A SPATIAL CHARACTERIZATION OF ω CONDITIONAL EXPECTATIONS ON VON NEUMANN ALGEBRAS

CARLO CECCHINI

Abstract.

Representations of the predual of von Neumann algebras as spaces of densely defined sesquilinar forms on the Hilbert space on which the von Neumann algebras itself operate are taken as a setting on which to extend ω -conditional expectations. This allows us to give a spatial characterization of ω -conditional expectations through a property which is a natural generalization of a characterising property of norm one projections on von Neumann algebras.

1. Introduction.

In [1] the ω -conditional expectation (ε_{ω}) from a von Neumann algebra to a von Neumann subalgebra M_0 with respect to a faithful normal state ω on M (with restriction ω_0 to M_0) has been first introduced as a generalization of ω preserving norm one projections. In [4], of which this paper can be seen as a sequel, it has been characterized as a dual map of a canonical state extension (cfr. [5] and [6]) perturbed with convenient partial isometries in M. Our main result, stated now for convenience in the simple case of matrix algebras, says that a positive linear contraction ε from M to M_0 preserving ω coincides with ε_{ω} iff for all a in M and all normal states ϕ_0 on M_0 we have:

$$\varepsilon(\lceil \rho_{\omega}(\phi_0)/\omega \rceil^+ a \lceil \rho_{\omega}(\phi_0)/\omega \rceil) = \lceil \phi_0/\omega_0 \rceil^+ \varepsilon(u^+ a u) \lceil \phi_0/\omega_0 \rceil,$$

where $\rho_{\omega}(\phi_0)$ is the canonical extension of ϕ_0 to M with respect to ω , u is the partial isometry involved in the extension and the notation $[\phi/\omega]$ denotes, for any pair of normal states ϕ , ω on a matrix algebra, the analytic extension of the Connes' cocycle for ϕ and ω in the point i/2 (see [2] and [7]). The above formula in the case in which $[\rho_{\omega}(\phi_0)/\omega] = [\phi_0/\omega_0]$ and u is the identity reduces to:

$$\varepsilon_{\omega}([\phi_0/\omega_0]^+ a[\phi_0/\omega_0]) = [\phi_0/\omega_0]^+ \varepsilon_{\omega}(a)[\phi_0/\omega_0].$$

The case in which ε_{ω} is a norm one projection occurs when the above formula

Received December 27, 1993.

holds for all normal states ϕ_0 on M_0 . This can be seen by setting a=1 and recalling that any positive element in M_0 is of the form $|[\phi_0/\omega_0]|^2$ for some normal state ϕ_0 on M_0 .

For general von Neumann algebras the analytic extension of the Connes' cocycle for two normal states ϕ and ω (faithful) in the point i/2 does not always exist (at least as a bounded operator). So, in order to generalize the above stated characterization of ω -conditional expectations to the general situation, after giving the necessary preliminaries and establishing our notations in section 2, section 3 will be devoted to the task of enlarging a von Neumann algebra by embedding it in a representation of its predual as a linear space of sesquilinear forms defined on a dense linear subspace of the Hilbert space on which the von Neumann algebra itself acts. We shall also extend ω -conditional expectations to this representation. Finally section 4 will contain our main result.

2. Preliminaries and notations.

Let M be a von Neumann algebra acting on a separable Hilbert space H with commutant M', and ω be a faithful state on M. We shall denote, as in [7], by $D(H,\omega)$ the dense linear subspace of all ξ in H such that the functional $a \to \langle \xi, a\xi \rangle$ on M is majorized by some positive multiple of ω (or dominated by ω). The action of M' maps $D(H, \omega)$ into itself. Let now ω be faithful; we shall denote by π the left representation of M on a standard Hilbert space H with a cyclic and separating vector Ω such that $\omega(a) = \langle \Omega, \pi(a)\Omega \rangle$ and by J the isometrical involution associated to Ω . Let ϕ be in $(M*)_+$; $\pi(\phi)$ shall be defined by $\pi(\phi)(\pi(a)) = \phi(a)$, For a in M we set $\pi'(a) = J\pi(a)^+J$; so π' is the right representation for M. For each ξ in $D(H,\omega)$ (cfr. [6]) there is a unique bounded linear operator $R(\xi)$: $H \to H$ such that $R(\xi)\pi(a)\Omega = a\xi$. For all ξ , η in $D(H,\omega)R(\xi)R(\eta)^+$ is in M', and (see [3], 3.2) $R(\xi)^+R(\eta)$ is in $\pi'(M)$. We shall set $\pi^{-1}(JR(\xi)^+R(\eta)J)=\theta(\xi,\eta)$. Let now ϕ be also in $(M*)_+$ and $(D\phi:D\omega)_t$ the Connes' cocycle for ϕ and ω in M. If ϕ is dominated by ω the mapping $t \to (D\phi : D\omega)_t$ admits a continuous extension to the strip S of the complexes z with $0 \le \text{Im } z \le 1/2$, which is analytic in its interior (see [7]); we shall denote its value at i/2 by $[\phi/\omega]$ (see also [2]). In general, however, for all ξ in $D(H, \omega)$ the mapping $t \to (D\phi : D\omega)_t \xi$ admits a continuous extension to S analytic in its interior. We shall denote again its value by $[\phi/\omega]\xi$; so the mapping $[\phi/\omega]$ is always a linear operator on $D(H, \omega)$ commuting with M'. The selfdual positive cone in H containing Ω , which is pointwise invariant under J, is the closure of the set: $\{[\pi(\phi)/\pi(\omega)]\Omega: \phi \text{ normal state dominated by } \omega \text{ on } M\}$.

