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ON CONTINUITY OF SINGULAR INTEGRAL
OPERATORS IN SOBOLEV SPACES

TATYANA SHAPOSHNIKOVA

In this paper we give conditions for the boundedness of a singular integral
operator, acting from the Sobolev class H™(R") into H(R") with m = | = 0. The
symbol may depend not only on the angular variable 8 S" ! but also on the
space variable x € R". It will be shown that the conditions, which are stated in
terms of a certain space of multipliers, are precise in a sense.

1. Function spaces.

Let u be a measurable function defined on R" ~ ! satisfying the conditions u(¢) = ¢
and u(é +n) £ + c|E?u(y), where ¢ and Q are positive constants. By
#,(R"~ ') we denote the completion of CF(R" ') in the norm

1/2
(1) I0:R" e, = ( f Iu(é)(Fv)(é)I2d6> :

where F is the Fourier transform in R" !, We obtain the Sobolev space H'(R" 1),
le R, by setting u(¢) = (1 + |¢]). The space s#, was introduced and studied in
[1], [2]. In particular, in [1], [2] it was shown that 5#,(R"~ ') is embedded into
the space C(R" ') of continuous and bounded functions on R" ! if and only if

P
@ J ey =

We shall suppose that u is weakly subadditive, i.e., u(¢ + 1) < c(u(é) + u()),
¢ = const. An easy modification of the proof of a similar result for H' given in [3]
shows that the space J#,(R" ™ !)is an algebra with respect to pointwise multiplica-
tion if u satisfies (2). The contrary also holds. In fact, since u(&) = ¢ > 0, then for
all ue #,(R""') one has

cllu; R, S N R e, S Y Il R,
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where N = 1,2,... and the constants ¢, ¢; do not depend on N. Taking the Nth
root and passing to the limit as N — co, we arrive at

lu; R* iz, < o 15 R™ Mg,

Consequently, 5#,(R"~ ') = C(R"~!), which is equivalent to (2).

In what follows we assume the condition (2) to be always valid.

Let "~ ! denote the boundary of the n-dimensional unit ball with center at the
origin. We supply S" ! with a structure of the class C* by introducing a family of
coordinate neighbourhoods {U,} and a family of diffeomorphisms
¢i: U, > R" . Further, let {v,} be a smooth partition of unity on "~ ! subordi-
nate to the covering {U, }.

A function ¢ defined on S" ' belongs to the space #,(S"~ ) if

(o) ¢y e AL (R
for all k. The norm in 5,(S" ") is introduced by

1/2
oy S* e, = (Z ||(VW)°¢E1;R"~‘||§¢,‘> .
k

Similarly to #,(R"™!) the space #,(S""') is an algebra with respect to
multiplication if and only if (2) holds. The same condition is equivalent to the
embedding #,(S"" ') = C(S"™ ).

Let B denote a ball in R". We shall need the space H"*(B x S"~!) of functions
B x S""'3(x, 0) > u(x, 0) with the finite norm

1/2
< J B(Ileu(x, S T I, + llux, ) 8" IR, dX)

for integer [ = 0 and

dxdy
|X _ yln +2{l}

(J‘B 5 IV, <, ) — Vi, ,u(y, - ) S"“Il}u

1/2
+ L lluy, -), S"“H}r“dy)

for fractional | > 0. Here [1] and {I} denote the integer and the fractional parts of
L

Further, we introduce the space H"#R" x S" ') of functions
R" x 8" !3(x, 0) — u(x, 0) with the finite norm

1/2
llu; R™ x 8"l g = < L,.«‘@"“u(x»z + (Qo,uu(x))z)dX) ;

where
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(3) Dy, u(x) = |V, culx, - ); 8" 1”9?,,
for {I} = 0 and

dh 172
@) 2 ,ux)= (f Vi xu(x + b, ) — Vi eulx, ), S"~ 1“32[?“ W)
Rn

for {I} > 0.
We say that a function y defined on R" x §"~! belongs to the space of
multipliers M(H™* — H"*) if yue H"*(R" x $"~ ') for all ue H™*[R" x S" 1),
Since the embedding operator

H™"R" x S" Y)eu — yue H*R" x " 1)

is closed, it is bounded. As a norm in M(H™* — H"*) we take the norm of the
multiplication operator:

”)’, Rn X Sn~1!'M(Hm,u—»Hl.u)

=sup{|lyu; R" x " | gru: s R* x $" " yym.u < 1},
We shall use the notation MH"* instead of M(H"* — H"*).

