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K-GROUPS OF TOEPLITZ ALGEBRAS OF
REINHARDT DOMAINS

ALBERT JEU-LIANG SHEU!

Introduction.

For D in a large class of Reinhardt domains D in C2, the structure of the Toeplitz
C*-algebra #(D) was explicitly described in [Sh1] (where #(D) was denoted by
F(D)) in terms of data from the boundary geometry of D (more precisely, the
degrees of contact at the intersections of the boundary curve of D’s logarithm
domain C and its convex hull €). The key step in that paper was to use the
CMR-program (initiated by Curto, Muhly and Renault [M-R, Cu-M]) to ex-
press #(D) as a concrete groupoid C*-algebra. From the groupoid structure
explicitly obtained in [Sh1], we can easily get that the Toeplitz C*-algebra #(D)
of such a Reinhardt domain contains Fredholm operators of any given indices,
and then we proceed to show that the K-groups of such a C*-algebra .#(D) (with
some restrictions on the boundary) are free abelian with ranks determined by the
boundary geometry of D. More precisely, we have Ko(#(D)) =~Z**! and
K (#(D)) = Z#, where # is the number of lower horizontal faces B (not including
E and N) of the polygons P (constructed in [Sh1]) corresponding to linear faces
F of C (the logarithmic domain of the pseudoconvex hull D of D) with rational
slopes. (The question of computing these K-groups was raised to the author by
professor H. Suzuki while visiting MSRI.)

Section 1.

In the CMR-program [M-R, Cu-M], interesting C*-algebras like Wiener-Hopf
C*-algebras and Toeplitz C*-algebras are realized as groupoid C*-algebras [Co,
R] of groupoids constructed from groups in special ways. We first make a simple
observation for the following general situation. Let G be a discrete group
embedded in a locally compact G-space Y as a sub-G-space such that the closure
X of a positive cone P (with P generating G as a group and PA P~ = {e}) is
a regular compactification of P, and let ® be the reduced groupoid (Y x G)| X
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(c.f. [R, M-R]). By [R, M-R], the regular representation p of the reduced
groupoid C*-algebra C*(®) (with the canonical Haar system 6, x 8,) on [%(P) is
faithful. For such groupoids, we have the following lemma about indices of
Fredholm operators (cf. [D2]) in C*(®) (which could be suitably generalized to
other groupoids).

LEmMMA 1. With P, G, Y and X as above, if there is an element p € P\{e} such that
the closure of {p"|n = 0,1,2,...} is open in X, then the operator algebra p(C*(®))
contains Fredholm operators of any given indices.

ProOF. Since pe P\{e} and Pn P~ ! = {e}, p is not of finite order. Since the
closure C of A:= {p"|n=0,1,2,...} is both open and closed, the function
fx,g) 1= xc(x)0,(9) + xx\c(x)d.(g) is in C(®), where y represents characteristic
functions, and its representation p(f) under the regular representation p on [%(P)
is clearly the direct sum of a unilateral shift on [*(4) and the identity map on
I%(P\ A), which has index one.

Recall that in [Shl], we considered a large class of Reinhardt domains
D (containing 0) in C2, which includes D with the boundaries C of its logarithmic
domain C = In(|D]) piecewise analytic (or piecewise smooth with a meaningful
degree of contact) at the intersections with the boundary dC of the convex hull
C of C and includes pseudoconvex D. An immediate application of the above
lemma is that the Toeplitz C*-algebra .#(D) of a Reinhardt domain D considered
in [Sh1] with n,, = 2 contains Fredholm operators of any given indices. In fact,
for D with n,, = 2, we have #(D) =~ C*(®), where ® is the groupoid constructed
in [Cu-M] from the Reinhardt domain D by reducing Y x Z? to X for some
Z?-space Y containing Z* with X the closure of the positive cone Z2. By the
detailed study in [Sh1] of the topology of X, we know that X is a regular
compactification of Z2 and that the closure of, say, {(n,0)|neZ,} (or
{(0,n)|neZ, })in X isopenin X whe n,, = 2. Thus applying the above lemma, we
get the following corollary.

COROLLARY. If D isa Reinhardt domain in C* considered in [Sh1] withn,, = 2,
then the Toeplitz C*-algebra #(D) contains Fredholm operators of any given
indices.

