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THE NUMBER OF TWISTED CUBIC CURVES
ON THE GENERAL QUINTIC THREEFOLD*

GEIR ELLINGSRUD and STEIN ARILD STROMME

Abstract.

We give explicit descriptions of the Hilbert scheme components parametrizing twisted cubic curves in
P3and P*. Asan application, we compute the number 317 206 375 of twisted cubic curves on a general
quintic hypersurface in P*. This coincides with the number predicted by Candelas et. al. in [3].

1. Introduction.

H. Clemens conjectured in [5, 6] that a sufficiently general quintic hypersurface
in P* contains only a finite number of rational curves in each degree. This
assertion has been proved by S. Katz [15] for degrees up to 7. Katz also
computed the number 609 250 of conics on the general quintic, the number 2 875
of lines comes from elementary Schubert calculus. Candelas et al. have a method
originating from string theory which predicts the number of rational curves in
any degree [3]. The purpose of the present paper is to show that, at least in
characteristic zero, the number of twisted cubic curves on the general quintic is
317206 375. Thus we verify the result of the computation of Candelas et. al. for
degree three.

Foragiven degree d, let %, be the irreducible component of the Hilbert scheme
of P* parametrizing rational curves of degree d (and their degenerations). Let
& < P*x #, be the universal curve, and let p:P* x #;,—»P* and
n: P4 x #, — #, denote the projections. The short exact sequence

0I5 > Opax sy, > 05 >0

gives rise to this exact sequence on #:
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0 > 71, #(5) = Ho(P*, Gpa(5)), & 7,0z (5) = R, #5(5) - 0.

Here 93 (5) = #z ® p*Op4(5) and so on, and the second term denoted the trivial
vector bundle on #; with fiber HO(P*, Op«(5)). Observe that if g € H(P*, Op(5))
corresponds to a quintic hypersurface Q < P*, then the induced section p(q) of
the coherent sheaf n, 0z (5) vanishes exactly in those points of 5, which corre-
spond to curves contained in Q. Ifd < 7, the sheaf n, 0z (5) is locally free. Observe
furthermore that the rank of 7, (0z(5) equals the dimension 5d + 1 of #,. This
implies, at least in characteristic zero, that whenever R'zn,.#¢(5) vanishes, the
number of rational curves on a general Q is finite, and given by the degree of the
top Chern class of the vector bundle n, 0z(5). The vanishing of R'rn,.#z(5) is
easily verified for d < 3. To prove just finiteness, it suffices to show that
R'n, %z (5) vanishes over the open subscheme of #; which correspond to smooth
rational curves. Using [ 14], one may prove that this is the case for d < 7.

Ifd = 1, then # is the Grassmannian G(1,4) of lines in P*, and =, 0z (5) is the
5-th symmetric power of the canonical rank-2 quotient bundle on G(1,4). The
degree of its 6-th Chern class is 2 875. If d = 2, then #, is a P>-bundle over the
Grassmannian G(2, 4) of planes in P* (since any conic spans a unique plane). One
can identify n, 0z(5) in terms of the universal sheaves on the Grassmannian and
the projective bundle, and Katz computed that the degree of ¢, ,(n,0z(5)) is
609 250.

From this point of view, computing the number of rational curves of given
degree on a general quintic hypersurface depends more on understanding the
Hilbert scheme of rational curves in P* than on the geometry of the quintic
threefold. Hence we shall be concerned with the study of twisted cubics and their
degenerations. Analogously with the case of conics, any twisted cubic, or flat
degeneration thereof, spans a unique hyperplane in P*. Therefore, any reason-
able parameter space for these curves will be fibered over the dual space P*" , the
fibers being isomorphic to the space of twisted cubics in a fixed P>. The situation
is therefore essentially one of codimension two.

To give a rough sketch of the computation, let first H be the irreducible
component of the Hilbert scheme of P? containing the twisted cubic curves. The
corresponding curves are of two types: those which are arithmetically Co-
hen-Macaulay and those that consist of a singular plane cubic plus an embedded
point supported in a singularity of the cubic, but not contained in its plane. The
latter curves correspond to a Cartier divisor Y on H (H is nonsingular by [17]),
and this divisor clearly admits a fibration g: Y — I where I < P? x P3” is the
incidence correspondence I = {(x, h)|x € h}.

Any curve C corresponding to a point of H determines a net H(P3,.#(2)) <
H°(P3, 0ps(2)) of quadrics, where .# denotes the ideal sheaf of C. This gives rise to
a morphism



THE NUMBER OF TWISTED CUBIC CURVES ON THE GENERAL QUINTIC ... 7

fH— X := f(H) < Grass;(H(P3, 0p:(2))).

Over H — Y, f is anisomorphism onto its image, and over Y, f is isomorphic to
g above, when we identify I with the set of nets of quadrics of the form
{I3,LoL,, LoL,)>, where the L; are linearly independent linear forms. It turns out
that f is isomorphic to the blowup of X along I. The structure of the variety X is
brought out by exhibiting it as a quotient space for a certain reductive group. In
[9] we used this to compute the Chow ring of X in terms of algebra generators
and relations. The relevant data on the inclusion of I in X can be computed. With
all this we are in position to compute the degree of any given cycle on H.

The universal family of curves can be described in the following way. First,
note that X inherits a family of nets of quadrics from Grass;(H°(P3, 0ps(2)). Let
Z < P? x X be the zero-scheme of this “universal net of quadrics”. Over any
point of X — I, the fiber of Z is an arithmetically Cohen-Macaulay twisted cubic
curve. The fiber of Z over a point on I is just the corresponding plane with an
embedded point. Now let ¢: X — X be the blowing up of I. We show that the
inverse image of Z under (idps x ¢) has two irreducible components Z and W,
where Z is the proper transform of Z. The component W is easy to describe; it is
the pullback of the universal family of planes parametrized by I. We show that
Z is flat over X, and hence induces a morphism k: X — Hsuch that f ok = ¢. Itis
clear that « is birational and bijective, hence an isomorphism by Zariski’s main
theorem.

In order to apply this to the problem at hand, we have to rework it when
everything happens in a variable hyperplane in P*. Fortunately, this is quite
straightforward; everything mentioned above works in a relative situation, the
main difference is that the vector spaces HO(P3, (ps(n)) are replaced by the
symmetric powers of the tautological rank-4 vector bundle on the base space
P+,

NOTATION AND TERMINOLOGY. All schemes are algebraic over an algebraically
closed field k of characteristic 0. If T — S is a morphism of schemes and % is
a coherent sheaf on S, we denote its pullback to T by %r.

If ¢ € AY(S) is the rational equivalence class of a Cartier divisor on a scheme S,
Os(¢) will denote the corresponding linebundle. If T — S is a morphism, Or(¢)
denotes the pullback Og(&)r.

We use the P of Grotendieck: P(#) = Proj(Symm &). It comes equipped with
a linebundle Gp5)(1) and a tautological surjection Fp ) — Ups)(1). When there
are several projective bundles around, it is often convenient to specify a name, say
&, for the divisor class ¢;(Cps((1)) € A (P(F)). We express this by saying that
Up#)(&) is the tautological line bundle on P(#).

Grass'(#) is the Grassmannian parametrizing locally free rank-r quotient
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sheaves of #. If & is locally free, we denote by Grass,(#) the Grassmannian of
rank-r subbundles of # (canonically isomorphic to Grass'(Z " )).

ACKNOWLEDGEMENTS. We want to express our thanks to H. Clemens, W.
Fulton, S. Katz, D. Laksov, and D. van Straten for encouragement and stimulat-
ing discussions. Special thanks for providing computer facilities go to Universitat
Kaiserslautern, Bergen Scientific Center, the University of Utah, and the Norwe-
gian Research Council for Science and the Humanities (NAVF).