2. Description of the space M(H™* — H"*)

In order to obtain two-sided estimates for the norm in M(H™* — H"*), i.e.,
necessary and sufficient conditions for a function to belong to this space, we need
the notion of the s-capacity of a compact set e in R". The capacity is defined as

cap,(e) = inf{||lu; R"|3:: ue CF(R"), u 2 1 on e}

and is equivalent to the capacity generated by the Bessel potential of order 2s (see
[6D).

Henceforth we shall use the following well-known result.

LeEMMA 1 (see [4], Ch. 8). Let v be a measure in R" and let v be an arbitrary
function in CY(R"). The best constant C in the inequality

) j o dv < C ||v; R"|| 3
R"
is equivalent to
)
. capu(e)’

where e is an arbitrary compact set in R".
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We pass to a description of the space M(H™* — H"*). Consider first the case
I=0.

LEMMA 2. A function y defined on R" x S""! belongs to the space
M(H™* - H%*) if and only if ye H**(B x S"~') for an arbitrary ball B, and for
any compact set e = R"

lyse X 8" g0 £ ccapm(e),

where ¢ is a constant which does not depend upon e. Moreover,

follp(x, 8" 1%, dx \172
capy(e) ‘

(6) lp; R™ X 8"~ !l pgstmons oy ~ SUP

ecRn

(Here and henceforth a ~ b means that the ratio a/b is bounded and separated from
zero.)

PROOF. Necessity. We substitute the function u(x, 8) = u(x) from H™(R") into
the inequality

1/2
(J Iy, -Julx, -); S"~ i, dx> SclluR" x 8" g
R"

Then

1/2
<Ln (e, ) 8" i, luCx)I? dx) < cflu; R .

By Lemma 1 the exact constant in this inequality is equivalent to the right-hand
side of (6).

Sufficiency. Since under the condition (2) the space #,(S"~ ') is an algebra, it
follows that

Iy R™ x 8" 3., < cj I 8™ M2, s 8™ 13, dx =

). ] . ()1 J N Iy 8™~ %, IFDv(@; H(Oulx, 5 1| dxd.

Applying Lemma 1 to the internal integral one obtains
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Jelly(x, ) 8" % dx
. Rn Sn -1y42 < u
lyu; R x o < ESER" capn(©

dh
X <L J M) ) f . I(E)? IF 4,V g, < 0(5 1 (Oulx, b O dEdx

+ J Zj (WP |F(vi(d; H(E)ulx, ; (NI didx>,
n J Rn-1

where 4,0(x, 0) = v(x + h, ) — v(x, 6). Hence, using the definition of the norm in
H,(S"1), we arrive at .

. ) ;Sn~1 2 d
lyu; R* x 8" Y| Z0.4 < ¢ sup Jellrtx, ) lir, 4

”u’ R" x Snvl”2m“‘.
cchr capy, (e) "

The proof is complete.

REMARK 1. According to [5, Sec. 1.1 and 3.2], we may restrict ourselves in
Lemma 2 to compact sets e satisfying diam(e) < 1.

In order to obtain two-sided estimates for the norm in M(H™* — H"*) for
m 2 | > 0 one should prove a few auxiliary assertions which are derived in the
same way as the corresponding assertions on multipliers in Sobolev classes
M(H™R") - H'(R")) (see [5], Ch. 1, 3). While doing this one should replace |y(x)|
by [|Iy(x, - ); S 1 », and change D, ;u(x)in [5] to 2, ,u(x) which is defined by (3),
(4). As a result we arrive at the following description of the class M(H™* — H"*#).