Let now M_0 be a von Neumann subalgebra of M, $\omega_0 = \omega \mid M_0$. Let H_0 be the subspace of H closure of $\{a_0\Omega, a_0 \text{ in } M_0\}$, and E the orthogonal projection from H to H_0 . Then $\pi(M_0)$ acts standardly on H_0 , Ω is a cyclic and separating vector for $\pi(M_0)$ in H_0 and for all a_0 in M_0 we have $E\pi(a_0)E \mid H_0 = \pi_0(a_0)$, the left represen-

tation of M_0 on H_0 . We shall often identify H_0 with the Hilbert space on which the standard representation of M_0 acts. We shall endow with a subscript "0" all the above defined objects when referred to M_0 . As in [1] the ω conditional expectation ε_{ω} from M to M_0 is the mapping satisfying $\pi_0(\varepsilon_{\omega}(a))\Omega = J_0EJ\pi(a)\Omega$ for all a in M. Let ϕ_0 be a normal state on M_0 . We define (cfr. [4], [5] and [6]) the canonical state extension $\rho_{\omega}(\phi_0)$ of ϕ_0 to M with respect to ω by setting, for all a in M, $\rho_{\omega}(\phi_0(a)) = \omega([\phi_0/\omega_0]^+ a[\phi_0/\omega_0])$ if ϕ_0 is dominated by ω_0 , and otherwise by continuity. We shall denote by $u(\phi_0, \omega)$ the (unique) partial isometry in M with initial projection the identity introduced in [5] which satisfies the equality $J\pi(u(\phi_0, \omega))J[\pi_0(\phi_0)/\pi_0(\omega_0)]\Omega = [\pi(\rho_{\omega}(\phi_0))/\pi(\omega)]\Omega$.

3. Extending ω -conditional expectations.

Let M be a von Neumann algebra acting on a separable Hilbert space H, and ω be a faithful state on M.

3.1. DEFINITION. We call $M_2(H, \omega)$ the vector space of all linear (not necessarily continuous) operators T from $D(H, \omega)$ to H which commute with M' and which satisfy the following condition:

(*)
$$\left|\sum_{n=1}^{N} \langle \xi_n, T\eta_n \rangle\right| \leq \alpha \left\|\sum_{n=1}^{N} R(\eta_n)^+ \xi_n\right\|$$

for some $\alpha > 0$ and all ξ_n , η_n in $D(H, \omega)$.

The above condition (*) is nothing else than the continuity in the $\omega - L_2$ norm of the linear map which maps $\theta(\xi, \eta)$ into $\langle \xi, T\eta \rangle$ on the linear span of $\{\theta(\xi, \eta): \xi, \eta \text{ in } D(H, \omega)\}$.

3.2. Proposition. For all a in M a | $D(H, \omega)$ is in $M_2(H, \omega)$.

PROOF. For all ξ_n , η_n in $D(H, \omega)$ we have:

$$\left| \sum_{n=1}^{N} \langle \xi_n, a\eta_n \rangle \right| = \left| \sum_{n=1}^{N} \langle \xi_n, R(\eta_n) \pi(a) \Omega \rangle \right|$$
$$= \left| \left\langle \sum_{n=1}^{N} R(\eta_n)^+ \xi_n, \pi(a) \Omega \right\rangle \right| \le \|\pi(a) \Omega\| \left\| \sum_{n=1}^{N} R(\eta_n)^+ \xi_n \right\|.$$

3.3. PROPOSITION. Let T be in $M_2(H,\omega)$. There is a unique $\pi(T)$ in $(\pi(M))_2(H,\pi(\omega))$ such that for all ξ,η in $D(H,\omega)$ we have $R(\eta)\pi(T)\Omega=T\eta$. The map $T\to\pi(T)$ is linear, for all α in α we have $\pi(\alpha\mid D(H,\omega))=\pi(\alpha)\mid D(H,\pi(\omega))$, and for all α in α and α in α

