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Abstract.

Analogues of the division and preparation theorems for holomorphic mappings are proved in which
the mappings take their values in’ a non-commutative Banach algebra. The results are applied to
deformations of such mappings.

1. Divisors of first degree.

Consider a holomorphic mapping f from the disc D, = {ze C: |z| < p} into
a complex Banach algebra Y. In this section we shall derive formulas of the kind

(M f(2) = q(z, b)(z — b) + r(b)

where ¢ and r are holomorphic mappings with values in Y. We refer to formulas
such as (1) as division formulas in which the quantities g and r are respectively
quotient and remainder, while z — b is the divisor. It will not be necessary to be
very precise about what we mean by a division formula. The essential point is that
the remainder should be simpler than the divisor; in our example it is of lower
degree in z. We shall be concerned with far-reaching generalizaations of (1).
Formula (1) is easily verified if z is restricted to the disc D, and b is restricted by
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the condition thatspr b < p, where spr b denotes the spectral radius of b. Indeed if
f@ =3 az
n=0

for |z| < p, with coefficients a, € Y, then r(b) is given by

o

rb) =Y, a,b"

n=0

This series is convergent if sprb < p. We have that

f(@) =rb) = 2o an(z" — b")

- (moan(zz:lzk-lb"-k))(z )

so that q(z,b) = Y 2 0a, QY k=1 271" 7H).

By exactly the same method we can prove a version of formula (1) in which all
the terms are allowed to depend on an additional variable ¢ in a complex Banach
space X. Let X, be the ball of radius o and centre 0 in the space X. Let S, be the set
{beY: sprb < p}.

THEOREM 1. Let X be a Banach space, Y a Banach algebra and F a Banach space
which is a right module over Y. We assume that the multiplication defined for
elements of F and elements of Y is continuous. Let the mapping f: D, x X, — F be
holomorphic. Then there exist holomorphic mappings q: D, x X, x S, > F and
r: X, x S, — F such that

128 = qz,¢,b)(z — b) + (S, b).

ProOF. Suppose that

o)

f(Z, é) = Z an(é)zn

n=0
for |z| < p and ée€X,. Then we have r(&,b) =) 2> ,a,(6)b" and ¢(z, & b) =
o @O (i=1 270",
As an example of what can be derived from theorem 1 let us take Y = L(C",C")

and F = C". We think of Y as consisting of n x n matrices which multiply
elements of F, thought of as row matrices, on the right. Take

b=
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and denote row matrices by bold type, as, for example, a = [a,,4,,...,a,]. All
unspecified entries of b (except on the superdiagonal and bottom row) are 0. We
note that sprb —»0asa—0.If f: D, - C is a holomorphic function we have

z -1

[f;o"",o]=[qb'"9qn] +[r1,---’rn]
z —1
a; a, PR ¢ z+a,,

In this formula, for convenience, the arguments have been suppressed, except for
z in the square matrix, but f is f(2), g, is qi(z, a), and r, is ri(a), where 1 £ k < n.
A few lines of elimination lead to the formula

n—1

f@) = q,z,8)(2" + a,2" '+ ...+ a) + Y p(a)zt
k=0

where p,(a) depends only on a. This is the classical polynomial division theorem.

One of the most surprising results of recent decades was the extension of the
preparation theorem to C*® functions of real variables, conjectured by Thom and
proved by Malgrange [3]. We conjecture that theorem 1 holds, with minor
modifications, if the mappings are C* and the spaces are real; and that this is easy
to prove using known methods if the spaces are finite-dimensional, but requires
new methods if the spaces are infinite-dimensional.

2. Divisors of higher degree.

Our object is to allow more general divisors than appear in theorem 1. We first
prove a result, analogous to the classical preparation theorem of Weierstrass. An
actual generalization of that theorem will be proved later. In what follows we
shall make use of quasi-nilpotent elements of a Banach algebra. These are
elements that have spectral radius 0. Equivalently they satisfy lim, _, , || x"|** = 0.

THEOREM 2. Let ne Y be quasi-nilpotent and let f: D, x X, — Y be such that
f(z,0) =z — n. Then there exist p', o' and holomorphic mappings g: D, x
X, - Yand b: X, — Y such that

[@8 =g &z —n - bQ)
Moreover b(0) = 0 and g(z,0) = 1.
For the proof we shall need two lemmas.

LEMMA 1. Let neY be quasi-nilpotent and let te Y. Then spr(n +t) - 0 as
t—0.
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Proor. This is a consequence of the upper semi-continuity of the spectrum. It
is proved in [1].

LEMMA 2. Let neY be quasi-nilpotent and let c: D, —» Y be a holomorphic
mapping such that c(z)(z — n) is constant. Then c is identically 0.

ProoOF. Let ¢(z)(z — n) = t. Then
D)=tz—n"'=t) z77
j=0

where the series is convergent for all z & 0. By uniqueness of Laurent series we
have t = 0 and c¢(z) is identically 0.

PROOF OF THEOREM 2. By theorem 1 and lemma 1 we have a division formula
@ fz8) =4q(z,{,b)z — n— b) + (¢, b)
valid for all b with ||b|| sufficiently small. Putting b = 0 and ¢ = 0 we find

z —n = ¢(z,0,0)(z — n) + r(0,0).
By lemma 2 we have ¢(z,0,0) = 1 and (0, 0) = 0. Differentiating (2) with respect
tobatb =0, ¢ =0 gives
0 = (D34q(z,0,0)h)(z — n) — h — D,r(0,0)h
for all h. By lemma 2 this implies
D,r(0,0)h = h.

Hence D,r(0,0) is invertible and the implicit function theorem yields a holomor-
phic mapping b such that 5(0) = 0and r(¢&, b(¢)) = 0 for all & in a sufficiently small
neighbourhood of 0 in X. But then we have

[z8) = q(z & b))z — n — b(Q)
and the theorem is proved.

For any complex Banach space E and Banach algebra Y let o/,(E, Y) denote
the ring of germs at 0 of holomorphic mappings from E to Y. In the ensuing
discussion Y is a fixed Banach algebra, and X a fixed Banach space.

THEOREM 3. Let M be a left module over the ring o/,(C x X, Y) generated by
finitely many elements x,, k = 1,2,...,m. Suppose that there exist elements n;; of
Y and germs p;;e oo(C x X, Y) such that (in an obvious notation)

m

zx; = Z (ni; + pip)x;

ji=1
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Jor 1 i < m. Suppose further that each germ p;; has the property that p;j(z,0) = 0
and that the matrix N = (n;;) defines a quasi-nilpotent element in the space Y™ *™ of
m x mmatrices over Y. Then M, considered as a left module over the ring o£o(X, Y),
is also generated by the elements x;, 1 < k < m.