2. Twisted cubics.

A twisted cubic curve C is a smooth, rational, projective curve of degree three.
Thus the Hilbert polynomial of C is given as yOc(v) = 3v + 1. The linear span of
such a curve is always three-dimensional, and it is classically known that
a twisted cubic is arithmetically normal. This implies that the saturated homo-
geneousideal I of Cin its linear span is generated by three quadrics which are the
threee 2 x 2 minors of a 3 x 2 matrix a with linear forms as entries. In particular,
there is a resolution

0- 2(9];3(“‘3) 5 3(9])3(—‘2) Apd, (9])3 s @C - 0.

Recall [13] that for any projective variety U and any numerical polynomial
P = P(v) there exists a projective scheme Hilbj, parametrizing all closed sub-
schemes of U with Hilbert polynomial P. There exists a universal subscheme
Z = U x Hilb}, flat over Hilb}, such that the fiber over any point [Z] e Hilb, is
exactly the subscheme Z < U. Moreover, giving a morphism from a scheme
W into Hilb}) is equivalent to specifying a family Z’' = U x W, flat over W, all the
fibers of which have Hilbert polynomial P.

Of particular importance to us are the Hilbert schemes Hilbp}* ! and Hilb3} * 1.
Let us summarize a few basic facts about them. First of all, Hilby} ™! has two
irreducible components. One of them contains the set of twisted cubic curves in
P? as a dense open subset. We shall denote this component by H. The second
irreducible component of Hilby}*! is denoted by H'. The general point of this
component is a smooth plane cubic curve plus an extra point somewhere in P> It
is proved in [17] that H and H' are smooth of dimensions 12 and 15 respectively,
and that they intersect transversally in a smooth 11-dimensional scheme Y.
Desnote by ny: P> x H — H the second projection, and let € < P x H be the
universal curve.

There is a clear distinction between the curves in H — Y and those in the
divisor Y. In fact, they are distinguished by the minimal resolutions:

LemMma 2.1. (i) If [C]e H — Y, then Cis arithmetically Cohen-Macaulay, and it
has a resolution of the form
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(2-1) 0 — 20ps(—3) & 30ps(—2) 2% Ops — O — 0.

(i) If [C] e Y, then C consists of a plane singular cubic curve C, plus an imbedded
point in a singularity of C,, not contained in the plane of C,. If coordinates are
chosen such that xo = 0 and x, = x; = x, = 0 are the equations for the plane and
the point respectively, then the saturated homogeneous ideal I is given by

IC = (x()xlaxoxlax(z)’ F(x17x2ax3))a

the equation of Cq being F = ax? + 2bx,x, + ¢x3 with a, b, and c linear forms in
k[xy,x3,x3]. Furthermore, a minimal resolution of Oc is of the form

0> 0(—4)B30(-3)D O(—4) H30(-=2) D O(—=3) % 0 > O - 0,

where O = (Ops and

X, 0 —x¢ xy c¢x;+bx
X Xq 0 —x, bx,+ ax;
¢ = I !/I = y M= (xoxbxoxnx(z), F)
Xq —X; X3 0 0
0 0 0 0 —Xo

Proor: We refer to [17] for most of this. For the last resolution, the only thing
which is not obvious is that Ker u = Im . So let (yo, y1, y2, y3)€Kery, i.e.,

YoXoXz + yiXxoX; + y2x5 + y3F = 0.

Now x, does not divide F, so xo| y3, say y3 = xo)3. Then we may cancel x, from
the equation above to get

(Yo + ¥3bxy + Yiex,)x, + (vi + yiax; + V3bxy)x, + yaxo = 0.

The only relations among x,, x,, and x, are the Koszul relations, generated by
(xq, —x3,0),(x0,0, —x5),and (0, xy, — x;). Expressing the relation above in terms
of these, it is easy to write down an element ¢ such that Y(&) = (yo, V1, V2, V3)-

CoOROLLARY 2.2. Let [C]leH be any curve with ideal sheaf 9, and let v = 1.
Then

H'(P?, Jc(v) = HA(P?, J(v)) = H'(C, Ge(v)) = 0.

3
Furthermore, the sheaves my , $5(v) and 1y, Oz (v) are locally free of ranks <v -; )

—(@3v + 1)and 3v + 1 respectively, and their formation commute with arbitrary base
change.

REMARKS. (i) Although the curves in H — Y enjoy several properties of the
smooth twisted cubics, they may be degenerate. In fact there is a divisor of
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singular curves, the general member of which is the union of a smooth conic and
a unisecant line.

(i) Inthe lemma above, we may take ae€ k[x, x3] and cek[x,, x3]. Thena, b,
and ¢ are determined uniquely by the curve C.

Now let us turn to Hilbgi*! which also has two irreducible components.
Denote by # the component containing the twisted cubics. Let € < P* x 3 be
the universal curve, and denote by pry: # — # the second projection.

It is clear that any twisted cubic in P# is contained in a unique hyperplane. By
semicontinuity of the function [C]+ h°(P*, .#(1)), it follows that any curve in
H is contained in a hyperplane. By the classification above, this hyperplane is
unique. Thus we may define a map ¥: # — P*" by sending [C] to the hyper-
plane spanned by C. Technically, P*" can be defined as the Grassmannian
S = Grass*(H(P*, Op4(1))) parametrizing rank-4 quotients of the space of linear
forms. Then S carries a universal rank-4 quotient

HO(P, Gpu(1))s > ¥,

and P(¥") < P¢ is the universal hyperplane.

As amatter of notation, let # = P(¥") 5 S. Let V be a four-dimensional vector
space, and put P = P(V). We denote the tautological linebundle quotients by
Ve = Op(1) and ¥ 5 — (1) respectively. For any k-scheme (resp. S-scheme) T,
we put P = P x T (resp. #r = P x5 T). Let np: P — T be the natural map. If
furthermore ¢: T'— T is a morphism, we denote the induced morphism
Pr — Pr by n*g. f F is a coherent sheaf on 21, we may write #,_ or just .
for (n*g)*# . Similarly, if Z = 2 is a subscheme, we write Z, < % for its
inverse image under n*g.

Corollary 2.2 implies that the natural map

HO(P*, Gpd(1))¢ — P, Oz (1)

is a locally free quotient of rank 4, which by definition of P*" = § is precisely the
defining data for a morphism ¥: s — S such that ¥*¥" = pr, Oz(1).

LEMMA 2.3. The morphism ¥ so defined is a Zariski locally trivial fibration with
fibers isomorphic to H. In particular S# is smooth of dimension 16.

PROOF. By construction, the universal curve 4 is contained in P(¥*¥) =
P» SP* x #. Let U < S be an open subset over which ¥ is trivial. Then
Py =P(¥|y) ~ P> x U. Furthermore, @y-1p) ~ Po-1y ~ P> x ¥~ 1U) is
flat over ¥ ~!(U) and hence defines a morphism ¥ ~!U — H x U, which is easily
seen to be an isomorphism.

From this lemma it follows that there is a very close analogy between twisted
cubicsin P3 and in P*. In fact, we may view the latter as the twisted cubics in some
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“variable” P3, parametrized by the base S. We shall often refer to the two cases as
the “absolute” and the “relative” case. Notationwise, we shall indicate corre-
sponding objects in the two cases with the same letter, where usually the relative
case is indicated by script capitals. Where this is not possible, we shall distinguish
the absolute case by a zero subscript.

For example, denote by % < s# the divisor of non-Cohen-Macaulay curves.
Then also ¥|y: % — S is a Zariski locally trivial fibration with fibers isomorphic
to Y.

Note also that 7, is nothing but the restriction of pry: P* x J# — # to the
subvariety 2. In particular, ©,, Og(v) = pry,Ogz(v) for any veZ.