PROOF. From [8] and [3] it follows that the linear space spanned by

 $\{R_{\omega}(\xi)^+R_{\omega}(\eta)\Omega: \xi, \eta \text{ in } D(H,\omega)\}$ is dense in H. By (*) there is therefore a unique vector Ω_T in H such that:

$$\left\langle \sum_{n=1}^{N} R(\eta_n)^+ R(\xi_n) \Omega, \Omega_T \right\rangle = \left\langle \sum_{n=1}^{N} R(\eta_n)^+ \xi_n, \Omega_T \right\rangle = \sum_{n=1}^{N} \left\langle \xi_n, T \eta_n \right\rangle$$

for all ξ_n , η_n in $D(H, \omega)$. Set now $\pi(T)\pi'(a)\Omega = \pi'(a)\Omega_T$ for all $\pi'(a)$ in $\pi'(M) (= \pi(M)')$. We note first that $\{\pi'(a)\Omega: a \text{ in } M\} = D(H, \pi(\omega))$ and that $\pi(T)$ obviously commutes with $\pi(M)'$. Also, for all a_n , b_n in M we have:

$$\left| \sum_{n=1}^{N} \left\langle \pi'(a_n)\Omega, \pi(T)\pi'(b_n)\Omega \right\rangle \right| = \left| \sum_{n=1}^{N} \left\langle \pi'(b_n)^+ \pi'(a_n)\Omega, \pi(T)\Omega \right\rangle \right|$$

$$\leq \left\| \sum_{n=1}^{N} \pi'(b_n)^+ \pi'(a_n)\Omega \right\| \left\| \pi(T)\Omega \right\|,$$

which is (*) for the standard representation. Our construction implies, for ξ , η in $D(H,\omega)$, $\langle \xi, R(\eta)\pi(T)\Omega \rangle = \langle \xi, T\eta \rangle$, and by the density of $D(H,\omega)$ in H the equality $R(\eta)\pi(T)\Omega = T\eta$ follows.

The linearity of π is obvious from our construction, as well as the equality $\pi(a \mid D(H, \omega)) = \pi(a) \mid D(H, \pi(\omega))$ for all a in M.

For a in M we have, using our previous notations:

$$\left\langle \sum_{n=1}^{N} R(\eta_{n})^{+} R(\xi_{n}) \Omega, \pi(aT) \Omega \right\rangle = \sum_{n=1}^{N} \left\langle R(\xi_{n}) \Omega, aT \eta_{n} \right\rangle$$

$$= \sum_{n=1}^{N} \left\langle a^{+} R(\xi_{n}) \Omega, T \eta_{n} \right\rangle = \sum_{n=1}^{N} \left\langle R(\xi_{n}) \pi(a)^{+} \Omega, T \eta_{n} \right\rangle$$

$$= \left\langle \sum_{n=1}^{N} R(\eta_{n})^{+} R(\xi_{n}) \Omega, \pi(a) \pi(T) \Omega \right\rangle,$$

which by density implies $\pi(aT) = \pi(a)\pi(T)$.

Let now T be in $(\pi(M))_2$ (H, $\pi(\omega)$); clearly if we define T by setting $R(\eta)T\Omega T = T\eta$ for all η in $D(H, \omega)$, T is in $M_2(H, \omega)$ and $\pi(T) = T$.

3.4. REMARK. Our proof of prop. 3.3 implies also that if H contains a separating vector Ψ for M then condition (*) is automatically satisfied for all linear operators from $D(H,\omega)$ to H which commute with M' (whose set therefore coincides with $M_2(H,\omega)$). In this case T is completely characterized by the vector $T\Psi$ (in other words Ψ is separating also for $M_2(H,\omega)$); moreover, in general T is completely characterized by $\pi(T)\Omega$. So we can establish a linear bijection between the vectors in H and $M_2(H,\omega)$, and remark that $M_2(H,\omega)$ is therefore nothing else than one of the possible concrete spatial realizations of $L^2(M,\omega)$. This allows us to look at $M_2(H,\omega)$ as a Banach space with $\|T\|_2 = \|\pi(T)\Omega\|$ for

T in $M_2(H, \omega)$ as a $L^2(M, \omega)$ norm. Prop. 3.3 implies that if there is an isomorphism λ from a von Neumann algebra M_1 acting on a Hilbert space H_1 to a von Neumann algebra M_2 acting on a Hilbert space H_2 , and ω_i (i=1,2) are normal faithful states on M_i such that $\omega_1(a) = \omega_2(\lambda(a))$, then λ can be extended to a linear mapping (which we shall also denote by λ) from $(M_1)_2(H_1, \omega_1)$ to $(M_2)_2(H_2, \omega_2)$ such that, for all a in M_1 and T in $(M_1)_2(H, \omega)$, $\lambda(aT) = \lambda(a)\lambda(T)$.