ProoF. Consider the elements of M™ as column matrices. Write

X1
x=|"2
Xm
We shall use bold type to denote matrices. We can multiply elements of M™ on
the left by m x m matrices with entries in .2/,(C x X, Y), Among these are the

matrices I (identity matrix), N (already introduced and consisting of constant
germs), and the matrix P = (p;;). Then we can write

ZI-N-Px=0
By theorem 2
2l =N =Pz, = Q(z, 9zl — N - §(9)

for certain matrix germs S and Q which satisfy §(0) = 0 and Q(z,0) = I. If
Fe o/,(C x A, Y™ ™)is any matrix germ, we can write, by theorem 1 and the last
formula

F(z,¢) = K(z, )zl — N — P(z,)) + R({)

for certain matrix germs K and R. Multiplying on the right by x we obtain
F(z,&)x = R(¢)x and so M is generated by x;,..., X, over germs depending on
¢ alone.

We can now extend the division formula (1) in order to allow divisors of higher
degree. Let m,, 1 £ k < n, be idempotent elements of Y and denote the germ
zm + 1 —m, by P.. Let b, 1 £k <n, be generic elements of Y and write
b= (b,,...,b,). The divisor which we shall consider is

D(z,b) = Py(2)P;(2)... P)(2) + b 71 P5(2)... Py(2)
+ b, P3(2)... Py(2) + - + by,

We can think of this as a generalization of the generic nth degree polynomial
2"+ byz" ! + -+ + b, withscalar coefficients. If, in this polynomial, we allow the
coefficients to be elements of the algebra Y we obtain a special case of the divisor
defined above in which all the idempotents are unity. This special case is not,
however, very useful.
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Let M be the quotient of o/,(C x Y, Y) by the left ideal consisting of all germs
which can be written in the form T(z, b)D(z,b) for some T. It is obvious that M is
a left module over #(C x Y", Y). If fe o,(C x Y", Y) we denote the image of

finMby[f]
LeEMMA 3. M is generated by the elements [ f,1, 1 < k < n, where
J(2) = mPrs1(2)... Pu(2).
PrOOF. Let ge o/,(C x Y", Y). Then we can write
g(z,b) = g(z,b) — g(0,b) + g(0,b)(1 — 7,) + g(0, b)r,

= g1(z,b)z + ¢(0,b)(1 — 7,) + ¢(0, b)m,
= (91 b)(m, + 2(1 = m,)) + gO,b)(1 — ) Po(2) + g(0, b,
= q1(z,b)P,(2) + ra(b)m,

with holomorphic quotient ¢, and remainder r,(b)r,. Repeating this we get the
formula

9(z,b) = q2(z,b)P, _ 1(2)P,(2) + rp—1(b)7,—  Po(2) + ra(b)m,.
Eventually we obtain
g(z,b) = q,(z,b)Py(2)... Py(2) + ri(b)my P5(2)... Py(2)
+ r3(b)ny P3(2)... Py(2) + -+ + rp(b)m,
= qu(z, b)P1(2) ... Py(2) + r1(0)f1(2) + -~ + r4(b) fu(2)
= qu(z,b)D(z,b) + Ti(z,b) f1(2) + - + T(z,b) fu(2)
Hence [g] = ). Ti[ fi] and the proof is complete.
Next we compute z[ f; 1.

LEMMA 4. There exist elements ¢,j, 1 Sj <k —1,1 <k <n,in Y and germs
xj» such that g,;(z,0) = 0 and

k-1 n
A= T ulfl + ¥ ouls]

for k =1,...,n. [Actually it turns out that the g,; do not depend on z.]
Proor. We shall first prove that

k-1
3) P2)...P(2)= Y. (1 = 2)f{(2) + Py(2)... P,(2)

ji=1
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for each k. This is obvious for k = 1. Suppose that it holds for a given k. Then we
have

Pii1(2)... P(2) = Py 1(2) ... P2) + (1 — )Py 1(2)... Pi(2)
= fil2) + P(2)Py11(2) ... P(2) — zm Py 1 1(2). .. Py(2)
= (1 = 2)f(2) + Pul2)Py+1(2)... P(2)
=Y5 (1 = 2)£2) + Py(2)... P,(2)

This establishes (3). We can now conclude that

J

Ji@) = mPiss(2)... P2) = ) (1 — 2mefi(z) + mPy(2)... Py(2)
=1

which leads to

k-1

2#z) = Y. (1 — 2)m fi(z) + mPy(2)... Py(2).

ji=1
Using this equation we can recursively compute constants c, ;and g, in Y such
that

k-1

2(2) = Y. cifi(2) + aPy(2)... Po(2).

ji=1

But then it follows that

k-1 n
zfi(2) = qD(z,b) + 'Zx i filz) — Z axb;fi(2)

Hence

k—1 n
)= T alfil = ¥ awbilf]
J= J=
We can now apply theorem 3 to obtain the result that M is generated by the
elements [ f,] over the ring «/,(Y", Y). However we need a slightly more general
conclusion for the applications to follow. We need the possibility of a further
variable ¢ belonging to a Banach space X. The calculations just shown are also
valid if M is the quotient of o/,(C x X x Y", Y) by the left ideal consisting of all
germs of the form T(z, &, b)D(z,b). Then we conclude that M is generated by the
elements [ f, ] over 2/,(X x Y", Y). Our conclusion is embodied in the following
theorem as a division formula.

THEOREM 4. For each fe oy(C x X x YY) there exist germs qe o,(C x
X xY",Y)andriedo(X x YY), k=1,...,n, such that
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f@Eb) = gz EBDEb) + Y r(E A
k=1

In the above division formula the divisor D(z, b) stands on the right. We can
also prove a parallel formula in which the divisor, suitably modified, stands on
the left. For left division we use the divisor:

D(z,b) = Pi(2)P5(2)...Py(2) + Py (2)... P, _1(z)m,b,
+ Pl(z)"'Pn-2(Z)nn—1bn—1 + o+ 7lel

or more simply

Bz,b) = PyP,()... Pyo) + 3. Jul)by
K=1

where fi(z) = Py(2)... Pi_1(z)n,. We then have the division formula:

f(z,Eb) = D, b)i(z, &,b) + Y ful2)Fl&,b).
k=1

3. Deformations and left equivalence.

In this section we use theorem 4 to study deformations of mappings taking values
in the Banach algebra Y and prove a generalization of the classical Weierstrass
Preparation Theorem. As in the last section X is a Banach space and n4,..., 7,
are idempotent elements of Y. The quantities P(z), fi(z) and the divisor D(z, b) will
be as defined in section 2.

We first need a lemma.

LemMMmA 5 (Stripping lemma). Suppose that ge </,(C,Y) is such that
g(2)Py(2)... P(z) = Y k= rifilz), wherer,,.. ,r, are elements of Y. Then g = 0 and
=0 fork=1,...,n

Proor. Suppose that he o/,(C, Y) has the property that h(z)P,(z) = r,f.(2),
that is, h(z)(zrn, + 1 — =,) = r,n,. From this we deduce that h(z)(1 — =,) = 0 and
Wz)zm, = r,m,. The last equationimplies r,n, = 0 and h(z)r, = 0;so that h(z) = 0.

We now apply this to the situation of the lemma. We use backward induction,
stripping off one P;(z) at a time and beginning with P,(z). We deduce successively
that r,m, = 0 and that

k-1

g(2)Py(2)... P -1(2) = z riniPiy(2)... P 1(2)

j=1

fork=nn-1,...,1.