As a trivial consequence of corollary 2.2 we have

COROLLARY 2.4. For any integer v = 1, the sheaves Ty, 95 (v) and Ty, Oz(v)
3
are locally free of ranks <v —; > — (3v + 1) and 3v + 1 respectively, and their

formation commute with arbitrary base change. The higher direct images all vanish
forv = 1.

An important consequence of this is that 7,0z (5) is a vector bundle of rank
16 on #, and that the natural map

(2-2) HO(P*, Op(5))¢ & My 03 (5)

is surjective. Let F € H(P*, (p4(5)) be a homogeneous quintic polynomial. Then
F induces a global section p(F) of 7,4, 0z(5). If [C] e # is a point, the fiber of
T Oz (5)in [C] is just HO(C, €c(5)), and the value of p(F) on this fiber is nothing
but the restriction of F to C. Hence p(F) vanishes at [C] if and only if C is
contained in V(F), the quintic hypersurface defined by F.

PROPOSITION 2.5. For a general quintic form F, the number of twisted cubics on
V(F) < P* is given by the degree [ 4 ¢y (T4 Oz (5)). These cubics are all smooth.

REMARK. One may show that the normal bundle of each of these twisted cubic
splits in a sum of two linebundles of degree — 1. Cfr. [15].

PROOF. Since the map in (2-2) is surjective, the vector bundle 7, ,0z(5) is
generated by the space H(P*, 0p45)) of global sections. In characteristic zero,
a general such section is transverse to the zero section, meaning that it vanishes in
a smooth subscheme of codimension 16, hence a finite number of reduced points.
The section can be chosen to have zeroes outside of any given proper closed
subset, like the locus of singular curves, for example. It is well known that the
number of zeroes of such a section is the degree of the top Chern class of the vector
bundle.

ReMARK. With this proposition, we have translated the problem of counting
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the cubics on the general quintic from a problem on quintic threefolds to
a problem of the enumerative geometry of the cubics. What remains is to
determine the cohomology ring of # and give a description of 74, Oz (5) suitable
for computing the degree of the top Chern class. We shall not see more of the
quintic itself in this paper.

3. Determinantal nets of quadrics.

Any curve C in H is contained in a net (i.e., three-dimensional vector space, or
two-dimensional projective space) of quadrics. These nets are all determinantal,
meaning that they are generated by the 2 x 2 minors of a 3 x 2 matrix of linear
forms. For the curves in H — Y, this follows immediately from lemma 2.1 (i). For
curves in Y, the matrix

0 —Xo
Xg 0
—Xi X2

will do, where the coordinates are chosen as in lemma 2.1 (ii).
Recall that V = HO(P3, Ops(1)). Let S, V= H°(P3, Ops(n)) denote its nth symmet-
ric product. From corollary 2.2, the following exact sequence on H

O b d nH*fg(Z) bd Sz VH d TCH*(O@'(z) - O

gives a morphism f,: H — Grass;(S, V) associating to [C] the net of quadrics
containing it. Put X = f,(H) and equip it with the reduced subscheme structure.
Similarly, put I = f,(Y), again with the reduced subscheme structure.

A preliminary analysis of the morphism f;, reveals that it induces a bijection
H — Y — X — I, since an arithmetically Cohen-Macaulay curve is cut out by its
net of quadrics. For a curve C in Y, however, the net of quadrics has a linear
common factor, and remembers only the plane spanned by the cubic C, and the
location of the imbedded point; the plane curve C, itself is lost. Hence the points
of I are in bijection with the incidence correspondence in P> x P3Y i, {(p,q)|p
a point, q a plane, pe gq}. The fiber of f, over such a pair (p, g) is the space of all
cubics in the plane g passing doubly through the point p, hence the fiber is
isomorphic to P®. We are going to show later that f;, is the blowing up of X with
center I.

In the relative situation, it follows from corollary 2.4 that the exact sequence
on K

defines an S-morphism f: # — Grass;(S,77). It is clear that the fiber of f over
any point in S is just fy. Let & < Grass3(S,7") be the image of f and .# < & the
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image of % under f, again with their reduced subscheme structures. Then & — §
and % — Sand .# — S are all Zariski locally trivial fibrations with fibers X, Y, and
I respectively.

The space X was introduced in [10] where some of its basic properties were
proved. We shall quickly review some of these. The key to proving these
properties is an alternative description of the space X, namely as the quotient of
the space of 3 x 2 matrices of linear forms by the natural action of the group
GL(3) x GL(2).

To give this description, let E and F be two vector spaces of dimensions 3 and
2, respectively. Let W = Hom,(F, E ® V). Having chosen bases for E and F, the
elements of W may be interpreted as 3 x 2 matrices with entries in V.

Let « be an element of W. The subspace of S,V generated by the maximal
minors of a matrix representing a does not depend on the choice of the matrix.
We:shall denote this subspace by E(«).

The group GL(E) x GL(F) acts naturally on W by

(@.h)-a=(@g®1y)oach™".
The normal subgroup I' = {(tidg, tids)| t € k*} acts trivially, and thus the quo-
tient G = GL(E) x GL(F)/I acts on W.
We call an element a e W stable (resp. semistable) if the corresponding point

aeP(W") is stable (resp. semistable) in the sense of Mumford [16] for the
induced action of G n SL(W).

PROPOSITION 3.1. For any element a € W, the following are equivalent:

(1) ais stable.

(ii) a is semistable.

(iii) dim E(a) = 3.

(iv) For no choice of bases for E and F will the corresponding 3 x 2 matrix have
two zeroes in one column or in one row.

ProOOF. See [10, lemma 1].
RemARrk. This is a special case of a more general result by Drezet [8].

The equivalence of (i) and (ii) implies by [16] that there exists a projective,
geometric quotient W*/G, and from (iii) it follows that there is a morphism
Ws/G — X.

PROPOSITION 3.2. (i) The action of G on W* is free, hence W*/G is smooth.
(i) The morphism W*/G — X is an isomorphism.

Proor. See [10, prop.1].

On W?*/G there are two bundles #’ and &’ which are fundamental for what we
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are going to do. They are obtained by descending the G-bundles Ey. and Fy. to
W?*/G. To obtain G-actions on E and F, let GL(E) x GL(F) act by

(-1 (9. h)-e = det(h)det(g) 'gle) (e€E)
(9. h)- f = det(h) det(g)"*h(f) (feF).

The induced actions of I are trivial, hence G acts on E and F, so these descend to
vector bundles &’ and #’ on W¥/G. The determinants of the two representations
(3-1) arerepresented by the same character of G. It follows that det(&”) = det(#”).
The tautological map Fy — Ey ® V is G-equivariant, hence descends to a bundle
map A F' — & ® V on W¥/G.

The bundles & and %' may be described also in another way. Let £, = S,V be
the restriction to X of the canonical rank-3 subbundle on Grass;(S,V). The
multiplicationmap S,V ® V — S;Vinducesamap 6, ® V — S; Vx whose kernel
we denote by %,. It is easily checked, using that the nets in X are determinantal,
that %, is a vector bundle of rank two. Let 4: #; — &, ® V be the inclusion map.

PROPOSITION 3.3. Under the isomorphism W*/G — X, the bundles &' and F'
correspond to the bundles &, and %, and the map A’ corresponds to the map A.

ProoF. Consider the map o njy.F - njs 6 (1) on Py.g. The Eagon-
Northcott complex on a is

0> e F ' S Thysa8' (1) 25 mhysg(det(F) ™ @ det(6)(3)

Untwisting by 1 and applying 7y, yields a map & —S,V, since
det(8’) = det(F"). The rest is easy.

To globalize the two bundles above to the relative case, let & be the restriction
to  of the tautological subbundle of S, ¥ Gass,,(s,¥), and let # be the kernel of the
map & ® ¥~ — S37 induced by multiplication. Also, let &/: & —» & ® ¥” be the
inclusion map. Then clearly the bundles & and & restrict to &, and %, on each
closed fiber over S, and &7 restricts to A.