We also note that if ϕ is in $(M*)_+$ then $[\phi/\omega]$ is in $M_2(H,\omega)$ and $[\pi(\phi)/\pi(\omega)] = \pi([\phi/\omega])$; the selfdual positive cone in H containing Ω , is the set $\{\pi([\phi/\omega])\Omega: \phi \text{ normal state on } M\}$.

3.5. DEFINITION. We shall denote by $M_1(H,\omega)$ the set of all complex valued sesquilinear mappings q on $D(H,\omega) \times D(H,\omega)$ of the form $q(\xi,\eta) = \langle T_1 \xi, T_2 \eta \rangle$ with T_1 , T_2 in $M_2(H,\omega)$ for all ξ,η in $D(H,\omega)$.

We shall often denote the above defined mapping q by $[q(T_1, T_2)]$.

3.6. Lemma. $M_1(H, \omega)$ is a linear space. Let ϕ in M* be such that for a in $M\phi(a)=\langle \Phi_1,\pi(a)\Phi_2\rangle$ with Φ_1,Φ_2 in H, and take T_1,T_2 in $M_2(H,\omega)$ such that $\pi(T_1)\Omega=J\Phi_1, \pi(T_2)\Omega=J\Phi_2$. Then the mapping μ which maps ϕ into $\mu(\phi)=\lceil q(T_1,T_2)\rceil$ is a linear bijection from M* to $M_1(H,\omega)$.

PROOF. We have: $\mu(\phi)(\xi, \eta) = \langle T_1 \xi, T_2 \eta \rangle = \langle T_1 R(\xi)\Omega, T_2 R(\eta)\Omega \rangle$ = $\langle R(\xi)\pi(T_1)\Omega, R(\eta)\pi(T_2)\Omega \rangle = \langle R(\xi)J\Phi_1, R(\eta)J\Phi_2 \rangle = \phi(\theta(\xi,\eta))$. It is now enough to note that $\{\theta(\xi,\eta):\xi,\eta \text{ in } D(H,\omega)\}$ is weakly dense in M and that all elements in M* are of the form $a \to \langle \Phi_1, \pi(a)\Phi_2 \rangle$ with Φ_1, Φ_2 in H to get our claim.

Lemma 3.6 tells us $M_1(H, \omega)$ is one of the many possible spatial realizations of M*; it becomes a Banach space with the norm $\|\mu(\phi)\|_1 = \|\phi\|$ for ϕ in M*. We shall denote the embedding of $M_2(H, \omega)$ into $M_1(H, \omega)$ by setting $q^T = [q(I, T)]$ (for a in M we shall make no distinction between a and $a \mid D(H, \omega)$).

3.7. Definition. For q in $M_1(H, \omega)$ as above we define $\pi(q)$ by setting, for a, b in M:

$$\pi(q)(\pi'(a)\Omega, \pi'(b)\Omega) = \langle \pi(T_1)\pi'(a)\Omega, \pi(T_2)\pi'(b)\Omega \rangle.$$

3.8. LEMMA. $\pi(q)$ is in $(\pi(M))_1(H, \pi(\omega))$, and if T is in $M_2(H, \omega)$, then $q^{\pi(T)} = \pi(q^T)$.

Proof. Immediate.

Let now M_0 be a von Neumann subalgebra of M, $\omega_0 = \omega \mid M_0$, and let us use our established notations and their natural generalization to M_0 and ω_0 .

3.9. LEMMA. Let q be in $M_1(H, \omega)$, ξ_0 , η_0 in $D(H_0, \pi_0(\omega_0))$. We define Eq by setting:

$$(Eq)(\xi_0, \eta_0) = \pi(q)(JJ_0\xi_0, JJ_0\eta_0).$$

Then E is a linear mapping from $M_1(H,\omega)$ to $(\pi_0(M_0))_1(H_0,\pi_0(\omega_0))$, and $Eq^a = q_0\pi_0(\varepsilon_\omega(a))$ for all a in M.