THEOREM 1. A functiony belongs to the space M(H™* — H"*),m = | = 0, if and
only if D, 7€ L 10c(R"), Do,y € L3, 10.(R") and for any compact set e = R" with
diam(e) < 1 the inequality

J (21,,7(x))? dx < ccapp(e)

is valid.
Moreover,
- je('@l uy(x))z dx 1/2
D IR X S g ~ S0 (_._____
M b {e:diam(]:)§ 1} Capm(e)
N {SupxeR"(_fB:(x) Iy, ) S"_lllf,o“ dy)t’?  for m > |,
€SS SUPxepn |'Y(x’ ' )’ st ”Mu fOr m = l,

where B}(x) = {ye R" |y — x| < 1}. The restriction diam(e) < 1 can be omitted.

REMARK 2. In the same way as in the case of the space M(H™ — H') (cf. Sec.
1.3.2 [5]) one can check that M(H™* — H"*) is continuously embedded into
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M(H™~"# — H°*). Since the spaces H™*(R" x §"~!)form an interpolation scale
(see, for instance, [7], Sec. 1.18.5), then, for any je[0,1],

®) fly; R" x Srl“M(Hm—f.ua.Hx—j,p)
S clly R x 8"t uce i 175 R™ X 8™ 10 g s 0.1

The embedding M(H™* — H"*) =« M(H™ "* — H%*) together with (8) im-
plies that the space M(H™* — H"“*) is continuously embedded into
M(H™~7# —» H'~)'¥). From this and Theorem 1 it follows that (7) is equivalent to

©) 175 R™ X 8"~ | pgqapmoss o
~ s ( g:‘ [ @000 dx 3 §.(2;,7(x)? dx)uz
{e:diam(e) <1} \j=0 cap,,—;(e) =0 C€aPm-1+;(€)

For m = [ the term corresponding to j = 0 in the second sum should be replaced
by €8S Supyern |7(x, *); 8" 1 ";21),,- Clearly, for integer | both sums in (9) coincide.
The restriction diam(e) < 1 can be omitted.

REMARK 3. Let Q be an arbitrary cube in R” and let G,; denote the kernel of the
Bessel potential J,, = (1 — 4)7', i.e., the function whose Fourier transform is
equal to (1 + |¢|?)"". Theorem 1 together with the main result of the paper [8]
leads to the following relation for the norm in M(H™* — H"#), different from (7),

(10) 93 R™ X 8" Ml agqarm. s .

- wun [ J2J0 Ganlx = @0, (@1,0)) dxdy>“2
1 To(@(9) dx

{supxsan(fs';(x) Iy, % 8" %, dy)''?  for m>1,

esS SUPepn 170, *); 8" lp, for m=1.

{9}

Another description of the space M(H™(R") — L,(R"), obtained in [9], enables
one to replace the first item on the right in (10) by the supremum of the function

Jm((Jm(f@l, ”,y)Z)Z) )1/2
']m(@l, uy)z ’

Duplicating the proof of Theorem 1.3.3 from [5], one arrives at the following
assertion.

COROLLARY 1. For2m > n
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an 17 R X 8™ gttt

xeR"

1/2
~ sup <J . @ua)dy + f (s ) 8" i, d)’) :
B (x) B(x)

One can verify directly that the right-hand side of (11) is equivalent to the norm
lys B x 8"l g

From Theorem 1 one can obtain upper estimates for the norm in
M(H™* — H"*) using well-known lower estimates for the capacity of a compact
set in terms of its Lebesgue measure mes,,.

COROLLARY 2. For2m <n

(12) clly; R" x S"‘IHM(Hm.u—»H"u)
(21, ¥(x))* dx)'? - 1z
< sup (.0 T T sup (v, ) 8" iz, dy )
{e:diam ()< 1) (mes, e)2 n xeRn \J B (x)
For2m=n
(13) clly;R" x Sn_l”M(H"':u—»H’vu)

2" 12 1/2
< su lo 9 )2 dx>
B (e:diamE)é 1)( & mes,, e) (J;( l.uy( ))

12
+SUP(J" llv(y,');S"“lI.?f”dy> :
xeRn B (x)

In case m = | one should replace the second item in the right-hand sides of (12),
(13) by €SS SUPepn ”’)’(X, : )’ N ! ”.*’,,

One can derive various upper and (separately) lower estimates for the norm of
afunction in M(H™* — H"*) using estimates for the constant C in (5) obtained in

(51, [91, [10].

