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ON THE SYSTEM OF DIOPHANTINE EQUATIONS
x2—6y?=—5and x =222 — 1

MAURICE MIGNOTTE AND ATTILA PETHO*

1. Introduction.
The aim of this paper is to prove the following
THEOREM 1. The system of diophantine equations
1 x?—6y’= -5 and x=2z*—1

has only the solutions (x, y,z) = (16561, +6761, +91);(71, +29, +6);(17, +7, +3);
(7, £3, £2);(1, £1, £ and (-1, £ 1,0).

Our system of equations is a quartic model of an elleptic curve. It has only
finitely many integer solutions by a well known result of Siegel [11], moreover
they are effectively computable by Baker [1]. It is still interesting to solve it,
because the elementary method of J. H. E. Cohn [3], which was further develop-
ed by McDaniel and Ribenboim [4] failed. The Siegel-Baker method, which is
the combination of algebraic and transcendental number theoretical tools is
complicated. It requires detailed knowledge of certain quartic number fields and
the solution of several quartic Thue equations.

There are two crucial points in our proof:

1. We prove in Section 2 that under general conditions a diophantine equa-
tion x*> — dy? = m with the side condition x = az*> — b can be “homogenized”,
i.e. can be transformed to finitely many equations x> — dy? = m; with x = a;z2.
In this step we use an idea of Mordell [8].

2. After the “homogenization” we get mixed exponential-polynomial equa-
tions in n, ze Z of type

)] aa" — bp" = cz>.
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This can be solved theoretically by using results of transcendental number
theory, see Petho [9] and Shorey and Stewart [ 10]. Unfortunately none of these
methods is applicable in practice. Generalizing the argument of Mignotte [5]
and Mignotte and Petho [6], [7] we are able to reformulate (2) directly enough
into linear forms in logarithms of suitable algebraic numbers to use efficiently the
known reduction techniques.

2. Homogenization of the problem.

In the first step toward the proof of our main theorem we use an idea of Mordell
[8] to translate (1) into finitely many “homogeneous” equations.

THEOREM 2. Let a, b, d, me Z, d square-free. Assume that xo = —b, y,, zo are
rational integers which satisfy

(3) x2—dy*=m and x=az*+b.

Then, for all solutions (x, y, z) e Z3 of (3), there exist integers e, f, A with (e, f) = 1,
f? — de?* = A, where A divides 2dm, if d is odd, and dm, if d is even,

x = 2ed Vo= X0
A4
de X
y—2edlo o
Vi|
az? = 20 TV0 " %0
VI
PROOF. Let (x, y,z)eZ? be a solution of (3). If x = x, then the choice 4 = —d,

f =0, e =1 satisfies the assertion. In the sequel we may assume x # x,. Let
e and f be coprime integers with

e
Yy — Yo = —(x — Xo).

f

Inserting this formula for y into (3) and using x2 — dy3 = m we get

e? e
X+ Xo — dﬁ(x — Xg) = 27dy0,

which proves the stated parametrized form of x and y.

As (¢,f)=1 and x and y are integers, the numbers 2(1—)—()—)9—;—‘26—(l
de,VO fxo

7 —————— are integers too and 4 is coprime with e. We have further



52 MAURICE MIGNOTTE AND ATTILA PETHO

ZdX()

o — exo deyo — fxo _ 2dem
y + 2dy, y YRR

Thus 4 divides 2dm. If d is even then 4 does not divide f2 — de? because d is
square-free and (e, /) = 1. Thus 4 |dm in this case.

Inserting the paremetrized formula for x into the second equation of (3) we get
the equation for z and the proof of the theorem is completed.

COROLLARY 1. All rational integer solutions x, y, z of (1) have the form

_ 6e — _
x=12ef e—l,y=2e ¢ f+1,zz=6ef e,whereA=1,—2,3,—6
and
@) 12— 6e* = 4.

Proor. We apply Theorem 1 with d=6, m= -5, a=2, b= —1,
(X0, Yo, 2o) = (1, 1,1). Then there exist e, f €Z, which satisfy (4) with 4]30. The
only values of 4 with these conditions are 1, —2, 3, —6, —5, 10, — 15 and 30.

Assume that 5| 4 and there exist e, f €Z with (4) and

®) 6e(f — e) = Az>.

As by (4), 5 does not divide e, we have 5| (f — e) by (5). We can rewrite (4) and (5)
as follows

4 (6e—f\ e— f\? f—e 4
——5——< 5 )—6(—————5) and —6e —-—522.