Note that the Toeplitz C*-algebra #* # studied in [D1, Pa] (or equivalently the
Wiener-Hopf C*-algebras #(P, ;) in [Sh2]) can be realized as a groupoid
C*-algebra C*(®,, 5) by the CMR-program, and since it is easy to check that ®, g
satisfies the requirement in lemma 1 if 0 Q or € Q, lemma 1 shows that = #
with « e Q or # € Q contains Fredholm operators of arbitrary indices as proved in
[Pa] by a different approach [D1].

However lemma 1 does not apply to many interesting cases, for example .#*#
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with both « and B irrational. In [Pa], it was proved that K,(#*#/2¢)is always Z,
and the interesting question of whether .#* # contains a Fredholm operator with
index one raised there is still open. The author would like to thank Professor R.
Douglas and his student for pointing out an incorrect proof in the earlier version
of this paper about the existence of such operators. We would like to briefly
describe the groupoid structure of ®, , for irrational « and f, which shows why
lemma 1 does not apply in such cases and is of some independent interest.

Let P, s be the cone {(m,n)eZ*| —am+n=0 and —pfm + n <0} (with
0 < o < B)in G = Z* whose Wiener-Hopf algebra #'(P, ;) [M-R] is exactly 9= #
studied by E. Park in [Pa]. It is not hard to see that the Muhly-Renault
compactification X, s of P, is always regular [M-R]. In fact, using Mu-
hly-Renault’s approach, we can get by direct calculation an explicit description of
X, s and hence G, ; as follows. We only describe it here for the case where both
aand areirrational. Let 1,(1):= —op; + ppand i4(p):= —Puy + p, for pez?.
We have

X, =P, 3R, URsU {0}

as sets, where R, and R; are R as sets, and X,  is a compact subset of a Z>-space
Y, s [M-R]. We shall say that a sequence r, of real numbers converges to r from
the right (or left) if for n sufficiently large, r, is close to and no less than (or no
greater than) r. The topology on X, ,is characterized by the following. For any
non-negative real number r, a sequence z(n) € P, z with lim |[z(n)|| = oo converges
to r (respectively, —r) in R, if and only if 1,(z(n)) converges to r from the right
(respectively, from the left). Similar description applies to Ry, while z(n) converges
to oo if and only if lim (1,(z(n))) = lim(14(z(n))) = co. The most interesting part is
the topology on R, and R;,. A basis of the topology on R, or Ry is

{{r,r + &yu[—r —¢& —r)|r 20and ¢ > 0}

(note that this is different from {[r,r + ¢)|r€ R and & > 0}). Now R, and R, are
not invariant under the Z2-action on Y, ; and the partial Z*-action, say, on R, is
described by that

() =1+ 1,(n)
for r = 0 and ueZ? such that r + 1,(u) = 0, and that
p(=r=—r—1,(u

for r > 0 and ueZ? such that r + 1,(u) > 0. Now ®, 4 is the transformation
group groupoid Y, ; x Z? reduced to the subset X, 4, and by the general theory
of groupoid C*-algebras [R2], we get a composition sequence of #°(P,, 5), namely

N = C*((ﬁa‘ﬂlpa,ﬂ)gj: C*(Qa‘ﬁlpa'ﬁURaURﬁ)g C*(Ga_ﬂ)-'—' W(Pa,ﬁ)
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such that
IIH = C*O4 5| R, U Ry) = C(B,, 4| R,) ® C*®,, 5| Rp)
and
W(P, p)] F = C*Z* = C(T?).

It can be checked that R, U {0} is the Muhly-Renault compactification X, of the
cone P,:= {(m,n)eZ*| —am + n = 0} in Z? and the (partial) Z2-action on X, is
compatible with that on R, U {c0}. Thus we have

WPy, g)/CHG| P, 0 Rg) = C¥(6, 4| R, L {o0}) = CXB,) = #(P,)

where #'(P,) is the algebra studied by R. Douglas in [D1]. We can get a similar
statement for Py = {(m,n)eZ*| —Bfm + n < 0}. Putting these together, we get
W (P, p)/A isomorphic to the pull-back of the quotient maps

ai: W(P) = CH6;) - CXG;| {o0}) = C(T?),
i=a,f,ie.
W (P, 5) = {(a,b)e W(P,) x W(Pp)|a,(a) = as(b)}.