Composing the “tautological” map ./ with the natural surjection ¥ — 0z(1),
we obtain the following map on Py :

@i F > 156 ® Op (1),

The degeneration locus of this bundle map is denoted by & = Py, i.e., Z is the
locus where a has rank at most one. It is locally defined by the maximal minors of
a, and hence we may build the Eagon-Northcott complex on a:

2
(3-2) 0 - T3 F(—3) S nEé(—2) L% Oy, - Of — 0.

Recall that any irreducible component of Z is of codimension at most two, and
that (3-2) is exact if and only if & is of pure codimension two. Let xe ¥ — £.
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Then the minors of a(x) define a curve, hence the inverse image of & — £ in & is
of codimension two. Since .# < & is of codimension seven, the inverse image of
# in Z has codimension at least four, hence it cannot be an irreducible compo-
nent. It follows that Z is irreducible of codimension two, and the complex (3-2) is
exact.

Let us also remark that if xe & — .#, then the fiber of (3-2) over x is, up to the
choice of bases for E and F, nothing but the resolution (2-1). In particular, Z5 _,
is flat over & — .#, and we obtain a morphism & — % —» # — f~}(#) which
almost by definition is an inverse to f|, 4. Hence we have proven

PROPOSITION 3.4. f: # — X induces an isomorphism f|y_o: H — U =
X — S. Under this isomorphism, & 4 _ 4 corresponds to € 5 _ 5.

ReEMARK. There is of course a similar statement in the absolute case. Later we
will show that f is the blowing up of & along .#, see cor. 5.4.

4. The degenerate nets.

We are going to study the inclusion of I into X and its parallel in the relative case.
We do the absolute case first; then the generalization to the relative case will be
straightforward. The main objective is to compute the normal bunle of .# in Z.

It is convenient at this point to redefine I to be the incidence correspondence in
P x P" and then define a certain morphism io: I — X, which in turn we will
prove to be a closed imbedding onto the subscheme f(Y) of X (earlier denoted by
I). Once we have done this, we identify I with its image in X, thus reverting to the
old definition.

Solet I = P x P be defined in the following way: Recall that P = P(V), and
of course P¥ = P(V"). There will soon be many tautological linebundles, so we
start naming them: Let A: Vp —» Op(¢) and p: Vv — Opv(¢") be the tautological
quotients on P and P" respectively. (Of course, the tautological linebundle on
P is Op(1). We introduce this notation to distinguish two different copies of
P which enter into later calculations.) Then [ is defined as the zero-scheme of the
composed mapon P x P":

(prp"(’év)i’ Vpxp"_l" (OPva(f).

The characteristic data of I are summarized in the diagram
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0 0
O(—£¥) = 0(—&")
| g
0 B —2 Lyt Lo -0
J jn
0 .D . 0 0,8) N
0 0

which defines the rank-3 bundles B and Q and the rank-2 bundle D on I. We shall
refer to P(Q) < P(V;) = P, as the “universal plane” and to X, = P(0p(&)) < P, as
the “universal point”. Clearly, X, < P(Q), and X, — I is an isomorphism.

Now let a point x € I be given. Choose coordinates xq, X1, X,, X3 € V such that
xo = 0 is the equation for the plane and x, = x; = x, = 0 are the equations for
the point. Then ¢(B) ® k(x) = {(xq, Xy, X, and (O — ") ® k(x) = {xo).

To construct the map iy: I — X, we shall give a rank-3 subbundle of S, V.
Clearly the image of the composition of ' ® ¢: O;(— &Y ) ® B - V; ® V; with the
multiplication map V; ® V; — S, V; is a rank-3 subbundle which at the point
x has fiber {xox;, XoXy, x2>. This defines a morphism iy: I — Grass;(S, V), easily
seen to factor through X. This is a bijection onto fy(Y). Now GL(V) operates
naturally on I and X, and the morphism i, is equivariant. Since the action is
transitive on I, it follows that i, is a closed imbedding onto fy(Y).

From now on, we identify I with f,(Y) via iy, thus resuming our earlier
definition.

Itis straightforward how this construction generalizes to the relative situation.
Let 2 = P(¥") - S be as before and put 2° = P(¥"*) - S. Again we denote by
A Vp— O0p(8) and p: ¥ — (99.v(iv) the tautological quotients on # and 2"
respectively. Then £ is defined as the zero-scheme of the composed map on
P xs P

(99 x,.@v( - év ) '—’i" "//y xsPY _i" (99 x,f?"(f)~

The characteristic data of .# are summarized in the exact commutative diagram
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(@-1) 0 0
(—&Y) = 0(—&Y)
J 1"
0— 3 S it L0 0
2 o |y I
0 N7 pe T 7 01(¢) — 0
0 0

defining rank-3 bundles # and 2 and a rank-2 bundle 2 on .#. Clearly # — S'is
a Zariski locally trivial fibration with fiber I, and the bundles on .# restrict on the
fibers to their unscripted counterparts. In absolute terms, a point of .# consists of
atriple (p, q, s) where sis a hyperplane in P4, q ahyperplaneins,and p a pomt of q.
The morphism .# — § is given by (p,q,s)—

We refer to P(2) = P(¥)) =P, as the “universal plane” and to
2 = P(04(8)) < Z4 as the “universal point”. Clearly, ¥ < P(2),and X — .4 is an
isomorphism.

We proceed to construct the map i: # - Z. In complete analogy with the
absolute case, we get the required rank-3 subbundle of S, 7, by taking the image
of the composition

(4_2) @,(_év)®g nweed ,V’®,1/ mult S 1/]

By construction, this gives the morphism i, on each fiber over S, and we conclude
that i: .4 — & is an isomorphism onto f(%). Henceforth we shall identify .# with
f(%) via i.

The next step is to identify the restrictions of & and # to 4.

LEMMA 4.1. (i) We have i*€ = B(—¢&") and i*F = 2%(—¢") ® det(B).

(i) If o/ eHom(%,8 ® ¥y) is the tautological map, then i*o/ e Hom(i*%,
*¢® Y 4)=H(F,det(B) ' Q2R B R V4) = Hom(det(#). 2R B R V)
is given by the composition

detB) = A BHBRBRRB L2 9QBR YV,

where r is the natural polarization map
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Bo A By A By Z sign (6)fs0) ® Bait) ® Boc2)-

geS3

In other words, i* </ is locally given by
@-3) AB>DRBR YV,

Bo A B1 A By Z sign(o)Y Bo0) ® o1y ® Boc2)-

0€eS3

PrOOF. That i*& = %(—¢" ) follows from (4-2) and the definition of i. For the
rest, let
o D*Qdet(B) > B R V¥V,

be the map induced by (4-3). We need to show that a is pointwise injective and
that the composition

Os(—&") ® 2* @ det () +2% Os(~ L) @ B ® V5
LOIEL SV s @ Vs ™5 S5V
is the zero map. This can be verified fiber by fiber.
Now we turn to the normal bundle of .# in . Recall that the map f: # - &
forgets the plane cubic part of a curve C in %. The fiber of f over f(|C])e S

consists therefore of all cubics in the plane given by f([C]) passing doubly
through the distinguished point given by f([C)).

Let p: P(2) — # be the structure map and let v: 2p () = Op(o)(7) be the tauto-
logical quotient linebundle. Then the bundle of “cubic” forms” on P(2) is
P+« Op2)(37) = S32. The cubics we are interested in are those vanishing to the
second order along X. Thus they are sections of the kernel of the natural
restriction map S32 — p, O5,(37), where X, is the full first-order neighbourhood
of Z in P(2).

LEMMA 4.2. There is an exact sequence
0 > D(28) = p40;5,(37) > O4(38) - 0.