— 6 C— .
5f and F, = e5 f, then E,, F;eZ and they satisfy

Now put E, = ¢

4
F} — 6E2 = — —z_land 6E(F; — E)) = — ?22. Thus it is enough to solve (4) and
(5) for those values of A4 which are not divisible by 5.

LEMMA 1. Let A=1,—2,30r6ande, feZ, e £ 0 be a solution of (4) and (5).
Puta =5+ 2/6and B =5 — 2./6. Then there exist n, we Z such that

2n+1 __ 2n+14
c=2 g \/5=w2, if 4=1,

2 4./6

Ve Q@+ /60> — 2 /6B =w if 4= -2,
2./6

2n __ _ 2n
e=(3+\/g)m2 23 \/8)/} = w? if A=3,and
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2n 2n
e=21TF +8 =w?, if 4= —6.
2

Proor. We way assume e = 0 without loss of generality. In the sequel (I de-
notes an unspecified square.

(i) Let 4 = 1. We have e even and f odd, hence f — e odd by (4). Hence e = 2
O ore = 6 [J. By the theory of Pellian equations there existme Zandee{—1, 1}
such that

e=g——.
Zﬁ
Let a,, = ool i for meZ. Asa_,, = —a,, we may assume ¢ = 1 and m = 0.
4\/6
Thus we get the equations
(6) ay, = ﬂ =46, 0

4\/8
with 6, = 1 or 3. It is easy to see that 3|a, holds iff 3|m. Let m = 3k and

a, = E;l. We have a, = 0,a) =33 and a;,, = 970a;,, — a; for k = 0.
The sequence {a,mod 5}, is periodic, and its period is (0, 3, 0, 2). As
(3 = 2) = — 1 we see that if (6) holds with §, = 3, then 6 |m. Let m = 6k, and for

neZputb, =a" + " Then
a a
™ ay = = ba.

We have also

2 for k even
hence (ay, by) = {1 for k odd -

Assume that m > 0 is the smallest even integer with aj, = x2. Then, by (7) we
have a,bs, = x*, hence m must be even, say m = 2m; and dj,, = x}, and
bem, = 2x3. Continuing this proces, assume that 2m, is the smallest even divisor
of m such that a),,, = 2xZ with an integer x,. Then d},, b;,, = 2x. Let m; odd.
Then a,,, is odd, and a square, which is a contradiction. Hence m, is even and
either a square or 207 in contradiction with the choice of m and m;.

This means, that in (6) the case §, = 3 is not possible.

Now we claim, that if a positive even integer m satisfies (6), then there exists an
odd divisor of m, which satisfies (6) too.
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Let m=2m; >0 be the smallest even solution of (6). Then as
1, if m; odd
azml = amlbml = D and (amlabml) - {2, lf m; even
a,,, = J or m, isevenand a,, = 2[J. Continuing this argument we get the proof
of the claim and the lemma in the present case.
(ii) Let 4 = —2. We have e = [0 or 301 by (5) and

=8(2+\/6)am-(2—ﬁ)ﬁm .
2\/5 "
with a suitable ee{—1,1} and meZ by (4). It is easy to see that a_,, = a,,—y,

hence we may assume again ¢ = 1 and m = 0. We have 3|a,, if and only if
m = 1(mod 3).

Let b, = 3"3'“ for m = 0. Then we have b, = 3, b, = 2907 and the relation

, either m; is odd and

bps2 =970b,4 1 — by, for m = 0. The period of the sequence {b,,mod 5}, is
(3,2,2,3) which means that e = 300 is not possible.

If e = [, then f — e = — 30 this implies that m has to be even.

(iii) Let 4 = 3. In this case e is odd, hence a square by (5). Let

G + /6" — (3 — Jo)p"
Ay =
2\/—6
for meZ. Then e = a,, for a suitable m. Considering a,, modulo 4 we see that

a,, = [ is only possible if m is even.
(iv) Let 4 = —6. Now e = [ by (5) and

f 2 T
for a suitable m e Z. Considering a,, modulo 3 we see that a,, = [ is only possible
if m is even.