PROOF. Since Ω is a cyclic and separating vector in EH for $E\pi(M_0) \mid EH = \pi_0(M_0)$ we identify EH with H₀. There are a_0 , b_0 in M_0 such that $\xi_0 = \pi'_0(a_0)\Omega$ and $\eta_0 = \pi'_0(b_0)\Omega$. So $J_0\xi_0 = \pi_0(a_0^+)\Omega = \pi(a_0^+)\Omega$, and $JJ_0\xi_0 = J\pi(a_0^+)\Omega = \pi'(a_0)\Omega$ (resp. $J_0\eta_0 = \pi(b_0^+)\Omega$ and $JJ_0\eta_0 = \pi'(b_0)\Omega$), which is in $D(H, \pi(\omega))$. So the right hand side of our equality is well defined. We also have (cfr. lemma 3.6.):

$$\pi(q)(JJ_0\xi_0, JJ_0\eta_0) = \mu^{-1}(q)(\theta(JJ_0\xi_0, JJ_0\eta_0)) = \mu^{-1}(q)(a_0^+b_0)$$
$$= \mu^{-1}((q))_0(a_0^+b_0).$$

On the other hand $\theta_0(\xi_0, \eta_0) = \pi_0(a_0^+ b_0)$; so $\pi(q)(JJ_0\xi_0, JJ_0\eta_0) = \mu^{-1}(q)$ $(\pi_0^{-1}(\theta_0(\xi_0, \eta_0))) = \mu_0(\mu^{-1}(q))_0)(\theta_0(\xi_0, \eta_0))$. So Eq is the element of $(\pi_0(M_0))_1(H_0, \pi_0(\omega_0))$ satisfying $(Eq)(\xi_0, \eta_0) = \mu_0((\mu^{-1}(q))_0)(\xi_0, \eta_0)$ for all ξ_0, η_0 in $D(H_0, \pi_0(\omega_0))$.

Let now a be in M and $q = q^a$. Then $(Eq)(\xi_0, \eta_0) = \langle JJ_0\xi_0, \pi(a)JJ_0\eta_0 \rangle = \langle \xi_0, J_0EJ\pi(a)JJ_0\eta_0 \rangle = \langle \xi_0, \pi_0(\varepsilon(a))\eta_0 \rangle = q_0\pi_0(\varepsilon(a))(\xi_0, \eta_0) = q_0\pi(\varepsilon(a))(\xi_0, \eta_0).$

Let π_0 denote the mapping from $(M_0)_1(H,\omega)$ extension of the (faithful) isomorphism from M_0 to $\pi_0(M_0)$ as in def. 3.7.

- 3.10. DEFINITION. We denote by E the mapping from $M_1(H,\omega)$ to $(M_0)_1(H,\omega_0)$ defined by $E(q)=\pi_0^{-1}(E(q))$ and call it the 1- ω -conditional expectation for M and M_1 .
- 3,11. Theorem. The above defined mapping E is a linear contraction, which extends the ω -conditional expectation ε_{ω} from M to M_0 both on $M_1(H,\omega)$ and on $M_2(H,\omega)$.

(Our last statement means, more precisely, that if T is in $M_2(H, \omega)$ then there is a T_0 in $(M_0)_2(H, \omega_0)$ such that $E(q^T) = q^{T_0}$ and $||T||_2 \le ||T||_2$).

PROOF. It is an immediate consequence of lemma 3.9. that E is a linear extension of ε_{ω} . As noted in lemma 3.9. for all q in $M_1(H,\omega)$ Eq is the element of $(\pi_0(M_0))_1(H_0,\pi_0(\omega_0))$ satisfying $(Eq)(\xi_0,\eta_0) = \mu_0((\mu^{-1}(q))_0)(\xi_0,\eta_0)$ for all ξ_0,η_0 in $D(H_0,\pi_0(\omega_0))$.

So, since $\{\theta_0(\xi_0, \eta_0): \xi_0, \eta_0 \text{ in } D(\mathsf{H}, \omega_0)\}$ is weak operator dense in M_0 , we have $\|\boldsymbol{E}q\|_1 = \|\mu_0^{-1}(\boldsymbol{E}q)\| = \|\mu^{-1}(q)\|_0 \| \leq \|\mu^{-1}(q)\| = \|q\|_1$.

Let now T be in $M_2(H, \omega)$. Then $(Eq^T)(\xi_0, \eta_0) = \langle JJ_0\xi_0, \pi(T)JJ_0\eta_0 \rangle = q_0^{J_0EJ_{\pi}(T)JEJ_0}(\xi_0, \eta_0)$, so we can set $T_0 = \pi_0^{-1}(J_0EJ\pi(T)JEJ_0)$.

So
$$||T_0||_2 = ||J_0EJ\pi(T)JEJ_0\Omega|| \le ||\pi(T)\Omega|| = ||T||_2$$
.

As already noted in [1] not only is ε_{ω} in general not a norm one projection, but also its range can fail to be the whole of M_0 ; moreover, given an operator a_0 in its range, in general there is no a in M such that $\varepsilon_{\omega}(a) = a_0$ and $||a|| = ||a_0||$ (with any reasonable norms for a_0 and a). The following proposition shows us that the correct spaces for the analogues of these properties to hold are $M_2(H, \omega)$ and $(M_0)_2(H, \omega_0)$.