PrOOF. By definition, X~ < P(2) is the locus where the two quotients
v: Zpa) = Opay(7) and A: Zp(ay = Op(o)(&) coincide, in other words the zero scheme
of the composed map Dp(gy—2— Zpg) > Opay7). It follows that the conormal
bundle of 2 in P(2) is 25(—1). Thus there is an exact sequence:

0> 2y(—1)—> 0z, 0y > 0.
Twisting by 37 and applying p,., we get the exact sequence on .£:
0= py25(21) = Py 05,(37) = p, 0:(31) - 0.

Finally, using that 7 = £ on X, we are done.
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PROPOSITION 4.3. There is an exact sequence
0 Nyjg —det(B)' @532 - det(B) ! @ p,05,(31) - 0.
Proor. Consider the diagram:

(End(6) ® End (%)), —=— End(%) ® End(2)

¥ Jy
(Hom(#,8)® ¥); —=— det(#) '@ 2@ B® ¥
' w
4 ,, l
0———+T,/s——‘—ii—>(Tms),......5 ............... S det(®) ' ® 552
|
0

The horizontal isomorphisms are those induced by lemma 4.1. The vertical
sequence is the restriction to .# of an exact sequence

(4-4) 0 - Uy > End(&) ® End(#F)—> Hom(F,6 ® ¥) - Tyys = 0

where for a local section (g,h) of End(6)® End(#), we have y(g,h) =
(g ® ly)oof — o oh. The map w is given as the identity on det(%) ! times the
composition

DIQBRV, L2, 9022 ™15,

Translating 7' via lemma 4.1, the map y takes the following value on a local
section (g, h) of End(#) @ End(2):

g, W(Bo A By A B2) =
Y. sign(0)¥Bao) @ 9Bo1) ® PPoizy — M Boi0) ® Bat) ® DBuc2))-

oeS3
From this formula we may verify that w o y = 0. Indeed, for a local section (g, h) of
End(#) ® End(2), we have
(g, h)(Bo A By A B2) =

Z sign(6)(0Bsc0) 09Bs1) B2y — @'Y Buo): Oﬂau) : Oﬁa(Z))’

geS3

in S$32. The first part gives zero by the symmetry of the first and third factors, and
the second part gives zero by the symmetry of the last two factors.
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It follows that there exists a map  as above making the diagram commutative.
Consider Im(w). From the description of w, it is clear that in a fiber over x € .#, we
have that Im(w) ® k(x) is the space of cubic forms in $3.2(x) which vanish to the
second order in the distinguished point, since the ideal of this point in the plane
P(2(x)) is generated by the image of ¢'(x): 2(x) — 2(x). It follows that Im (w) fits
into an exact sequence like the one in the proposition. It remains to prove that
Ny g = Im(w).

The map di is the differential of the inclusion i: # — &, hence its cokernel is
Ny,4. We proceed now to show that é o di = 0. Once we have done that, 6 will
have to factor through some map N4 — Im(w), which will be surjective since
Im(6) = Im(w). Both Ny, and Im(w) are rank-7 bundles, so it is even an
isomorphism.

To see that § o di = 0, pick a closed point x € # and a tangent vector t € Ty /5(x).
This may be thought of as a morphism f: Spec k[¢]/e? — .# centered in x. Con-
sider the pullback via i* of the diagram (4-1). Each of i*¥",, {*2,*% and i*Z are
free k[e]-modules. So we may write i*¢ = ¢y + ¢, and similarly
Y = Yo + ey . Now the image di(t) € Ty (i(x)) is represented by the composition

Spec k[€]/e? LeiLa.

Using lemma 4.1, we may describe this as di(t) = p(t'), where t' edet(#) ' ®
DR B ® ¥V, is given by the e-component of the formula

Bo A By A By Z sign(o)(Yo + 3‘/’1)ﬁa(0) ® Ba(l)@ (¢o + E¢1)Ba’(2)'

ogeS3

Expanding this we get the following expression for t":

Bo A B1 A o Z sign(0)( Y 18+0) ® Baty @ DoBoizy + YoBa0) ® Boity ® ¢1B42))

oeS3

Therefore §(di(t)) = w(t') is given by
Bo A By A B2 Z sign(0)Po ¥ 1Bsc0) OBsry* OBsc2y +

ceS3

Y. s5ign(0)0Bs0) 0Bst) Vo d'1Bo2)-

oeS3

The first of these sums vanish because of the symmetry in the last two factors, the
second sum vanishes because of the symmetry in the first two factors. We
conclude that 6 - di = 0, which completes the proof.

S. Blowing up the degenerate nets.

The aim of this section is twofold. We want to prove that s# is isomorphic to the
blow up of & along .#, and we want to give an explicit relation between the
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universal curve € < 2y and the universal degeneration locus Z < 2. Since the
invariants of & are easy to express in terms of the universal bundles & and % on
&, this enables us to compute the Chern classes of 7, 0z(5).

Let &: & — X be the blow up of .# and let # denote the exceptional divisor. To
produce amap £ — J# over Z, we have to construct a subvariety ¢’ < %5 which
is flat over Z and which coincides with Z off the exceptional divisor. There is just
one choice available, namely let €’ be the closure of (1*®) ™ (%5 _ 5) in Z5. We
shall show below that this is indeed flat, but first we need some more notation.

First, let g: % — I be the restriction of &. From general theory, we know that
G = P(N}//g) with structure morphism g. Let (N,V/I)@; — (z(n) be the tautological
quotient.

Let W be the pullback via g of the universal plane P(2) < Z,, i.e.,
W = P(g*2) < Ps. Let 2y - Ow(7) be the corresponding tautological quotient.

Putting these maps together, we obtain maps on W, where the middle map is
induced from prop. 4.3:

(5-1) Ow(—n) ® det(B) = (Ngjq)w @ det(B) = 32 — Ow(37).

The composition of these gives a global section of Ow(n — f + 3t), where we
write f for the divisor class of det(%). The locus where this section vanishes will be
denoted by IT = W. Its fiber over a point in % is exactly the singular plane cubic
corresponding to that point. Hence we may refer to IT as the “universal singular
plane cubic”.

PROPOSITION 5.1. (i) €' is flat over &
(i) Zi=Wu®.
(i) W@ = II.

ProOOF. We shall locally on & make an explicit construction of the blowing up
where we can compute the ideal of 3. Let ue .# be a closed pointand let U, < ¥
be an open neighbourhood of u which is small enough that ¥7,_has four linearly
independent sections x, X, X, X3 such that everywhere on Uy, x, = 0defines the
distinguished plane and x, = x; = x, = 0 defines the distinguished point. In
other words, x, generates the subbundle Oy (— &)of v, v, and x, x4, Xo generate
the subbundle %,

Let A7 = Speck[a,, as, by, b,, b3, c3, c3], where the variables are algebraically
independent. On A7 x U, there are sections

a=ayx, + azXj
b= b1x1'+ bzXz + b3X3
C =C3Xy + C3X3

of ¥47xu,» and we may consider the matrix
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c b— xo
b+ xq a
—X X2

The minors of this matrix are linearly independent in some open affine neighbor-
hood U = Spec(R) < A7 x U, of {0} x U,, where 0 A” denotes the origin.
Hence there is a morphism ¢: U — Z which restricts to the inclusion of Uy < .# in
& on the subvariety {0} x U,.

0 — Ty,() — Tar(0) @ Ty (u) — T47(0) ——— 0

l f l

0 Ty (u) > Ty (u) > N gj9(u) —— 0.

Here the left vertical map is the derivative of an open inclusion, hence an
isomorphism. The right vertical map is an isomorphism by construction, prop
4.3, and remark (ii) after lemma 2.1. It follows that dt is an isomorphism, hence ¢ is
etale at the point (0, u).