3. Continuity of singular integral operators in pairs of Sobolev spaces.

Let o be a measurable function on R" with values in L,(S"~!). For any ue C3(R")
we define the singular integral operator S with the symbol ¢ by the equality

(14) Fulx) = F ¢ [o(x, &/ LENFu))],

where % is the Fourier transform in R" and & ~! is its inverse.
In what follows we use the notation

dr \'/?
15 N = —_— .
(19 r G u(r)2>
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THEOREM 2. Let A < oo and let
(16) ce M(H™* > H"®), m=12=0.

Then the operator (14) maps H™R" continuously into H'(R"). Moreover, the
estimate

(17) "y”}im-'m S ”a”M(H'"»u—-»H‘vu)

is valid.

ProoF. We use a device proposed in [11], where singular integral operators in
L,(R") are considered. Let x,eR", 6 = &/|&| and let u be an arbitrary function
from C$(R"). We write the operator & as

Sulx) = ij e*™a(x, 0)F u(Q) &I~ 1d (&) dO
o Jsn-t

or, briefly,

(18) SLu(x) = L" B a(x, O(x, 6)do,
where

(19 x, 6) = J e e
and

Fu@) = J e 2™u(y) dy.

Rn

Using the above introduced structure of the class C* on S" !, one has

Su(x) = Zj vidoy 1(O)o(x, o {O(x, o () i)l dt,
k Rn-1
where J, is the Jacobian of the mapping ¢, !. Let n,e CZ(U,) be such that
MV = V. We put
ai(x, 1) = vi(oi 'B)alx, o (1)),
v, 2) = M@ ' O(x, @i @) il2).

By Parseval’s theorem,
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(20) SLu(x) =73 J o, v, t) dt
k Rn-1

= ZJ Fo(x,)F Yo, (x, 1) dr.
k Rn-1

Taking into account (19), one obtains

(21) F™lu(x, 7) =J e 2" (@i (O)(x, @y H(1)) [ilt)] dt

Rn-1

= J e 2mox®p, (O)v(x, 6) dO
Sn-1

— f eZnixér'k(G)e - Znit(pk(o)‘g;u(é) dé
R
The last integral can be interpreted as a family of singular integral convolution
operators E,(t), depending on a parameter te R" !, with symbols
Ne(@)e ™ 2rizex® k= 1,2,...

Now, from (20) and (21) it follows that ¥ can be represented in the form

(22) Su(x) = ZJ ) Fo(x, T)E (t)u(x) dr.

k

Let [ be fractional and let

dh_ \'2
Rn

We have
|D, S u(x)|?
0} 2 dh
c Z {J (J |FVj,x0'k(x + h,7)| |Ahv[l]—j.xEk(T)u(x)| dT) W
k Rn \JRP 1

j=0

IIA

2 dh
+ J (f IFAhV[l]—j.xUk(xa )| IVj.xEk(T)u(x)' dT) |hl"+2‘” } .
R" Rn— 1

The right-hand side does not exceed
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{1

23) cy z{ J . f M@V o+ b o) e

=0k
di dh

X J‘R"‘ 1 143V . < Ex(Du(x)|* A)E TR

+ J j [(D)F 4,V - ;. x0k(x, T)|* dt
gr JRn-1

di dh }

[ B

Consequently,

IDFu; R™IIZ,

a dA
Sc) Z{ j IV xou(x, - R Hi% J (D~ Ex(Au)(x)|* — dx
=o' % Usn * Jrn-t HA)

e dh dA
+ Ln (J;n | 4xVi-j. x0x(x, ) R 1II}”W—+2”,> (JR"_I i 2 7 >dx}.

This and Lemma 1 imply the estimate
1D, u; R™|12,

’ Je IV;x00x, ) R" 1|3, dx J , di
> u E.(Du; R gm ——
Eo}k:{s‘ip capy1+,(©) L e

j "Dl Jak(x’ ),Rn 1||x> dx o2 dj. }
i cap,(© o | MR i Gy

Since the operators E,(4) are uniformly bounded in H™(R"), it follows that
ID:Fu; R™ |1,
g Je @500 dx S o @1 x)? dx )1/2 115 R

N/\

< ¢ su
p ZZ) Capp-1+;(€) j=0 capm-j(e)

which together with Remark 2 gives
249 ID.Su; R\, = e 01l agam.n—smrn 145 R || gm.