3.12. PROPOSITION. Let T_0 be in $(M_0)_2(H, \omega_0)$. There is then a T in $M_2(H, \omega)$ such that $E(q^T) = q_0 T_0$ and $||T_0||_2 = ||T||_2$.

PROOF. Using the linear bijection established in 3.4. between the vectors in H and $M_2(H,\omega)$, we let T be the operator in $M_2(H,\omega)$ such that $\pi(T)\Omega = JJ_0\pi_0(T_0)\Omega$. Clearly $||T_0||_2 = ||T||_2$, and for ξ_0 , η_0 in $D(H_0, \pi_0(\omega_0))$, $\eta_0 = \pi'_0(b_0)\Omega$ with b_0 in M_0 , we have:

$$\begin{split} &(Eq^{T})(\xi_{0},\eta_{0}) = \langle JJ_{0}\xi_{0},\pi(T)JJ_{0}\pi'_{0}(b_{0})\Omega\rangle \\ &= \langle JJ_{0}\xi_{0},\pi(T)J\pi(b_{0}^{+})\Omega\rangle = \langle JJ_{0}\xi_{0},J\pi(b_{0}^{+})J\pi(T)\Omega\rangle \\ &= \langle JJ_{0}\xi_{0},J\pi(b_{0}^{+})J_{0}\pi_{0}(T_{0})\Omega\rangle = \langle \xi_{0},J_{0}\pi(b_{0}^{+})J_{0}\pi_{0}(T_{0})\Omega\rangle \\ &= \langle \xi_{0},\pi_{0}(T_{0})J_{0}\pi(b_{0}^{+})J_{0}\Omega\rangle = \langle \xi_{0},\pi_{0}(T_{0})\eta_{0}\rangle = q_{0}\pi_{0}(T_{0})(\xi_{0},\eta_{0}), \end{split}$$

which implies our claim.

4. A spatial characterization of ω conditional expectations.

4.1. Theorem. Let E be the 1- ω -conditional expectation from $M_1(H, \omega)$ to $(M_0)_1(H, \omega_0)$ preserving ω . Then, for all a in M and all normal states ϕ_0 on M_0

$$E([q([\rho_{\omega}(\phi_0)/\omega], a[\rho_{\omega}(\phi_0)/\omega])]) = [q_0([\phi_0/\omega_0], \varepsilon_{\omega}(u^+au)[\phi_0/\omega_0])]$$
with $u = u(\phi_0, \omega)$.

PROOF. Let us recall first that if $\xi_0(\eta_0)$ is in $D(\mathsf{H}_0, \pi_0(\omega_0))$ then there is some $b_0(c_0)$ in M_0 such that $\xi_0 = \pi'_0(b_0)\Omega$ ($\xi_0 = \pi'_0(b_0)\Omega$). Then clearly $JJ_0\xi_0 = JJ_0\pi'_0(b_0)\Omega = J\pi_0(b_0^+)\Omega = J\pi(b_0^+)\Omega = \pi'(b_0)\Omega$, and similarly $JJ_0\eta_0 = \pi'(c_0)\Omega$. We have therefore, for all a in M and ξ_0 , η_0 in $D(\mathsf{H}_0, \pi_0(\omega_0))$:

$$\begin{split} &\boldsymbol{E}([q([\rho_{\omega}(\phi_{0})/\omega],a[\rho_{\omega}(\phi_{0})/\omega])])(\xi_{0},\eta_{0}) \\ &= \pi([q([\rho_{\omega}(\phi_{0})/\omega],a[\rho_{\omega}(\phi_{0})/\omega])])(JJ_{0}\xi_{0},JJ_{0}\eta_{0}) \\ &= \langle \pi([\rho_{\omega}(\phi_{0})/\omega])JJ_{0}\xi_{0},\pi(a[\rho_{\omega}(\phi_{0})/\omega])JJ_{0}\eta_{0} \rangle \\ &= \langle \pi([\rho_{\omega}(\phi_{0})/\omega])\pi'(b_{0})\Omega,\pi(a[\rho_{\omega}(\phi_{0})/\omega])\pi'(c_{0})\Omega \rangle \\ &= \langle \pi'(b_{0})\pi([\rho_{\omega}(\phi_{0})/\omega])\Omega,\pi'(c_{0})\pi(a)\pi([\rho_{\omega}(\phi_{0})/\omega])\Omega \rangle \end{split}$$

$$= \langle \pi'(b_0)J\pi([\rho_{\omega}(\phi_0)/\omega])\Omega, \pi'(c_0)\pi(a)J\pi([\rho_{\omega}(\phi_0)/\omega])\Omega\rangle$$