Now let U be some open affine subset of the blow up of U along {0} x Uk,.
There is then a diagram

gt ,#

Ll

v—t .

Since ¢t is étale at (0, u), it follows that f is étale at any point lying over (0, u).

Let R’ 2 R be an overring in which the ideal J = (a4, as, by, by, b3, ¢5, ¢3) is
invertible, say JR' = (y)R' for some non-zero-divisor yeR’. For example,
R = I'(U, 0p) s of this type. Put U’ = Spec(R’). Define aj, b}, ¢;e R’ by a; = yd,,
b; = yb,, and ¢; = yc. Also, let a, b, and ¢’ be similarly defined sections of ¥ .,
thus by a = ya’, b = yb’, and ¢ = yc’. On Z#y. we may write down the following
complex K *:

0 Up, (—4) 5305, (—3) @ Op,(—4)
4 305,(—-2)® Op, (—3) 5 Op,,

where
Xy yc¢' oy —x9 x; 'x;+b'x,
Xy b +xe  yd —X%, b'x; +ad'x,
= s = 5 =(0 ,5 a(s ’F9
¢ Xo ¥ —x, X 0 0 p=(dy,08,,03, F)

-y 0 0 -y —Xo



THE NUMBER OF TWISTED CUBIC CURVES ON THE GENERAL QUINTIC ... 23

where §; is the ith 2 x 2 minor of the upper left 3 x 2 submatrix of ¢ and
F = a'x? + 2b'x,x, + ¢'x3. It is straightforward to check that this is in fact
a complex. Let C' = 2. be defined by O = Coker(p).

LEMMA 5.2. Assume that F is not a zero-divisor in R'/(y)R' [xy, X3, X3]. Then
there is an open neighborhood U" of the locus V(y) in U’ such that the complex
K 4+ is a resolution of Cy,... Furthermore, Cy,.. is flat over U".

PrOOF. For any x € V(y) it follows from lemma 2.1 that K * ® k(x) is a resol-
ution. The same will then be true for all x in a neighborhood U” of V(y)in U’. But
then the complex itself is a resolution of (9c’u , which implies flatness as well.

LEMMA 5.3. Assume that F is not a zero-divisor in R'/(y)R' [x,,x5,x3]. Then
(i) (01, 02, 63, F) N (x0,y) = (81, 02, 63).
(") (613 625 53’ F) + (x09 y) = (xO’ Y, F)'

Proor. First observe that each of the minors §; is contained in the ideal (x,, y).
Hence (64, 9,, 03, F) N (xo, y) 2 (84,95, 03). To prove the opposite inclusion, re-
mark that both xyF and yF are elements of (J,, ,, d3), and by the assumption on
F,it follows that (F) N (xy, y) = (Fxo, Fy) S (04, 85, 03). This proves (i). (ii) follows
easily from §; e (xo, y).

To complete the proof of prop. 5.1, observe that set-theoretically, the equality
%7 = WU % holds. An easy dimension count shows that both W and € are of
codimension two in #g. Since Z¢ is determinantal, it has no imbedded compo-
nents, hence (ii) holds.

Now let ue% be any point and choose an open affine neighborhood
U’ = Spec(R’) of uin &, small enough that the complex K ;U, is a resolution. The
ring R’ being regular in this case, it is clear that in the notation above, F is not
a zero-divisor in R'/(y)R’ [xy, X3, X3]. Hence, shrinking U’ if necessary, we may
assume that the conclusions of lemmas 5.2 and 5.3 hold. Observe that £~ (W) is
given by the ideal (xo, y) and that (n*(® o £))~ }(Z) is given by (6, 82, 53).

By lemma 5.3 it follows that £~ !(€) is given by the ideal (§,,d,, 83, F). Hence,
since ue % was arbitrary, the scheme ¢~ }(@') is flat over 4 by lemma 5.2. By
lemma 5.3 (i), it follows that W n €' equals IT scheme-theoretically.

COROLLARY 5.4. Thereisan isomorphismi: & — # suchthat f o x = ®. Under
this isomorphism, €' = (n*k) ™ '€.

PROOF. By prop. 5.1, it follows that there exists a morphism k: & — # such
that ¢’ = (n*x)~'%. By construction, we have fox = ®. It follows from the
classification of the curves in % that x is bijective. Since # is nonsingular, we
conclude by Zariski’s main theorem.
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From now on we will identify & with # via k; thus f = ® and ' = €. Write
Zw = (m*f)"1(2).

COROLLARY 5.5. Under these identifications, we have
(i) WU =Zy.

(i) Wné=1I

(iii) There is an exact sequence

0> SIyw— 0z, - 0z —0.

ProoOF. (i) and (ii) are just restatements of prop. 5.1 (i) and (iii). The exact
sequence follows easily from the exact sequence 0 — Oy, — Uz @ Uy — Oy — 0,
a consequence of (i) and (ii).

A useful consequence of cor. 5.5 is that &, has codimension two in Py, which
implies that the complex (3-2) stays exact after we pull it back to 2, by n*f. It
follows that

PROPOSITION 5.6. For any i = 0, in particular for i = 5,
[¥e(ng 4 O2() = (s O, (1))

6. Identification of the Chern class.

We turn to the detailed Chern class computations necessary to calculate the top
Chern class ¢ ¢(n4, 0z(5)). As we shall prove in the next section, the cohomology
ring (and the Chow ring) of & is generated by the Chern classes of &, %, and 7.
Hence we seek to express c(n4, 0z(5)) in terms of these.

In order to avoid an explicit description of the Chow ring of # in terms of
generators and relations, and also to keep computations within reasonable size,
we split the expression for L,:c(n,* 0z(5)) in two parts, one contribution called
the “main term” coming from % and one, called “the correction term”, coming
from the exceptional divisor %.

Recall that we have the following diagram with cartesian squares:

N
2, L=, 5,

| &

Y ——F

inclusion
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Consider the sequence
0->Igw— 0y, 00

from corollary 5.5 (iii). Using that £, = Op(—n + f — 37) by the definition of
I1, this gives after twisting by 57:

074 Op(—n + B + 21) > Oy (57) » Og(57) - 0.
Pushing this down to J# via ny, yields
0 Ty Sy Ow(—n + B + 21) > g, Oz (57) - g, Og(57) - 0.
The first of these terms is simply
TasuOw(—1 + B + 21) = ju gy Ow(—1 + B + 21) = j,S:24(—n + P),
the second is
Tax Oz, (57) = [* g4 O(5).

Henceif we put o/ = S, 24(—# + f)and oy = 14, 04(5), we have the following
exact sequence:

(6-1) 0—jy oy > [*Ag = 1q,05(57) 0.

Here o7 is a locally free sheaf of rank 6 on %, and .74 is a coherent sheaf of rank
16 on &, which furthermore fits into an exact sequence on &

(6'2) 0—>.g7®S21/~3r—’(g)®S3Vg‘—’S5ng—’Jg‘tr_’o,
obtained from (3-2) by twisting by 5 and applying nq,,.

LEMMA 6.1. Let j: Y — H be the inclusion of a divisor, Y and H both smooth
varieties. Let y = j*[ Y] = ¢,(Oy(Y)). Suppose o/ is a locally free sheaf on Y. Then

) — (A (—

ProoF. First note that

(1+jyx) t=1—jx

14+ yx
for all xe «/*(Y). Indeed, since j*j,x = yx, we get by multiplying out:

X
1+ 1 —j, —
( +J*X)< J*1+yx>

, . X o
=14j,x —J*m—hx'l*m
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. . s X ..
=14 jo X =y ((I*J*x)- I yx) by the projection formula

. . X . b
=1 + JxX _1*1—"’)’;—]* yx: 1 ¥ yx

=147 X X X
T T T e T T

=1.