In [Pa], this result was derived by working directly on the Toeplitz operators in
a tricky way.

Section 2.

Now we proceed to compute the K-groups of .#(D) and in the following, D shall
always denote a Reinhardt domain in C? considered in [Sh1] with n, = 2. For
simplicity, we shall also assume that X, (identified with d,C [Sh1]) has only
finitely many, say n, connected components. For the properties about ® used in
the rest of this paper, we refer to [Sh1]. First, we state a simple lemma.

LEMMA 2. If a C*-algebra of < B(H) contains the compact operators X and
a Fredholm operator of index one, then Kqy()= Ko(/H) and
Ki(oA)DZ = K(A/X).

PRrOOF. Since .« contains ¢ and a Fredholm operator of index one, there is
a unilateral shift (with respect to a suitable orthonormal basis) in /. Thus any
finite rank projection in ) is stably equivalent to 0 over &/ and hence the
homonorphism from K (") to Ko(</) induced by the inclusion map is the zero
map. So by the six term exact sequence of K-groups [B] for
0> o - .o/ H — 0, we get the statement.

By lemma 2 and the above corollary, we get Ko(F(D)) = Ko(F(D)/A’) and
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Ki(#(D)) = K{(F(D)A)O Z. Let 0X = X{ U X,. By the result of [Sh1], we
have #(D)/o" =~ C*(®|dX) and a short exact sequence

1 0-C*¥B|X,) > CHB|0X) - CxB | X,)~0.

Our strategy is to determine the index map ind and the exponential map exp in
the 6-term exact sequence corresponding to this short exact sequence, and then
by the known results on the K-groups of the ideal C*(® | X,) and the quotient
C*(® | X,), we can easily compute the K-groups of C*(® | 0X).

Recall that C*(® | X,) is the direct sum of C*(® | X;)’'s where B’s are 1-dimen-
sional lower faces (including B = E, N) of polygons P corresponding to 1-dimen-
sional faces F of 0C, so K, (C*®|X,)) = 2®K ,(C*® | Xp)). On the other hand,
C*(®| X,) is the direct sum of C*(® | X;) =~ C(I x T?) where I's are connected
components of X, and X; = {x,|pel}. Since I's are homeomorphic to closed
intervals (including points), the K-groups of C*(® | X,) are direct sum of those of
C({p} x T?y’s, one p for each I,i.e. K, (C*®|X,)) = Z®K (C({p} x T?) = nZ2.
In order to determine ind and exp, we only need to know how they act on the
direct summands.

First we claim that the image of K ,(C(I x T?)) under ind or exp is contained in
the sum of those K,(C*(®|Xj5))'s with one of the end points b,c of B(< P)
corresponding to one of the end points of I (< 9, C). Infact, if the end points b, ¢ of
B do not correspond to any end point of I, then Xz and X, are disjoint closed
subsets of X, where Xz= XpuU {)s,x}. By modding out the ideal
C*® | 0C\(X5 U X)) from the sequence (1), we get a commuting diagram

@ 0-Cx6|X)~- CHG|oX) -  C6lXx;) -0
! l l
0-CXB|X) >  CXO|XzuX) 5 CHG|{xp 1} v X))~ 0
l I
CX® | X5 ® CUI x T?) - 2C(T*) @ C x T?)

Since the lower sequence splits on C(I x T?2),i.e. there is a homomorphism s from
C(I x T?) to C*® | X5 U X;) such that mos is the identity map, the index and
exponential maps corresponding to the lower sequence vanish on the summand
K, (C(I x T?)). Now note that the left and right vertical arrows in (2) induce direct
summand projection on the K-group level and so by the functoriality of the
6-term exact sequence, we get our claim.

Now consider a similar commuting diagram gotten by modding out
C*® | 0X\Xj) from (1)
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3 0-C*B|X)) > CXB|0X) > CXB|X;) —0
d ! i
0 CH®|Xp) > CHO | X5) S CXO | {4, 1.}) = 0
Il
2C(T?)