$$= \langle \pi'(b_0)\pi(u)J\pi_0([\phi_0/\omega_0])\Omega, \pi'(c_0)\pi(a)\pi(u)J\pi_0([\phi_0/\omega_0])\Omega\rangle$$

$$= \langle \pi'(b_0)J\pi_0([\phi_0/\omega_0])\Omega, \pi'(c_0)\pi(u^+au)J\pi_0([\phi_0/\omega_0])\Omega\rangle$$

$$= \langle J\pi'(c_0)\pi(u^+au)JJ_0\pi_0([\phi_0/\omega_0])\Omega, J\pi'(b_0)JJ_0\pi_0([\phi_0/\omega_0])\Omega\rangle$$

$$= \langle \pi(c_0^+)J\pi(u^+au)JJ_0\pi_0([\phi_0/\omega_0])\Omega, \pi(b_0^+)J_0\pi_0([\phi_0/\omega_0])\Omega\rangle$$

$$= \langle J\pi(u^+au)JJ_0\pi_0([\phi_0/\omega_0])\Omega, \pi_0(c_0)\pi_0(b_0^+)J_0\pi_0([\phi_0/\omega_0])\Omega\rangle$$

$$= \langle J_0\pi_0(c_0)\pi_0(b_0^+)J_0\pi_0([\phi_0/\omega_0])\Omega, J_0EJ\pi(u^+au)JJ_0\pi_0([\phi_0/\omega_0])\Omega\rangle$$

$$= \langle J_0\pi_0(c_0)\pi_0(b_0^+)J_0\pi_0([\phi_0/\omega_0])\Omega, \pi_0(\varepsilon_\omega(u^+au))\pi_0([\phi_0/\omega_0])\Omega\rangle$$

$$= \langle \pi'_0(b_0)\pi_0([\phi_0/\omega_0])\Omega, \pi'_0(c_0)\pi_0(\varepsilon_\omega(u^+au))\pi_0([\phi_0/\omega_0])\Omega\rangle$$

$$= \langle \pi_0([\phi_0/\omega_0])\pi'_0(b_0)\Omega, \pi_0(\varepsilon_\omega(u^+au))\pi_0([\phi_0/\omega_0])\pi'_0(c_0)\Omega\rangle$$

$$= \langle \pi_0([\phi_0/\omega_0])\xi_0, \pi_0(\varepsilon_\omega(u^+au))\pi_0([\phi_0/\omega_0])\pi'_0(c_0)\Omega\rangle$$

$$= [q_0([\phi_0/\omega_0], \varepsilon_\omega(u^+au))[\phi_0/\omega_0])](\xi_0, \eta_0).$$

Our claim now follows immediately.

4.2. COROLLARY. Let $\rho_{\omega}(\phi_0)$ be dominated by ω . Then for all a in M $\varepsilon_{\omega}([\rho_{\omega}(\phi_0)/\omega]^+a[\rho_{\omega}(\phi_0)/\omega]) = [\phi_0/\omega_0]^+\varepsilon_{\omega}(u^+au)[\phi_0/\omega_0]$.

PROOF. Immediate.

4.3. THEOREM. Let σ be a linear weakly continuous contraction from to M_0 and Σ a contradiction from $M_1(H,\omega)$ to $(M_0)_1(H,\omega_0)$ such that for all a in M and all normal states ϕ_0 on M_0 we have (setting $u=u(\phi_0,\omega)$):

$$\Sigma([q([\rho_{\omega}(\phi_0)/\omega], a[\rho_{\omega}(\phi_0)/\omega])]) = [q_0([\phi_0/\omega_0], \sigma(u^+au)[\phi_0/\omega_0])],$$

Then σ is the ω preserving ω -conditional expectation ε_{ω} from M_1 to M_0 and Σ the corresponding $1-\omega$ -conditional expectation.

PROOF. We have, for all ξ_0 , η_0 in $D(H, \omega_0)$, a_0 in M_0 :

$$\langle J_0 \pi_0(\theta_0(\eta_0, \xi_0)) J_0 \pi_0([\phi_0/\omega_0]) \Omega, \pi_0(a_0) \pi_0([\phi_0/\omega_0]) \Omega \rangle$$

$$= \langle R_0(\eta_0)^+ R_0(\xi_0) \pi_0([\phi_0/\omega_0]) \Omega, \pi_0(a_0) \pi_0([\phi_0/\omega_0]) \Omega$$

$$= \langle \pi_0([\phi_0/\omega_0]) R_0(\xi_0) \Omega, \pi_0(a_0) \pi_0([\phi_0/\omega_0]) R_0(\eta_0) \Omega \rangle$$

$$= \langle [\phi_0/\omega_0] \xi_0, a_0 [\phi_0/\omega_0] \eta_0 \rangle = \langle [\phi_0/\omega_0] \xi_0, a_0 [\phi_0/\omega_0] \eta_0 \rangle$$

$$= [q_0([\phi_0/\omega_0], a_0 [\phi_0/\omega_0])] (\xi_0, \eta_0).$$

So if we let $\theta_0(\eta_0^{\alpha}, \xi_0^{\alpha}) \to 1$ weakly,

$$[q_0([\phi_0/\omega_0], a_0[\phi_0/\omega_0])](\eta_0^{\alpha}, \xi_0^{\alpha}) \to \phi_0(a_0).$$