Next, Riemann-Roch without denominators [11, thm. 15.3] gives

o) — c(A(—y))

Vet = Tt =)

() .
————. Appl
) pplying

o) — co(A(—y) _
(=) , and note that 1 + yx = A

the above, we get

Now let x =

) P =1 +jx)" 1 =1—j, (__x_)

1+ yx
X (=)
Jx C(M)
_ L ) — (=)
T TR T )

Returning to our situation, (6-1) gives in conjunction with lemma 6.1 the
following equalities:
R

J (o, Og(50) = | o(f*ola) cljyly)
4 H

o

ey dst,) = o= )
= | rtata) (1 S )

o(Ay) — C(&i@(—y)))
ye(Ay)

o(Ay) — oA, (—y)
ye(<L,)

cAy) — A, (—)

ye(Ay)

=| f*dAe) - j fro(Aq) (j*
x> >

= | doy) - J )
T ¥

~

= C(fo)“f cg*i*ofq)-
x ¥
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= L o(ly) — L oi*5t) 9y ( dty) y’qﬁZ;A—y»)

We have proved
PROPOSITION 6.2.

J o(nz.05(5%)) = f c(of) + J c(i*&lz)‘g*(c(“’[w(—)’))—C(ﬂ«y)>
H x # yc(.sz/,)

7. Intersection rings.

In this section we compute the Chow rings A*(X) and A*(&) by giving ring
generators and relations. The approach given here is somewhat different from
[9], where only he absolute case is treated. The advantage is that the present
approach is better suited for generalizing to the relative case, e.g. the case of
twisted cubic curves in P*. It is also more oriented towards actually computing
(on a computer) in the Chow ring.

We do the absolute case first. Recall the universal bundles &, and #, on X.
Denote their Chern classes by y; = c(&,) and 6; = ¢;(F ).

ProPOSITION 7.1. A*(X) is generated as a Z-algebra by y,, v,, 73, 01, and J,.

REMARK. In fact, 6, = y;, so we may even omit J, from this list whenever
convenient.

Proor. This can be found in [10] and goes as follows: Let
y: P = Isom(&,, E) xxIsom(%,, F) - X

be the principal GL(E) x GL(F)-bundle associated to &, and &,. Grothendieck
proved [12] that y*: A*(X) — A*(P) is surjective with kernel generated by the
ci(6o) and c;(F,), (i > 0). On the other hand, y factors through the quotient map
W* — X, so y* factors through A*(W?*) = Z. The conclusion follows.

To study the relations, we shall exploit the Chern roots of the universal bundles
on X. Let F(&6,)— X be the full flag bundle associated to &, and let
Fo, = F(&,) xx P(%,) with structure morphism p: Fq — X. Let

p*Eo=6>»E*»E »E°=0 and p*Fo=F>»F' »F°=0
be (the pullbacks to F,, of) the universal flags. Hence the & and %" are locally free
of rank i. Also, let & = ¢ () —c,(&" 1) for i =1,2,3 and ¢; = ¢ (F) —
co(F Y for i = 1, 2. Then p* makes A*(F,) a free A*(X)-module with basis

B ={ceid}|0<i<2,0<j k1)
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Note that y; and §; are the elementary symmetric functions in the ¢; and the ¢,
respectively.

We want to present 4*(X) as the quotient of some polynomial algebra. Let
R be the graded polynomial ring

R =Z[e,,e;,e3, f1, f>]

in the degree 1 variables e; and f;. The group W = S; x S,, where S, in the
symmetric group on n letters, acts linearly by permuting the variables in the
natural way: If w = (o, 7)e W, thenw-¢; = g,y and w- f; = e,;. Let ¢; (resp. d;) be
the i-th elementary symmetric polynomial in the ¢; (resp. f;). Then the invariant
ring RY is again a polynomial ring;

RY = Z[cy,cy.03,d4,d,].

Define surjective ring homomorphisms u: R - A*(F,) and i: R¥ — A*(X) by
letting u(e;) = &, u(f;) = ¢, Ac;) = y;, and A(d;) = 6;. Then the following diagram
commutes, where i: R" — R denotes the inclusion map:

R —£ s A%(F,)

T

Furthermore, R is a free R -module with basis
(7-2) B={eeff0i<2,05),k2 1},

and the map R ®zw A*(X) —» A*(F,) is an isomorphism.

Next we introduce the concept of “coordinate ideal™ Let {b;,...,b;,} be an
RY-basis for R. For any reR, let ¢(r) = R¥ be the ideal generated by the
coordinates of re R with respect to this basis. Precisely, if r = Y !2, s;b; with
s;€R”, then e(r) = Y 5;R¥ is the ideal generated by s,,...,s,,. Clearly () is
independent of the choice of the basis {b;}. If J = R is an ideal, let ¢(J) = R¥ be
the ideal generated by {c(r)| re J}.

We want to point out that with a good choice of the {b;}, e.g., the one given by
(7-2), the coordinates of a given element of R can be effectively computed using
elimination, for example by using a suitable Grobner basis for the relations
between the e;, f;, ¢;, and d;. See [2, 1, 4].

LemMA 7.2. Ker(4) = c(Ker(u)).

Proor. That Ker(4) = c¢(Ker(u)) is straightforward. For the opposite inclu-
sion, suppose r = Y 12, s;b;e Ker(u), where {by,...,b,,} is a basis of R over RY,
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and s;e R”. Then {u(b,),...,u(by,)} is a basis for A*(F,) over A*(X), so
0 = u(r) = Y12, A(s))u(b;) implies that s; e Ker(4) for all i.

We proceed now to describe three explicit elements of Ker(u). Their coordi-
nate ideals will be effectively computable and contained in Ker(4).

LemMmA 7.3. Ker(u) contains the following three elements:
i) ro=e +e+es—fi—fi

(i) ry=(e — f1)4(el - f2)4,

(iti) ry = (e; — f2)*es — f2)*.

PRrOOF. (i) is clear. For (ii), consider the diagram
pP*Fo
g
p*éao ® V ——-K_—-) (0@1 ® |4

where « is induced from the natural quotient map p*&, — &' and A is the
universal map. If the composed map k o 4 vanishes at some point y e F, then for
asuitable choice of bases for E and F, the map A(x): F - E ® V,where x = p(y),is
represented by a matrix of the form

00
* *
* %
which contradicts the stability of A(x). It follows that the global section
ko AcHFo, p*F, @ E'® V)
has no zeroes, and hence the top Chern class cg(p* %, ® &' ® V) vanishes. But

this is exactly u(ry). The proof of (iii) is similar: Consider instead the diagram

Fmn ! »p* Fo
g
PE®V ——— 8V
where 1V = Ker(p*%, —» % ') and 1 the inclusion map, and x again is induced

from the natural surjection map p*&, — &2. The composed map k o 4 o1 has no
zeroes, since stability prevents A(x) from taking the form
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* © O
*

Hence the top Chern class of #V¥ ® &2 ® V vanishes,and this class is precisely
Wr2)-

Putb = Zizr-() ory) = (cy — dy, cl(ey “fl)‘(ﬁ “fz)“), cl(ey “f2)4(€’2 —f2)4)

< RY, where the r; are those of lemma 7.3. In view of lemma 7.2 we get

Table 1. Monomials and values for A**(X).

cl? 119020 | cicid: 1358 cckes 1000 cieic? 62
1%, 45748 | cicid: 546 clcies 410 c3c? 28
82 17772 c3d? 225 ciches 174 cid,cd 102
cSc3 6996 | %43 2431 cldycs 1752 c2cydyc 43
cies 2802 | cte,dd 955 cicydyes 698 c2d,c3 19
23 1150 | c%c2d3 381 c3c3dyes 284 cidic? 30
5 494 | c3d; 155 cyc3dyey 119 cod2cd 13
c1od, 32302 | ctas 676 | c3dlcs 490 | & 9
cSc,d, 12492 | clc,ds 268 ccdies 198 c3c} 22
cSc3d, 4890 | c2d; 108 ¢ c3dies 82 16,03 10
ctcid, 1944 | c3d; 190 cidicy 139 cydyc3 7
c3cid, 789 | c,di 76 cycadics 57 ct 2
Sd, B3| a8 s4 | cydics 4

A2 8826 | clc 6336 | cSc2 356

cSc,d? 3438 N 2496 cteacd 146

PROPOSITION 7.4. Let b and A be as above. Then b < Ker(A).