3. Application of linear forms.

Let the algebraic number B be a zero of the irreducible polynomial
plx) = a,x" + ... + age Z[x], where (a,,...,a9) = 1. Denote f, = B,...,, the
zeros of p(x). The absolute logarithmic height of f is defined by

Wp) = %log(_f[ max {1, w})-

In this section we will use the following theorem of Waldschmidt [12].
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THEOREM 3. Let a,,...,a, be non-zero algebraic numbers; for i = 1,...,n, let
loga; be a determination of the logarithm of a;. Suppose that the numbers
logay,...,loga, are Q-linearly independent. Put

D = [Q(ay,...,2,): Q] and g =[R(logay,...,loga,): R].
Let A,,...,A,, A, E and f be positive real numbers such that
logA; 2 h(e;), (1Li<n), A=max{d,,...,A4,}

and

) nD (& |logoy \ 7!
<EZ AD,.. AP, — - .
e< _mm{ 1> my (i; log 4,

Let by,..., b, be rational integers with b, & 0. Put

1<j<n [ logA; logA,)’

D
Z, = max {7 + 3log n,%log E,log (E‘EE)}’ Go = max{4nZ,;log M}

and
Up = max{D?log A,D"**GoZ,log A, ...log A,(log E)"""'}.
Then the linear form
A=byloga; +... + b,loga,

satisfies

4] = exp {— 1500g "~ 222" 3"+ S (1 + —Jg;> Uo}.

Let a be a real quadratic unit and K = Q(«). Let 7’ denotes the conjugate of ye K.
Take f = o and assume that o > |f]. Let a, b and c € Z,. Assume that the integers
m,x = 0 satisfy the equation

ao®™ — b2 = cx?.

Our aim in this section is to prove an upper bound for m.

Let L =K(,/—c) and assume that L is a quadratic extension of K, i.e.
[L:Q] = 4. Then our equation implies

(®) NyjobB™ + \/ —¢x) = Nyjola) = 4,

with some rational integer A.
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Choose in Z, units #,,...,n,;r = 1,2 or 3 such that the group # generated by
Ny = &, Na,...,N, has finite index in the group of units of Z,. There exists in Z,
a maximal finite set of, with respect to %, non-associated elements of norm 4.
This set will be denoted by /. Then there exist for all m, x e Z with (8) a y € o/ and
e €% such that

9 bp™ + \/ —cx = ye.
Let order the conjugates L', i = 1,2, 3,4 of L according the following ordering of

the conjugates of ./ —c¢:/ —¢, —/ — ¢,/ —C, —/ —C".

It is easy to see that if m > m, then

(10) 1 \/—i (z)l \/Iz;l am

2o Iy

fori = 1, 2; and if b’ > 0, which we may assume without loss of generality, then

b’ m b, m
(11) mtx < |6(3)[ <2 Iy(:”[ o
and
! 2 ’
(12) a1 —am o oy < 2181 o

2’ [y b @]

hold. We remark that if b’ < 0 than only the role of ¢ and & changes.
The last inequalities imply that if ¢’ > 0 then (8) has only finitely many

solutions and they are very easy to compute. In fact ¢ and ¢“ are in this case
conjugate complex members, hence

’ 2 Iall
—_— M (3| — D) -3m
2y < < < e
da'y®
: 1
Lem< zlog W .

The situation is more interesting when ¢’ < 0. Then ¢ and &* are real
numbers and we will use estimations on linear forms in logarithms of algebraic
numbers to establish an upper bound for m.

Let first ¢ > 0 (and ¢’ < 0). Then L has two nonreal and two real conjugates
and there exist u,, u, € Z with ¢ = #{'5%>. The estimations (10) with i = 2 and (11)
yield

2mloga|log|n$| — log|n$|
R +

lusl <

and
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dmlog? a

IuZI < R + Cy»

where R denotes the regulator of  and

B _
= 2log <3|a| [b?| ;D max {log a, log |1,]}/R.

We have
YWD 4 4@ = 2ppm

I (Y
Y\ 7

o~ 2™ < 1 and so

hence
4b

N

a—2m

If m > my, then

4
Vlal
(2) (2)
Y "3 4106 5
arg +u arg< ) + upm a A
( v‘“) PR TN Jal

with ugeZ and —n < arg(z) < = for every zeC. The last inequality yields

lug| < |uz] + 2. We can set in Theorem 3
n=3,D=4g=1

e ey
logAl—h< (1)> logAZ—h< 11)> logAs; =1

E=eM=4u,l +1)
=7+ 3log3, Gy =logM

=457 + 3log3)th POV (12 10g
g2)2 D o g M,

and get
o (72 nP
[Aq] > exp<—2-10 h< m)h(nm logM ;.