DIVISION FORMULAS FOR HOLOMORPHIC MAPPINGS WITH VALUES ... 301

THEOREM 5. Let fe.9/(C x X,Y) be such that f(z,0) = Py(z)... Pz). Then
there exist germs U € o,(C x X, Y) and be o£,(X, Y") such that

f(Z, 6) = U(Z, (S)D(Z, B(é))'
Moreover U(0,0) = 1 and b(0) = 0.

ProoF. We have the division formula

f(z,8) = q(z,¢,b)D(z,b) + i (&, b) fil2).

Putting b = 0 and ¢ = 0 we find that
Py(2)... Py(z) = q(2,0,0)P1(z) ... Po(2) + ), 1i(0,0)fi(2)
k=1

The stripping lemma now implies that ¢(z,0,0) = 1 and (0, O), = O for each k.
Let F be the Banach space Ym; x --- x Yn, and define the mapping
s: X x F— Fbysi(&,b) = r (& b)m,. Consider b to be henceforth restricted to the
space F. Differentiating the division formula with respect tobath =0, & =0
gives

0 = (D34(z,0,00)Py(2).... P.(2) + k; hifi(2) + ki (D2r(0,0)h) fi(2)

where h = (hy,..., h,)e F. Hence by the stripping lemma D,s,(0,0h = —h,, that
is D,s(0,0)h = —h. By the implicit function theorem there is a germ be o4, (X, F)
such that b(0) = 0 and s(¢, b(¢)) = 0. We conclude that

12,9 = a(z, &, bE)D(z bE).

It is natural to interpret theorem § in terms of deformations and left equival-
ence. We define left equivalence of germs as follows. Let E be a Banach space. Let
f and g be elements of .&7y(E, Y). Then f and g are left equivalent if there exists
agermu € o(E, Y)such that f = ugand u(0)is invertible. Similarly we can define
right equivalence. A deformation of a germ f € o/,(E, Y) with parameter space
X isa germ Fe o/y(E x X, Y) such that F restricted to E x {0} is f. We say that
one deformation F; € &/y(E x X, Y)induces another F, € o/,(E x X,, Y)if there
exist germs U € o/(E x X,,Y) and he oy (X,, X;) such that U(0,0) is invertible
and

Fy(v,8) = U(v, OF (v, W)

Theorem 5 describes all deformations of the germ Py(z)... P,(z) up to left equival-
ence in the sense that any deformation of Py(z)... P,(z) is induced by the deforma-
tion
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F(z,b) = Pi(2)... P,(2) + ki b fi(2)

The classical preparation theorem is obtained by taking Y = C and =, = 1 for
k=1,...,n

A case of importance is when Y is the full space L(F, F) of bounded linear
operators on a Banach space F. In the finite-dimensional case the theorem shows
how to find a complete set of parameters to describe up to left equivalence all
deformations of a matrix-valued holomorphic function of z. This is examined in
more detail in section 5.

4. Divisors with quasi-nilpotent elements.

Theorem 5 is nearly a generalization of theorem 2 to the case of finitely many
factors; nearly, but not quite, because in theorem 2 we are deforming z — n where
n is a quasi-nilpotent element. We therefore seek a common generalization of
theorem 5 and theorem 2. This is provided by the following result.

THEOREM 6. Let my,..., T, beidempotent elements of Y, let t,, ..., t, be elements of
Y and assume that the elements mt,m, are quasi-nilpotent. Let Q,(z) =
(z — met)me + 1 — m, for each k. Then every deformation of Q(z)...Q,(z) is
induced by the deformation

BGD) = 0.0 0,0+ 3. buau(d)

where g(2) = 1, Qi +1(2) ... Qu(2).

Proor. This parallels the proof of theorem 5. First we establish a division rule
(extending theorem 4)

(4) f(Z, &) = q(Z, 5’ b)E(Z9 b) + kzl rk(f’ b)gk(z)

Once this is done the proof proceeds as for the proof of theorem 5 except that
lemma 2 is needed to carry out the task of the stripping lemma with Q, replacing
P, and g, replacing f;.

Let us now prove the division formula (4). Let M be the quotient of
2o(C x X x Y" Y) by the left ideal consisting of all germs which can be written
in the form T(z, &, b)E(z, b) for some T. We denote the image of a germ in M by
enclosing the symbol which represents it in square brackets. We shall show that
M is generated by the elements [g; ] and that

k

&) zZlgd = Y, aylgd + ‘i1 axb;lg;]

i=1 i=
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for certain constants ¢,;, 1 <j < k,and ¢, 1 £k < n.

As in the proof of theorem 4 we drop the variable ¢ from our formulas to make
them more readable. Let fe.2/(C x Y, Y). By division formula (1) there exist
f1e4(C x Y", Y)and r,e s4,(Y", Y) such that

f(Z, b) = fl(z’ b)(Z - nntnnn) + rn(b)
= (filbm, + filz, b)z(l — 1) + )1 — 7,))00(2) + ra(b)m,
= ql(z’ b)Qn(Z) + r,,(b)n,,

The proof that M is generated by [g, ] is now completed as in the proof of lemma
3.

We turn now to the proof of (5). The analogue of equation (3) is

k-1

0u(2)...0,2)= Y 1 —z+ Titim)gi(z) + Q1(2). .. Qu(2)

ji=1
leading to

-1

k
2gi(2) = metimiegi(z) + ((1 - Z)m + ﬂkﬂjtjﬂj)gj(z) + m,Q1(2) ... Qul2)
j=1

Note the on-diagonal term on the right-hand side. Using this formula recursively
we obtain formula (5) with the on-diagonal coefficient ¢, = mt, 7.

When we come to applying theorem 3 to complete the proof we find that the
matrix N is triangular with non-vanishing diagonal. However the diagonal
entries are mt; 7, and since these are known to be quasi-nilpotent we conclude
that N too is quasi-nilpotent.

5. Finite ascent and finite quasi-ascent.

The concept of multiplicity of an operator-valued mapping has been studied
from various points of view during the last thirty years. Several different defini-
tions have been given. In particular the author gave a definition in 1974 [2] in
which matrices do not appear. The definition would be applicable to functions
with values in a Banach algebra were it not for the need for rank of anidempotent
element. We recapitulate the definition here.

Let F be a Banach space which we suppose to be complex, although the
definition works as well for real spaces. Let A(z) be a holomorphic mapping from
the disc D, into the operator algebra L(F, F). We define recursively a sequence of
operator-valued mappings A4,(z) as follows. Firstly A, = A. If A,(z) has been
defined examine the kernel of A4,(0). If it is nontrivial let =, be a bounded
projection with range ker 4,(0). Set 4, 1(2) = A,(2)(z " 'n, + I — m,).

One possible difficulty is apparent. It could be that the closed space ker 4,(0)
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admits no topological complement and therefore the projection x, does not exist.
In [2] it was generally assumed that 4(z) was a Fredholm operator of index 0,
which implies that ker 4,(0) is finite-dimensional. The existence of a bounded
projection is then automatic. But now we wish to proceed without any assump-
tions of finite-dimensionality and at the same time not to get involved in the
thorny question of topological complements. We shall say that a germ A(z) is
admissible if for each k we can find a continuous projection m, with range
ker A, (0).

