and X the
corresponding 1 — w-conditional expectation.

PrOOF. We have, for all &y, 70 in D(H, wy), ao in My:
{JoTo(Bo(10; So))omo(LPo/wo )2, mo(ao)mo([Po/wo 1)2)
= (Ro(110)* Ro(So)mo([Po/@wo])2, mo(ao)mo([do/wo])Q2
= (Mo([Po/@o]R0(E0)2, mo(a@o)mo([Po/@o IR0 (0)$2)
= ([bo/@o10, aolPo/wolne) = {[Po/wo]E0, ao[$o/wo]t0)

= [qo([Po/w0o], ao[do/@w0o1)]($0sM0)-
So if we let 0,(n§, £35) — 1 weakly,
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[90([Po/wo], a0l do/@o (M5, £5) = Polao)-
Similarly, for all in D(H, w), a in M:

[4(Lpu(@o)/ @], alpo(@o)/wDI(E, n)

= {JO(n, HIn([puldo)/0])Q, Ma)m([polPo)/w])R),
and if 6,(n® &%) goes weakly to the identity then

La(lpul@o)/@], alpu(@o)/wD)](n% &) goes to p,(do)(a).

So the mapping ¢ is the dual mapping of the mapping ¢o — p,(¢o)(u*u) and
therefore coincides with ¢, as proved in [4].

If we set ¢ = wy we get 2(¢°) = qoé,(a) for a in M and the continuity of
X completes our proof.

4.4. COROLLARY. Let M be a matrix algebra. Then the w conditional expecta-
tion from M to M, is the (unique) linear contraction & from M to Mg such that for all
normal states ¢y on My we have:

&([pa(bo)/@]" alpu(@o)/@]) = [$o/wo]™ &u™ au)[do/wo]-

Proor. It is enough to recall that for matrix algebras p,(¢o) is always
dominated by w and M,(H, w) coincides with M.

4.5. REMARK. The formula in cor. 4.4. recalls the defining property of
Haagerup’s operator valued weights ([9] and [10]), giving a hint on a possible
way to pursue in order to generalize them in the direction of w-conditional
expectations. An approach to this problem can be found in [11].
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