Comparing the lower and upper bounds for |A4,| we conclude

|4, = <

4.1|b| Y@\ [P
(13) 2mlogo — log Ja <2 10“’h<ym h ;Zl—)
16mlog 2
log(————————m;g x + 4c, +4>.

This inequality yields an upper bound for m, which we shall only compute
knowing the actual values of the accouring parameters.
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Let now ¢ < 0 (and ¢’ < 0). Then all conjugates of L are real and there exist
Uy, Uy, uz €Z with ¢ = n'f'n?n%>. We recall that n; = a. The estimations (10) with
i=1,2and (11) yield

4mlog®alogh
._n.l_gR____g.__’_cz’

with ¢, = 3\/§log(3 |a} |b?| |§|)logalogﬁ2~|log In3//R and h = max {@, |71]}
Similarly to the above case, but working with real instead of complex logar-
ithms we get

;| < i=23

(2)
"3

1
ny’

2
ny
1)

5.6b|
nt *
2

<—\7r;|—

The parameters in the application of Waldschmidt’s theorem are the same as
(2)

earlier except that logA; = h(%{%), M =2|u,| and U, = 4%(7 + 3log3)
3

—-2m

3@
|4,] = |log W + u, log + uzlog

ey n® n®
h <—(—1—)> h (—%) h <—(3—U~) log M. Hence Theorem 3 implies
Y Up) N3

5.6|b| @ 2 2)
(14) 2mloga — log <4.1016h<—“-,~ (2 (1
Jlal y )\ nS

8mlog?alogh
log<_m_9§.a_<£_+262)_

R

REMARK 1. The argument of this section can be easily generalized to the case
when « is not a unit. Then we have to apply lower bounds for linear forms in
p-adic logarithms.

4. Proof of Theorem 1.

In table 1, we are listing the data necessary for the application of the method of
section 3 to the equations given in Lemma 1. We are using the notations

a=5+2/6p=5-2/6and9=/~c

A4 a b c r 12 N3 y

1 1 g 12456 2 5-29-2/6 1
9

-2 —a 1 —(6+2/6 3 1+ 249~ 1

3« 1 4+2/6 2 1+9 1

6 -1 1 -2 3 Var s 1+V32+2)
ViSEEE Ak

Table 1.
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We are giving the details of the proof only for the case 4 = 1, when our equation
has by Lemma 1 the form

a2m _ BZBZm — 4,}\/ng — 4(5f _ 12)W2.

It is easy to see that it has only one solution (m,w)=(0,1) in the range
0 <m =< 10. If m > 10 then (10) is obviously true. Thus we may assume in the

sequel m > 10. The algebraic number field. L = O(\/ E, V12 — 5\/8), has two

real and two non-real conjugates. Its regulator is R = 6.83836... and we get
luz] < 3.07398m + 8.95847.

As y = 1 there are only two summands in A, actually it has the form

5—-2/6+2V12-5/6

U, arg( + f) + UgT
5-2/6-2V12-5/6

As we proved, there are generaly three logarithms in A, butin the actual example

we have only two, therefore in the, to (14) analogous inequality we get a much
better constant. More precisely we have

Ay = < 0.042q 2™,

4.58486m + 3.17387 < 6.81595-10'! log(12.4m + 40),

which implies m < 5-10'2 and |u,| < 1.55- 10'3. Dividing the inequality for A,
by u,n we see that, as m > 10, uy/u, is a convergent of

arg| =& |/n =9
ny

= 0.93557845273700309088141600367180617252445255312155....

51706546491839

The denominator of the 20th convergent of J, 5566927472061 °

10'4, hence

lug — uy 3| = |51706546491839 — 552669274720619| > 1.6132- 10713,

is larger then

which implies m < 5. Thus our equation has only the trivial solution.

The proof Theorem 1 is similar in the other cases. We may always set my = 10
and the upper bound for m computed from (13) or (14) depending on the value of
ris in all cases less then 102°. To fill the gap between 10 and 10?° we can use the
above reduction procedure, originally due to Baker and Davenport [2].
o™ — ﬂm

NG

even exponents, and is n = w = e = 0. The other solutions given in Theorem

The solution (—1, +1,0) of (1) comes from the equation = w? for
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1 follow from the solutions of the equations in Lemma 1, which are
(4,n,¢) =(1,0,2); (—2,0,1);(3,0,1); (—6,0,1) and (—6, 1, 49).
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