It is plain that the projections 7, can be determined in different ways. However
— and this was shown in [2] — if different projections 7 are chosen fitting the
above prescription, and if this leads to a different sequence A;(z) of operator-
valued functions, then A4;(z) and 4,(z) are right equivalent and the projections =,
and =, are conjugate. In particular they have the same rank. There is therefore
a well-determined numerical sequence (rank ;)i o. The number Y ;° , rank 7 is
called the multiplicity of A(z) at 0 and was denoted by u[4;0] in [2].

It was shown also in [2] that the sequence (rank ;) is non-increasing. If, for
some n, we have rank =, = 0, we call the smallest such n the ascent of A at 0,
denoted in [2] by a[ 4; 0]. This means that 4,(0) has trivial kernel. We shall only
speak of finite ascent and finite multiplicity on the assumption that A,(0) is actually
invertible, that is, it has an inverse in L(F, F). This is the convention used in [2]. If
A has finite ascent at O then A is plainly left equivalent to the germ

(zryy + 1 =y )zmy—g + 1 — 7)) ... (2o + I — 7y)

Thus we see that the deformation results of section 3 apply to germs of finite
ascent. If F is finite-dimensional and det A(z) is not identically 0, then A(z)
necessarily has finite multiplicity. The deformation results therefore apply to all
but an exceptional class of matrix functions.

Another result proved in [2] concerns the mapping A(z) = zI — T where T is
a fixed operator. It was shown, as a corollary to a more general theorem, that
provided T is a Fredholm operator of index 0, the germ zI — T has finite
multiplicity at 0 if there exists n such that F = ker 7" @ ran T" and the restriction
of T toran T"is invertible as a linear mapping from ran T" to itself. Moreover the
ascent is the least such n and the multiplicity is the dimension of ker T". This
result will be reproved in the next section without the need for a Fredholm
hypothesis. It follows that the concepts of multiplicity and ascent coincide in this
case with the traditional notions applied to a single operator (see [7, page 271];
for an operator the ascent is often called the index). In fact ascent can be defined
in the context where Y is a Banach algebra not necessarily of the form L(F, F). Let
feoo(C,Y). Theascent f at 0 could simply be defined as the least number nsuch
that there exist idempotents =, m,,..., m, such that f is left equivalent to
Py(2)... P,(z2), where P(z) = zm, + 1 — m;. This is consistent with the definition
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of ascent for operator-valued functions. However the definition is certainly of
little use unless the algebra is rich in idempotents. There is even another candi-
date for a definition of ascent: the order of the pole z = 0 of f(z) 1.

In section 4 we saw that as far as deformations are concerned factors of the
form zw + 1 — n can be replaced by factors of the more general form zm —
ntn + 1 — mwhere ntnis quasi-nilpotent. This suggests that we define a new kind
of ascent which we shall call quasi-ascent.

We define the quasi-ascent as the least number n such that there exist idem-
potents m,;,m,,...,n, and elements t,t,,...,t, in Y such that mt,m, is
a quasi-nilpotent element for each k and f(z) is left equivalent to the product
01(2)...Qu(2) where Q,(z) = zm, — mty 1, + 1 — m. Clearly the quasi-ascent is
less than or equal to the ascent. For example if f(z) = z — ¢ where ¢ is quasi-
nilpotent then the quasi-ascent is 1 but the ascent could be infinite.

For the germ z — a we can characterize finite quasi-ascent.

THEOREM 7. Let ae Y. The germ z — a has finite quasi-ascent at 0 if and only if
0 is in the resolvent set or is an isolated point of the spectrum of a. In these cases the
quasi-ascent is 0 or 1 respectively.

ProOF. Suppose that 0 is an isolated point of the spectrum of a. Let P be the
spectral projection (idempotent) associated with the point 0. The element PaP
is quasi-nilpotent since its spectrum consists of the point 0 alone. Let f(z) =
(z — a)(zP — PaP + 1 — P)~!. It is enough to show that f(z) is holomorphic at
z = 0 and that f(0) is invertible. Let k({) be defined in the complex {-plane, equal
to 1 on an small disc which contains 0 and no other spectral point of g, and equal
to 0 elsewhere. Then P = k(a) (using the operational calculus for holomorphic
functions of a) and f(z) = F(z, a) where

F(z,0) = (2 — O(zk()) — KOO + 1 — k)"

1 on a neighbourhood of 0
z — { on the rest of the spectrum

= (z = O(1 — k() + k()
This is just a lengthy way of showing that f(z) = (z — a)(1 — P) + P. It follows
that f(z) is holomorphic at z = 0 and f(0) is invertible.

This enables us to prove a result which generalizes theorem 3.

THEOREM 8. Let M be a left module over the ring o/o(C x X,Y) generated by
finitely many elements x,, k = 1,2,...,m. Suppose that there exist elements n;; of
Y and germs p;je o/ o(C x X,Y) such that
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zx; = Z (nij + pij)x;
j=1
for 1 < i < m. Suppose further that each germ p;; has the property that p;(z,0) = 0
and that either O is in the resolvent set or it is an isolated point of spectrum of the
matrix N = (n;;) considered as an operator on Y™. Then M, considered as a left
module over the ring s/o(X, Y), is generated by the elements x,,. .., X,.

PROOF. As in the proof of theorem 3 we have
ZI-N-P)x=0

The matrix-germ zI — N has quasi-ascent 0 or 1 so there exists a projection
matrix I1and a matrix Tin Y™™, such that ITTI is quasi-nilpotent and zI — Nis
left equivalent to zIT — TITIT + I — I1. Let Fe o/((C x X, Y™*™). By theorems
4 and 5 we have

F(z,¢) = Uz O — N - P(z,¢) + RN

for certain germs Ue o/y(C x X, Y™ ™) and Re o#/,(X, Y™ *™). Hence F(z, {)x =
R(&IIx and so M is generated over &/, (X, Y) by the entries of x. This concludes
the proof.

The argument of the preceeding proof can be made to yield a more general (and
probably less useful) theorem.

THEOREM 9. Let M be a left module over the ring o/4(C x X, Y) generated by
finitely many elements x,, k = 1,2....,m. Suppose that there exists a matrix-germ
Weo(C x X, Y™*™) such that Wx = 0 and W(z, 0) has finite quasi-ascent | at 0.
Then M is generated over sfo(X,Y) by at most Im elements which include
XiyernsXme

Proor. There exist projections (that is idempotents) ITy,. .., IT;in Y™™ and
matrices T, ..., T, such that IT, T,II, is quasi-nilpotent for each k and W(z, 0) is
left equivalent to the product Q,(z)... Q,(z) where Q. (z) = zII, — IL, T, II, +
I —1II,. Let fi(z) = IL, Qi +1(2)... Qi(2). Let Fe o/,(C x X, Y™™™). By theorem
6 and division rule (4) we have

1
F(z, ) = Uz, )W(z,¢) + -21 R;(Of;(2)

for certain germs U € o/5(C x X, Y™ ™)and R;e &,(X, Y™ ™). Hence F(z, {)x =
ZR;(O)f(z)x and so M is generated over &/,(X, Y) by the Im entries of f;(z)x. This
concludes the proof.
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6. Well-behaved germs and left-right equivalence.