ReMARK. Infactequality holds, at least if we allow rational coefficients; that is,
(R¥/b) ®,Q ~ A%(X). This is a special case of [9, thm. 4.4].

PROPOSITION 7.5. For each monomial M of degree 12 in R¥, we have
jx AM) = d(M), where the integers d(M) are given in table 1.
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ProoF. First we compute that for each monomial M as above, 2M = d(M)c}
(mod b). This is a brute force Grobner basis calculation. Next, it is clear that the
|x A(M) are integers and that [y A(M) = ed(M) for some constant &. By proposi-
tion 7.1, the class of a point can be written as an integral linear combination of the
AM). It follows immediately that the integers [x (M) are relatively prime. Since
the d(M) are also relatively prime integers, we get ¢ = + 1. It remains to show that
at least one monomial is positive. For this, note that —y, is the pullback of the
Chern class of an ample linebundle under the inclusion morphism
X — Grass;(S, V). Hence yi? = (—y,)'? is positive, and we are done.

An alternative way to establish the class of a point is using the Gauss-Bonnet
formula 4,,,(X) = jx c(Tx). We know [10] that the topological Euler characteris-
tic of X is 58, and we may compute (again using brute force) that the top Chern
class of the tangent bundle Ty is ¢;,(Ty) = 29¢% (mod b). (The Chern class of Ty is
computed using (4-4).) This shows that the class of a point is c$/2.

We sketch how a few enumerative problems concerning twisted cubics can be
solved using the intersection ring of the space X. Let Z < Py be the universal
degeneration locus. By Porteous’ formula, the class of Z in A%(Py) is

[Z] = [8o(@)/ A Fo)]2 = 31> — 11 + (y2 — 33)

where 7€ A!(Py) is the hyperplane class from P = P3.
Let L be a line and Q a point in P. Consider X, = nyx(Z n(L x X)) and
Xg = nx(Z N (Q x X)). Since [L] = % and [Q] = ©°, we get

[X.]=n,?[Z]) = —y; and [Xo]=m(’[Z]) =y, — 9.

Note that X is the closure of the set of twisted cubics which intersect L, and X is
the closure of the set of twisted cubics containing Q. Furthermore, let

Xp = {xeX|I(Z,L)2 2} = Supp Ry (#; ® Upxx)
be the closure of the s'et of twisted cubics bisecant to L. From the sequence
0 - ¥ Fo(—31) o 1%60(—21) > £, -0
we obtain, after tensorization with ¢, and taking direct images, a presentation
2F4— 8y = Ry (I ® O x) — 0.
Hence Porteous’ formula gives
[X5] = [(Fo )/cl65 )]z = 265 — 72

ExAMPLE 1. Let p be an integer between 0 and 6. The number of twisted cubics
bisecant to p given lines and passing through 6 — p given pointsis 1,1,0,1, 1, 1,
6forp=0, 1,2 3, 4,5, 6 respectively.. These numbers were found first by
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Cremona [ 7], who also gave explicit constructions for the twisted cubics in each
case. We may compute these numbers as jx (265 — y2)7(y, — 8,)° 2.

ExaMPLE 2. In a given general P3 in the P® = P(S, V") of all quadrics in P?
there are [x 73 = 2 determinantal nets of quadrics. This was proved by Reye [ 18,

p.- 79].

ExampLE 3. Let Ly,...,L;, be lines in general position. The intersection
X., N ...n X, contains the locus I of degenerate nets. By [11, prop. 9.1.2], the
equivalence of I in the intersection is

j (- i*)’l)lzC(JVI/x)wl-
I
Hence the number of twisted cubics intersecting 12 general lines in P? is
j (—y)t? = J (1 —i*y) (N px) "1 = 119020 — 38 860 = 80 160.
X 1

which agrees with the number found by Schubert [19, p. 179].

We turn now to the relative case. By the Leray-Hirsch theorem, we get
a description of generators and relations of A*(Z’) as an4*(S)-algebra. Recall the
universal bundles & and % on %, Again denote their Chern classes by y; = ¢;(€)
and 9; = ¢i(F).

PROPOSITION 7.6. AX(%) is generated as an A*(S)-algebra by y1, y,, 73, and 6,.
As an A*(S)-module, it is isomorphic to A*(X) ®, A*(S).

Proor. First note that each of §, X, and & have cellular decompositions [11,
ex. 1.9.1], and hence the cycle maps give isomorphisms between Chow rings and
integral singular cohomology. Hence it suffices to show that the classes above
generate H*(Z',Z). But from prop. 7.1 we know that the monomials in these
classes induce generators for the cohomology of the fibers of 2 — S. By the
Leray-Hirsch theorem, the assertion of the proposition follows.

For relations, we imitate the description in the absolute case. The only real
difference is that the vector space V has been replaced by the vector bundle ¥,
and so the Chern classes of this bundle enter, twisting the relations a little bit. To
be precise, let me A1(S) be the positive generator. Then A*(S) = Z[m]/m® and the
total Chern class of ¥ is

c)=1-m=1+m+m?+m+m*
Now put
R= A*(S)[ey, 2, €3, f1, f21 = R @, AX(S)
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with the induced W-action. Let the maps 4: R - A*(F)and ji: R¥ — A*(Z) be as
the maps 4 and u, where g: F — Z is the corresponding flag bundle associated to
&and 7.

LeMMA 7.7. Ker(f) contains the following three elements:

(M) ro=e1+92+93—f1.—.f2, o

(i1) = (Z}‘:o (ex — f1)4_1f"]?(2?=o (e — f2)4_1mj?,

(i) ry = (Z?: oler — f2)* TIm) (Y50 (e2 — f2)* 7 Im).

PrROOF. Reasoning as in the absolute case, cg(p*%  ® &' ® ¥) and
cs(FMY ® €2 ® ) vanish. But these are nothing but ji(7,) and ji(7,), respective-
ly.

Puth = Y2, c(7;) € R", where the ; are those of lemma 7.7. In view of lemma
7.2 we get

PROPOSITION 7.8. Let b and 1 be as above. Then b = Ker (J).

REMARK. Since b clearly reduces to b modulo m, it follows that (R¥ /b) ® 4+, Z
is isomorphic to R¥ /b. Since R” /b surjects onto the free 4*(S)-module A*(Z), it
follows that R"/b®,Q is itself a free A%(S)-module. Furthermore, since
(R¥/b) ®, Q = A%(X), we deduce that (R¥ /b) ®, Q is isomorphic to A%(Z). Note,
however, that for the computation below we don’t need more than prop. 7.8.

PROPOSITION 7.9. Referring to prop. 6.2, we have

co(Ay(—y) — co(Ay)
ye(Ay)

J c(Ag) = 256676750 and J‘ c(i*dg)g*( ) = 60529 625.
xr B4

PrOOF. By computer symbolic computation.
In view of prop. 2.5 and prop. 6.2, this gives

COROLLARY 7.10. The number of twisted cubics on a general quintic threefold is
317206 375.

In a spectacular computation using techniques from theoretical physics, Can-
delaset. al. [3] have found a conjectural procedure for computing the number N,
of rational curves of any degree d on a general quintic threefold. The number
above coincides with their prediction for N;.

The computer files used in the computations in this paper are available from the
authors upon request.
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