For integer [ the proof is similar and somewhat easier. In particular, the
counterpart of (23) is

5 , di

c Z > W@FVjx0ux, D dr | Vi< EAu(x)] WO

] 0k Rn-1 Rn—
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Duplicating the above arguments we arrive at the analogue of (24) with D,
replaced by V, in the left hand-side. This together with the inequality

15w R L, < A N0l pacpm. s mo.mll 15 R™ || rmy
corresponding to [ = 0, completes the proof.

REMARK 4. We show that Theorem 2 is precise in a sense.

Let the symbol of & have the form a(x)b(@), xeR", 8eS"~ !, and let
be #,(S" ')and |b(0)| = const > 0. Clearly, &: H"(R") - H'(R") is continuous if
and only if the operator of multiplication by a is a continuous operator from
H™(R")into H'(R"). In other words the condition (16) follows from the continuity
of &.

Now let & be an operator (16) with the symbol b(0), #e S"~!. Its continuity
from H™(R™ into H'(R") is equivalent to the inequality

(@) (1 + &%) ™" < const
which gives the boundedness of b. Therefore, if for any b e #,(S" ) the operator
&: H"(R) — H'(R") is continuous, then #,(S" ') = L,(S"~ '), which implies (2).

4. Corollaries.

In this section we give sufficient conditions for the continuity of the operator
& H"(R") — H'(R™) which follow from Theorem 2 and from either necessary and
sufficient or sufficient conditions for a function to belong to M(H™* — H"*)(see
Sec. 2).

The next assertion is a direct corollary of Theorems 1 and 2.

COROLLARY 4. The estimate (17) is equivalent to

(25) 1 | tm— 1t
X 9 2 d 1/2
< c%[ sup  JelZotTx J loty, %S dy]
{ecRn":diam(e) < 1} Capm(e) xeRn B';(x) g

for m > 1= 0. For m = | the second item on the right in (25) must be replaced by
€SS SUPyepn “O’(X, ! )’ Sn ! ”32?“

Theorem 2 and Corollary 1 imply the following assertion.
COROLLARY 5. Let 2m > n. The inequality (17) is equivalent to

(26) 1S Mg pre < € sup llo; Bi(x) x 8" | gow.

xeRn
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Combining Theorem 2 with Corollary 2 one can remove the capacity from
inequality (25) as follows.

COROLLARY 6. Let 2m < n. Then

27 1<l g mt
(D), ,0(x))* dx _ 1z
éc%[ sup 1e@1,0097 dx —Zmm T SUP lo(y, ;8" iz dv | .
{ecRn:diam (e) < 1} (mes, e)' 2m) xern J B (0) *u

For 2m = n the expression (mes,e)! ~2™" should be replaced by (log(2"mes,e)) ~'.
In case m = | the second term on the right in (27) should be changed by
esssup lofx, 5" I3,,
xeR"”

One can easily write inequalities, equivalent to (17) by combining Theorem
1 and Remark 3. A number of sufficient conditions for the continuity of the
operator &: H™(R") » H'(R") follow from Theorem 1 and upper estimates for the
norm in M(H™* — H"*) which can be obtained due to results in [5], [9], [10].

REMARK 5. For m = [ =0 Theorem 2 coincides with the result obtained in
[11]. Corollaries 5 and 6 improve the following sufficient condition for the
continuity of & in H'(R"), {I} = 0, due to Mikhlin [12]:

1
sup Y, [[Va(x, - ); 8" |+ < o0,

xeR" j=0
where 24 >n — 1.

REMARK 6. Theorem 2 and its corollaries can be directly extended to classical
pseudo-differential operators with symbols of the form

8&) X oulx, /1D Iel™,

where r; > ... > ry and {eC®(R" 1Y), {&) =1 for |¢] > 2, &) =0 for ¢ < 1
(see [13]).
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