The material of this section is largely independent of that of preceding sections.
We are not here concerned with division formulas, but with developing certain
properties of operator germs from where the subject was allowed to rest in the
author’s paper [2]. The reason for including here material that could stand alone
is that it forms the basis of an application of the division formulas in the next
section.

Let F be a Banach space and consider a germ A with values in L(F, F). Suppose
that the ascent is a finite number n. We can then find projections =ny,..., 7,1,
chosen according to the prescription from [2] summarized in section 5, such that
A(z) is left equivalent to the product

6) g+ 1 —my_)zmy_s + 1 —T,u_3)...(200 + I — 7mp)

Note that the order of the subscripts is different from what it was in previous
sections. This is to bring it into line with the conventions of multiplicity theory.

As we have seen the projections are not uniquely determined. Now it always
happens that ker m, nker 4, ,(0) = {0}. The question arises whether we can
exploit this by choosing 7, , ; so that ker m, < ker m; , ;. If this is possible for each
k and if ker =, is complemented in ker n; 4, we shall say that the germ A(z) is
well-behaved. Given that A(z) is admissible it can be blocked from being well-
behaved if for some k it is impossible to choose ny, . . . , 7, so that the sum ker w;, @
ker A4, 1(0) admits a topological complement.

If A(z) is well-behaved we may always choose the multiplicity projections to
satisfy the conditions

7N kerny = kerny < --- < kerm,

and this choice simplifies some proofs. (For an example see the part of [2] that
deals with bifurcation theory.) In fact this choice enables us to simplify and
transform the product (6) into the sum

n

Z Zk(nk—l — M)

k=0

where we use the convention that n_, = I and =n,, = 0. To see this note that the
conditions (7) are equivalent to the algebraic conditions: n;(I — n;) = 0 for all
i = j. The product (6) therefore reduces to

ZLOZ"(I —Tpog)e (I = M)M—q ... Mo = ZLO Zk(I o L
= Z:=o M-y — )

It would clearly be useful to have conditions that guarantee that A(z) is
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well-behaved. The case considered in [2] contains one such: A(0) is a Fredholm
operator of index 0. If we wish to avoid finite-dimensionality conditions the
question is more difficult, even in the comparative comfort of Hilbert space.

In the author’s paper [2] it was shown that the spaces U, = Y ¥_,rann; and
Vi = mg... 74 ker 4,(0) are independent of the choice of projections. In fact
they are invariants of the left equivalence class (by abuse of language) of A(z). The
spaces Vj form a decreasing sequence of subspaces of ker A(0).

THEOREM 10. (i) A(z) is well-behaved if and only if Vi ., is complemented in V;
for each k.

(i) If A(z) is well-behaved then, however the multiplicity projections m, are
chosen, the sum ker A,(0) @ ker n, _, is complemented for each k.

ProoF. First suppose that A(z) is well-behaved. Choose the projections 7 so
that ker m, < ker m, . ; and ker m, is complemented in ker 7, , ; for each k. By way
of an induction hypothesis we suppose that V; is complemented in V;_, for
i £k — 1. Then V¥, _, is closed so that the restriction of . . . 7, — , to ker A, _(0)
is an isomorphism of that space onto ¥, _;. Now ker 4,(0) @ ker m, _, is comple-
mented. Suppose that F = W @ ker A4,(0) @ ker 7, — ;. Applying the projection
w1 we find that ker 4, _,(0) = m,_ W @ =, | ker 4,(0), that is, 7w, _ ; ker 4,(0)
is complemented in ker 4, - (0). Applying n, . .. 7, we find that ¥, is comple-
mented in V,_;. To begin the induction note that since V; is closed the same
argument shows that o ker A(0) is complemented in ker A(0).

Conversely suppose that ¥}, ; is complemented in ¥, for each k. Then we can
find a sequence of spaces W, such that V, = W; ., ® V, . for each k. We define
W, so that F = W, @ V,. All the sums are intended to be topological. Now we
claim that for each j we can choose 7; so that kern; = W, @ --- @ W,. Let us
assume that this has been done for j = 0,...,k — 1. We can choose n; with the
required kernel if

F=W,® @ W ® ker 4,(0)
Now we have that

F=W,® oW, @V
=Wo® - ®W,®ny...m_ ker 4,(0)
=Wo® - ®W,®Dn,...m_ker 4,(0)
=Wo® - ®W,®n,...m_ ker 4,(0)

=Wy ® - ® W, @ ker 4,(0)

where we use repeatedly the equations
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Wo@ - @W,®m;...m_,ker A4,(0) = kern; @ ;... m_ ker 4,(0)
= kernj@ﬂj+1...nk._1 kerAk(O)
= VI/()@“'@ VVj®7tj+1‘..nk_1kerAk(O)

This concludes the proof of (i).

To proof (ii) we note that, by (i), if 4(z) is well-behaved the space V., is
complemented in V; for each k. It follows that n, . . . 7, _ ; maps ker A4,(0) isomor-
phically onto ¥, for each k and hence 7, ker 4, , {(0) is complemented in ker A4,(0).
Since ker 7, @ ker A4, . 1(0) = ker m, @ m ker A, ,,(0) it follows that ker m, @
ker A, +1(0) is complemented.

We see from the last theorem that A(z) is well-behaved if and only if ker 7, @
ker Ay 4 1(0) is complemented for each k whereas it is admissible if and only if
ker A,(0) is complemented for each k. Well-behavedness is a strictly stronger
property than admissible as the following instructive example shows.

Let F be a Hilbert space, let U and V be closed subspace such that U n V = {0}
and the sum U @ Vs not closed (see [6]). Let P and Q be bounded projections
such thatker P = U and ran Q = V, and define A(z) = (zQ + I — Q)(zP + I — P).
Then A(0) = (I — Q)(I — P) and so ker A(0) = ran P. We may therefore take
g =P. Then A((z)=zQ + 1 —Q, A,(0)=1— Q and ker 4,(0) =ranQ. So
ker o @ ker 4(0) is not closed and hence cannot be complemented.

The advantage (to the theorem prover) of well-behavedness appears when
considering left-right equivalence, a notion which we now define. Let
Ae A y(C, L(F,F)) and Be «/(C, L(F, F)). We say that A and B are left-right
equivalent at z = 0 if there exist operator-valued germs U and V such that U(0)
and V(0) are invertible, and 4 = U BV.

The definition clearly makes sense for germs taking values in a Banach algebra,
and it is not hard to show that ascent is in this case a left-right invariant. However
the proof of the next result uses the special choice of multiplicity projections
discussed above, available for well-behaved operator-valued germs. The con-
clusion is known for matrix functions and its usual proof in that context makes
use of a matrix concept, the Smith form [4]. Our proof is completely matrix free.

THEOREM 11. Let two admissible operator germs A(z) and B(z) have finite ascent
nand let my, pi, k = 0,1,2,... be multiplicity sequences for A(z) and B(z) respective-
ly. Let VA =ny...m_ ker A,(0) and VB = py... pi 1 ker B;(0).