Similarly, for all in $D(H, \omega)$, a in M:

$$\begin{split} & [q([\rho_{\omega}(\phi_0)/\omega],a[\rho_{\omega}(\phi_0)/\omega])](\xi,\eta) \\ & = \langle J\theta(\eta,\xi)J\pi([\rho_{\omega}(\phi_0)/\omega])\Omega,\pi(a)\pi([\rho_{\omega}(\phi_0)/\omega])\Omega\rangle, \end{split}$$

and if $\theta_0(\eta^{\alpha}, \xi^{\alpha})$ goes weakly to the identity then

$$[q([\rho_{\omega}(\phi_0)/\omega], a[\rho_{\omega}(\phi_0)/\omega])](\eta^{\alpha}, \xi^{\alpha})$$
 goes to $\rho_{\omega}(\phi_0)(a)$.

So the mapping σ is the dual mapping of the mapping $\phi_0 \to \rho_\omega(\phi_0)(u^+u)$ and therefore coincides with ε_ω as proved in [4].

If we set $\phi_0 = \omega_0$ we get $\Sigma(q^a) = q_0 \varepsilon_{\omega}(a)$ for a in M and the continuity of Σ completes our proof.

4.4. COROLLARY. Let M be a matrix algebra. Then the ω conditional expectation from M to M_0 is the (unique) linear contraction ε from M to M_0 such that for all normal states ϕ_0 on M_0 we have:

$$\varepsilon([\rho_{\omega}(\phi_0)/\omega]^+ a[\rho_{\omega}(\phi_0)/\omega]) = [\phi_0/\omega_0]^+ \varepsilon(u^+ au)[\phi_0/\omega_0].$$

PROOF. It is enough to recall that for matrix algebras $\rho_{\omega}(\phi_0)$ is always dominated by ω and $M_1(H, \omega)$ coincides with M.

4.5. Remark. The formula in cor. 4.4. recalls the defining property of Haagerup's operator valued weights ([9] and [10]), giving a hint on a possible way to pursue in order to generalize them in the direction of ω -conditional expectations. An approach to this problem can be found in [11].

ACKNOWLEDGEMENT. This paper was written with the support of the funds of the Italian Ministry of University and Scientific Research, and of the Human Capital and Mobility Programme, contract number ERBCHRXCT930094.

BIBLIOGRAPHY

- L. Accardi, C. Cecchini, Conditional expectations in von Neumann algebras and a theorem of Takesaki, J. Funct. Anal. 45 (1982), 245–273.
- H. Araki, Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule, Pacific J. Math. 50 (1974), 309–354.
- C. Cecchini, Non Commutative Integration for States on von Neumann Algebras, J. Operator Theory 15 (1986), 217–237.
- C. Cecchini, An abstract characterization of ω-conditional expectations, Math. Scand. 66 (1990), 155–160.
- C. Cecchini, D. Pez, State extensions and a Radon-Nikodym theorem for conditional expectations on von Neumann algebras, Pacific J. Math. 38 (1989), 9-23.

- C. Cecchini, D. Petz, Classes of conditional expectations over von Neumann algebras, J. Funct. Anal. 92 (1990), 8–29.
- 7. A. Connes, Sur le Theoreme de Radon-Nikodym pour les poids normaux fideles semifinis, Bull. Soc. Math. Fr. 97 (1973), 253–258.
- 8. A. Connes, On the spatial theory of von Neumann algebras, J. Funct. Anal. 35 (1980), 153-164.
- 9. U. Haagerup, Operator valued weights in von Neumann algebras I, J. Funct. Anal. 32 (1979), 175-206.
- U. Haagerup, Operator valued weights in von Neumann algebras II, J. Funct. Anal. 33 (1979), 361–399.
- M. Hirakawa, A generalization of φ-conditional expectation and operator valued weight, Publ. Res. Inst. Math. Sci. 28 (1992), 289-297.

DIPARTIMENTO DI MATEMATICA ED INFORMATICA UNIVERSITA' DI UDINE VIA ZANON 6 33100 UDINE ITALY