Then:

@) If A(z) and B(z) are left-right equivalent there exists an invertible linear
mapping T € L(F, F) such that T(V*) = V; for each k 2 0.

(i) If A(z) and B(z) are well-behaved and there exists an invertible linear
mapping T e I(F, F) such that T(V;*) = V2 for each k 2 0 then A(z) and B(z) are
left-right equivalent.
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PrOOF. (i) Since the spaces Vj are invariants for left equivalence we may
assume that A(z) and B(z) are right equivalent: let A(z) = B(z) U(z) where U(0) is
invertible. Then there exists for each k a germ U,(z) such that U,(0) is invertible
and Ai(z) = Bi(z2) Ui(z). From this follows p,Ui(0)7, = U,(O)7,. Moreover we
have that

Ay 4 1(2) = Bis1(@)zpi + I — p) Uz ' mye + T — m)
so that
Uer1(2) = i + T — p) Uz ' e + T — ).
Hence p, Ui 1 1(0) = p U(O) 7, = U,(0)x,. Iterating backwards we obtain
Po--- PeUc+1(0) = UQ) 7y . .. 7,
and this holds for all k = 0. Hence

UO)VA=UO)rg. .. m_ ker 4,(0)
= po- - - Pi—1 U(0) ker 4,(0)
= po-- - Pr—-1 ker By(0) = VkB-

(ii) By (i) it suffices to consider the case T = I. Suppose then that V* = V2 for
all k and (dropping the superscripts A and B) suppose that 1} is complemented in
Vi _, for each k. By the proof of the second part of theorem 10 we may choose the
projections 7, and p, so that ker w, = ker p, for each k and, denoting these spaces
by K,, the inclusions K, < K, ; hold.

We may assume, without loss of generality, that

A@) = (@ry-y + 1 — 7y y)(2p—2 + 1 — Tp-3)...(zmo + [ — 7o)
and
B(z) = (zpn—1 + 1 — pn-1)(@Pn-2 + I — pu-3)...(zpo + I — po)

We now claim that both B(z) 'A(z) and A(z) 'B(z) are polynomials, thus
establishing the left-right equivalence of 4 and B. In fact we have

B(z) 'A@Z) = oo+ 1 —po)z i pr A1 —p1)...z  puoy + 1 — puy)
Ry y + 1 —my_ )y + 1 —m,_3)...(27no + I — 7p)
=@ o+ I—p) ' pr+1—p1)...C  pus+1—puy) Y M1 — W)
k=0

We have that p,(I — n;) =0, that is, p; = p;m;, if i 2 j. This leads to p;7;_, =
pim;mi—y = p;w;. Hence pyn;_, — ;) = 0if i = j. Hence
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B(z) ' A(z) =

Y e oo+ L= po)z tpr AT —py). 2 ey + T = ) me—y — ™)
k=0

=

= 0(po +z2(I — po)). .. (k-1 + 2 = px-))(W—1 — ™)

and this is plainly a polynomial. The proof that A~ !B is a polynomial is similar.
This concludes the proof.

A corollary of the theorem is that the numerical sequence rank =, if consisting
of finite numbers ending in 0, completely determines the left-right equivalence
class of A(z) at 0.

Given A(z) well-behaved and of finite ascent n we can now find a germ of
a particularly simple form which is left-right equivalent to A at 0. Let p,,
P1s-..,Pn—1 be projections which commute with each other such that for each
k the range of p, is V;. The germ A(z) is then left-right equivalent to the product

(@pn-1+ 1 = pu-)(2pn-2 + 1 = pn-2)...(zpo + I — po)
which equals

n

(8) Z Zk(Pk—x - pPK) = Z Zkak

k=0 k=0
where o, = p;_; — p, and is a projection. Note that o;0; = 0 if i & j and that
Y _ o0, = 1. Furthermore we can recover pj from the formula p, = Y7, ;6.
We have proved:

THEOREM 12. Any well-behaved germ of finite ascent is left-right equivalent to
a germ of the form ZLOZ"ak for certain commuting projections o satisfying
oi0;=0ifijand Y o0, =1

In the case where the germ has finite multiplicity at O this is a case of a theorem
of Gohberg and Segal (theorem 3.1 of [5]). Our proof is, however, quite different.

In the author’s paper [2] there was some discussion of commuting families
(theorem 2.3 of [2]). A stronger result is possible. We are able to identify both
sequences of spaces U, and V.

THEOREM 13. Let A be an operator germ and suppose that:

(i) The space ker A(0)* is complemented for each k;

(ii) A(2)A(0) = A(0)A(z) for all z;

(iii) For each k the restriction of DA(0) to ker A(0) is an isomorphism of
ker A(0)* onto itself.
Then A(z) is admissible, and for each k we have
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9) ker A(0)* = ker Ay(0) @ ker 4,(0) @ - @ ker A,_(0) = U,_,
where the sum is topological; and
(10) Vi = T *A(0)ker A(Q)+!

where T is the restriction of DA(0) to ker A(0). Next assume that:
(iv) A(0)ker A(0)c*! is complemented in TA(0)*~* ker A(O)* for each k.
Then A(z) is well-behaved.

Proor. We preface the proof with some general remarks. Note that D 4(0)
commutes with 4(0) and so it automatically maps each space ker 4(0)* into itself.
In [2] it was assumed, in addition to the present hypothesis (ii), that 4(0) was
a Fredholm operator of index zero and that ker A(0)intersected ker D A(0) only at
0. These hypotheses imply the present hypothesis (iii). Another hypothesis that
implies (iii) and is interesting because it makes sense in a Banach algebra is: (0, 0)
does not belong to the joini ~pectrum of the commuting pair (A(0), D A(0)).

We now proceed with the proof proper. Initially we follow the proof of
theorem 2.3 of [2]. Thus we quote the following consequences of (i) and (ii),
referring the reader to [2]:

A(0)* Ay(z) = A(2) A(0)*
A(0)*DA(0) = D A(0) A(0)*
ker A(0) N ker 4,(0) = {0}.

From these relations we conclude that 4,(0) maps the space ker 4(0)* injectively
into itself, and that the sum of ker 4(0)* and ker 4,(0) is direct, though we cannot
as yet conclude that it is topological.

We use induction to prove the sum formula (9). Let (H), refer to the conjunc-
tion of the two statements:

ker A(0)* = ker A,(0) @ ker 4,(0) ® - -- @ ker 4, _(0);
Ay 1(0)ymaps ker A(0)* ! onto itself.

The statement (H), is trivially true. Now assume, by way of an induction
hypothesis, that (H); is true for all natural numbers j < k. We note that, by the
proposition on page 255 of [2], the sum of spaces in equation (9) is independent of
the way the projections are chosen. We may therefore make a special choice of
m,_ 1 by requiring that it should map ker 4(0)* ! to 0. Now we can show that
A(0) maps ker A(0)* onto itself. We have that ker A(0) = ker 4(0)* ' @
ker A, _;(0). Since A4,(0) = DA, _;(0)m;-, + A, _(0) the restriction of A4;(0) to
ker A(0)* ! is A,_,(0), known already by the induction hypothesis to map
ker A(0)* ! ontoitself. It is enough therefore to show that 4,(0) maps ker 4, _;(0)
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to a complement of ker 4(0)* ! in ker 4(0)*. The mapping A4,(0) induces a map-
ping 4,(0) from ker A(0)/ker A(0)* ! into itself. We have to show that this
induced mapping is surjective. The mapping DA(0) also induces a mapping
DA(0) from ker A(0)/ker A(0)*~! into itself. Now this mapping is surjective by
(ii). We shall show that 4,(0) = DA(0). Let x eker 4, _,(0). We have that

A(0)¢ 1(A(0)x — DA(0)x) = A(0) " {(D Ay (0)x — DA(0)x)
= DA(0)A(0)< 'x — A(0) "1 DA(0)x =0

Hence 4,(0)x — DA(0)x e ker A(0)*~ ! and so 4,(0) = DA(0). This establishes half
of (H)e+ 1.

We have still to show that ker A(0)**! = ker A(0)* @ ker 4,(0). Now it is clear
that ker A4(0)* @ ker 4,(0) is a subspace of ker A(0)**!. We do not know whether
or not the sum is topological but this will follow once we prove that the inclusion
is in fact equality. The argument for equality is purely algebraic. Let S be the
restriction of 4,(0) to ker A(0)**!. By what we have proved the range of S is
ker A(0)%, its null-space is ker 4,(0), its range and null-space meet only at 0, and it
maps its range onto itself. It follows that the domain of S is the sum of the range
and null-space of S.

To prove (10) we note that by (9)

A(0)<ker A(0)** = A(0) (ker A(0) @ ker 4,(0)) = A(0)*ker A4,(0)
We therefore have to show that
(DAO)r, ... m 1 ker 4,(0) = A(0) ker 4,(0)
To prove this we shall establish a formula interesting in its own right:
(11) (DAO) 7. .. w1 x = (—1)*A(0)x

for all x € ker 4,(0). Again we use induction. The case k = 0 reduces to mox = x
for x eker A(0). Suppose that (11) holds for a given k. Let x e ker 4, ,(0). Then
mx € ker A4,(0) and so

DA} ' ny. .. m_ mex = (— 1)*DA(0)A(0)* my x
= (— 1) A0y D A(O)m,x
= (=11 A0 4,(0)x
(since Ay +1(0)x =0)
— (_ 1)k+1A(0)k+1x

This concludes the proof.

For a germ A(z) satisfying the conditions of the last theorem, except possibly
condition (iv), there is a special choice of projections available whether or not it is
well-behaved. We can choose the projections 7, so that m, maps all spaces
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ker 4;(0) to 0 if j < k. It follows that m;7; = 0 if i > j and an easy calculation
reduces the product (5) to

n—1

-1y m+I=cz—-1S+1

k=0
so that A(z) is left equivalent to the germ (z — 1)S + I, where S = Y 3 Z3 ;. Infact
this germ provides a simple example of a germ which satisfies the conditions of
the theorem.

THEOREM 14. Let A(z) satisfy the conditions of theorem 13, suppose that A(0) is
not invertible but has finite ascent m. Then A(z) has quasi-ascent 1.

PrOOF. We have that A(z)isleftequivalentto(z — )S + I =(z — 1)S — I + ¢])
where t = (z — 1)"! — 1. Since reparametrization does not affect ascent, the
result follows from theorem 7.

We end this section with some additional results concerning the property of
well-behavedness.

THEOREM 15. Let A(z) be an admissible germ.

(i) Ifran A(0) is closed then the sum ker no @ ker A{(0) is closed.

(i) If the sum ker A,(0) is complemented and ran A,(0) is closed then ran A(0) is
closed.

(iii) If A(z) is well-behaved then ran A,(0) is closed for each k.

(iv) Ifthe space F is isomorphic to a Hilbert space and A(z) has finite ascent then
it is sufficient for A(z) to be well-behaved that ran A,(0) should be closed for each k.

Proor. (i) Let ran 4(0) be closed. Let u,ekern, and v,eker 4;(0) be such
that u, + v, converges to a point y. It suffices to show that u, converges. We
have that nyv, - nyy. Furthermore 4(0)(u, + v,) = 4(0)y. But AO)(u, + v,) =
A@O)u, — DAO)rgv, and DA(O)ryv, converges. Hence 4(O)u, converges, and
since ran A(0) is closed and u, eker 7, we have that u, converges.

(i) Assume that the sum kern, + ker A{(0) is complemented and that
ran 4,(0) is closed. Choose 74 so that ker n, < ker 7,. Now let x, be a sequence
such that 4(0)x, converges. We may suppose that x, € ker n,. But then 4,(0)x, =
A(0)x, so that 4,(0)x, converges. Now x, lies also in ker n, and ran 4,(0) is
closed. We conclude that x, converges. Hence ran A(0) is closed.

Assertions (iii) and (iv) are obvious corollaries of (i) and (ii).

7. Deformations and left-right equivalence.

In this section we will describe the deformations of well-behaved operator germs
of finite ascent up to left-right equivalence. Since left-right equivalence is weaker
than left equivalence, we can expect that in general fewer parameters will be
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needed than for left equivalence. For example if A(z) is an operator-germ of finite
multiplicity and ascent n at 0, with multiplicity sequence ny, ..., %, -, then by
theorem 5 we can describe all deformations of A(z), up to left equivalence, using
parameters in the space L(F,F)rny x -+- x L(F,F)n,_,. This space is infi-
nite-dimensional if F is infinite-dimensional. If left-right equivalence is used then
we can use a finite-dimensional parameter space provided the multiplicity is
finite, and, what is more, we obtain a precise formula for its dimension.

Theorem 12 provides a canonical form with respect to left-right equivalence
for well-behaved operator germs of finite ascent. This form is ) &_,0,2* where
o, (k=0,...,n) are commuting projections such that g;0; =0 if i +j and
Yr_o0x = 1. We shall consider deformations of a germ in canonical form and
allow values in a Banach algebra Y.

First we observe that for a germ in canonical form the division formula of
theorem 4 takes a rather simple form:

n

f(Z’ é’ a) = U(Z’ é’ a)(i O'ka +
k

=0 k=

1 n—1
akpkzk> + Z &, a) izt
0 K

=0

where p, = ) ', +0;. This formula is matched by another division formula in
which the divisor is on the left:

n n—1 n—1
f(Z’ é’ b) = ( z akzk + 2 pkbkzk> V(Z, é, b) + z pksk(é, b)zk
k=0 k=0 k=0

We proceed to combine these two formulas into one.

LEMMA 6. Let Y be a Banach algebra, X a Banach space, o, (k =0,...,n)
commuting idempotent elements of Y such that 6;0; = 0ifi % j and Yr oo =1.
Let py = Y7110 Then for any germ fe.o/o(C x X x Y" x Y",Y) there exist
Uand Vin oo(C x X x Y" x Y",Y) and g, € o(X x Y" x Y", Y) such that

n n—1
f(Z, é’ a, b) = U(27 éa a, b)( Z O-kzk + Z akpkzk>
k=0 k=0

n n—1 n—1
+ < z oz + Z pkbkzk> V(z,¢ a,b) + Z pigu(é, a,b)p2*
K k=0

=0 k=0
PrOOF. Let M, be the vector-space of all germs expressible in the form
n n—1
U(z,¢,a, b)( Yoo+ Y akpkz”>
k=0 k=0
and let M, be the vector-space of all germs expressible in the form

n n—1
<Z oz + ), Pkbk2k> V(z,& a,b)
K

=0 k=0
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for some U and V. Let M = M, + M,. Let N, be the vector-space of all germs of
the form p,g(&,a,b)p,z* for some g. Let L, and R, be the vector-spaces of all
germs of the form p,s(&, a, b)z* and t(¢, a, b) p,.z* respectively. We shall show using
backward induction that Ly c M + Ny + -+ N,_; and Ry = M + N, +
4+ N,_yfork=0,1,...,n — 1. We begin with n — 1. Using right division we
can find t; e /(X x Y" x Y", Y) such that

n—1

reM, + Yt
k=0

Hence, for se o/5(X x Y" x Y", Y) we have

n—1
Pn-152""LEM, + ) pu_iStipizt
k=0

n—1

= Mr + z pkp,,_lstkpkzk M+ NO R Nn~1
k=0

Hence L,y M + Ny + -+ N,_,. Similarly R,_; « M + Ny + **+ N, _;.
Next we suppose that the inclusions are known fork + 1,k + 2,...,n — 1. By
right division we can find t;e &/o(X x Y" x Y" Y) such that

n—1

eM, + Y tip;Z
j=o

Hence, for se o/y(X x Y" x Y", Y) we have
n—1

sz eM, + Y, pustjp;z’
j=0

k n—1
=M+ Y pipestipiz + Y. pust;p;z’
ji=0 j=k+1

€M, + No+ "+ N+ Riwy + -+ Ry
CM+N0+"'+N,,_1

by the induction hypothesis. Hence L, « M + Ny + --- + N, -, and by similar
reasoning R, =« M + Ny + *-- + N,_. This concludes the proof.

LEMMA 7. Let f € o/o(C x X, Y) be such that f(z,0) = Y s _o0,2*. Then for any
h there exist U and Vin o/,(C x X,Y) and g, € o((X,Y) such that

n—1
h(z,8) = U(z,9)f (2, ) + f(z, ) V(z,0) + kzo Prg(&)pi

If, moreover, X is a product of Banach spaces X, x X, and hrestricted to X; x 0
vanishes, then we can choose U, V and g so that they too vanish on X, x 0.



DIVISION FORMULAS FOR HOLOMORPHIC MAPPINGS WITH VALUES ... 317

Proor. By theorem 5 and its analogue for left division we have

n n—1
[z = qz 5)( Z ozt + Z ak(é)ﬂﬂ")
k=0 k=0

and

n n—1
[z 8= ( Z oz + Z Pkbk(f)2k>42(2, £)
k=0 K=0

for certain a, and b,. By the last lemma we have

n n—1
(12)  h(z,&) = Uy(z,¢,a, b)( Y o+ Y akpkzk>
k=0 k=0

n—1

n - n—1
+ < Y o+ Y pkka"> Viz & ab) + Y pugu(é a,b)pzt
k=0 =0 k

k =0

for certain germs Uy, V; and g,. Now put a = a(§), b= b(¢), U = U,q; ' and
V = qz_ 1 V].

Now for the last part. Let (£), denote the projection of £ to X; x 0. By (12) we
have

n n—1
0= Ui(z,()1,a, b)( Z ozt + Z akpkzk>
k=0 k=0

n n—1 n—1
+ ( Z 02" + Z Pkbk2k> Vi(z,(&)1,a,b) + z Pegi(()1,2,b) py 2*
k=0 k=0 k=0

Now we set a = a(&), b = b(&),
Uz, &) = (Us(z, & a(8),b(&) — (Us(z, (9)1,a(0), b(&)) gy(z, &) 7

and

V(z,8) = 42(2, &) " (Vi(z & a(8), b(&) — (Vi(z, (9)1, a(8), b(2))).

THEOREM 16. Let f(z, &) be such that f(z,0) =Y r_o0x2" Then there exist
invertible germs E and F such that

n—1

5 pkgk(c)pkz") F(z,8)
=0

k

f(z,8) = E(z, 5)( Y ozt +
k=0
for certain germs gi€ #o(X, Y). Moreover E(z,0) = F(z,0) = 1 and g,(0) = 0 for
each k.

ProoF. Theidea is to find invertible germs E and F, and germs gy, depending
on an additional global scalar parameter p such that the function H given by
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(13) H(z,¢,p) = E(z,¢,p) ((1 - pf(z9)

n n—1
+pY o+ Y pkgk(é,p)pkzk> F(z,&,p)
k=0 k=0

is independent of p and g,(&, 0) = 0. Equality between the cases p =0and p = 1
gives the required result.
Let ce Y”", and consider the expression

n n—1
K@z éep)=(1—pfd)+p Y oz + 3 pcepuzt
k=0 k=0
Note that K(z,0,0, py) = f(z,0) = Y 5, 042" Applying lemma 7 we can find U, V
and r, such that

(14) f(Z, é) - ZO akzk = U(Z, éy C, p)K(Z’ é) C, p)

k

n—1

+K(z,¢e,p)V(z.¢,¢,p) + kZO pird, ¢ p)piz*

for (z,¢,¢,p) in a neighbourhood of (0,0,0, py). Moreover by the last part of
lemma 7 we can ensure that U(z,0,¢, p) = V(z,0,¢c,p) = 0 and r,(0,¢,p) = 0. We
can do the same for any p, in the unit interval [0, 1]. By choosing finitely many
neighbourhoods covering the unitinterval, and a partition of unity, we can define
U,V and r, for all p in the interval [0, 1] and all (z, £, ¢) in a neighbourhood of
(0,0,0) so as to satisfy (14). They will be analytic in (z, £, ¢) but only C* in p.

Let E and F (taking values in Y), and g (taking values in Y") satisfy the
differential equations

dE dF dg

7};=EU(2,€,g,p); g;=V(z,é,g,p)F; -d;=r(6,g,p)

with the initial conditions
E|p=0 =1 F|p=0 =1 g|p=0 =0

In these equations z and & play the role of parameters. The first two equations are
linear and therefore have unique solutions, which have invertible elements as
their values, defined over the whole interval 0 < p < 1. The third equation has
a unique solution on this interval if ¢ is sufficiently small, since, by the lemma, the
equation is satisfied by g = 0 in case £ = 0. The solutions are analytic in z and ¢.
From the vanishing of the right-hand sides of the differential equations when
¢ = 0 we deduce that E(z,0,p) = F(z,0,p) = 1 and g,(0,p) = 0.
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Consider the mapping H defined by equation (13). By the differential equa-
tions satisfied by E, F and g we find that dH/dp = 0. Hence H is independent of
p and comparing p = 0 and p = 1 we deduce

n n—1
f(Z, é) = E(Z’ é: 1)( Z akzk + Z pkgk(é’ l)pkzk> F(Z, é’ 1)
k=0 k=0
This concludes the proof.
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