As above the left and right vertical arrows induce direct summand projections on
the K-group level, so we only need to determine the exponential map and the
index map corresponding to the lower sequence. More precisely, we shall deter-
mine the maps 7 and 1 in the 6-term exact sequence

) @72
Ko(CHG | Xp) - Ko(CHO|X5) - Ko(C*(ﬁu {25 %:3)
I<1(C”‘(Qf3T |I{Xb7 X)) < K1(C*® | X5)) KI(C*l(g | X))
2oz

where the first (respectively, the second) copy of Z? in K, (C*® | {1, x.}) =
2K (C(T?) =~ Z* @ Z* corresponds to the direct summand K, (C*®|{y,}) =
Z?2 (respectively, K (C*(® | {x.})) = Z?). Accordingly, we shall decompose 1 and
tinton, @ n.and 1, @ 1. respectively by restricting # and 1 to the first or the second
copy of Z in K ,(C*(® | {x;, x.}))- Since the same point b may be the end point of
two different one-dimensional faces B and B’, we must fix the generators of
Z? =~ K (C*(® | {x»)}))for fixed b, and describe n and 1 (or more precisely, n, and 1,,)
in terms of these fixed generators when K (C*(®|Xp)) are identified with
suitable concrete abelian groups. By Kiinneth formula [Sc], we have

Ko(C(T?) = Ko(C(T) @ Ko(C(T) @ K, (C(T) @ K,(C(T))

and
K (C(T?) = K{(C(T) ® Ko(C(T)) @ Ko(C(T) ® K ((C(T))

So the canonical generators of K, (C(T)) & Z give rise to canonical generators of
K (C(T?)) and we shall take these to be the generators of K (C*(® | {y,})) = Z*.
Note that an orientation preserving change of basis for Z2, i.e. an isomorphism of
Z? represented by an element ¢ of SL(2,Z), induces the identity map on the
Ko-group of C*Z?) =~ C(T?) and the isomorphism ¢ on the K,-group of
C*(Z?) = C(T?)with respect to the above canonical generators. We shall study (4)
in three different cases.

(i) If the slope a of F is irrational, then | Xj is the transformation groupoid
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(RuU{+0}) x,Z* where Z% acts by (m,n) t = t — (mo. + n), and the above short
exact sequence becomes

0 o, @ H = C(RU{+0}) x,Z2 >2C(T? -0,

the 6-term exact sequence corresponding to which can be easily computed using
results from [Ji-Ka] (note that the symmetry maps x+——x on Ru {+ o} and
u —pon Z? induce a symmetry of the above short exact sequence). In fact, we
have

2 = Kolsty ® #) > Ko(CR U {# 0}) x,Z9) > 2Ko(C(T?) =Z*@Z?

T in
22@7* = 2K(C(T?) « K4 (CRU{t©}) X, Z}) « Ky(A Q@ H)= Z*

where n(u,v) = p — v and 1(u,v) = p — v for u,veZ? when K, (o, ® X are
suitably identified with Z2 So it is easy to see that the K-groups of
C(R U {+ 0}) x, Z? are both Z2.

(i) If the slope o of F is rational, say o = p/q with p, q relatively prime natural
numbers, and the slope of B is 0, then ® | Xj is the transformation groupoid
(Zu {+0}) x, Z*> with Z* acting by «’(1) ' n = n — (pp; + qu). Under a change
of basis for Z?, we have only the first component of Z* acting on Z non-trivially
(by translation). More precisely, we have C*(Zu{+o0}) x,Z%)
CH(Zu {+0}) x.Z%) = (CZ v {4 0}) x,Z) ® C(T), where t is the Z action by
translation and t'(u)-n = n — u, for peZ2 Note that the first isomorphism is
implemented by the groupoid isomorphism y sending (n, p)€(Z U { + 0}) X, Z*
to (n, d(w) €(Z U { £ 00}) x,. Z2, where ¢ is the isomorphism sending ueZ? to
(pu1 + quz, P'uy + q'uy)eZ? with pg' —p'q=1, and hence (7o @)(u)'n=
n — puy — qu, = o'(u) - n, and that y induces the following commuting diagram

0—H @CT)» CZU{+m)) xzZ2 —2C*Z?) = 2C(TH) -0

I Ly !
04 ® C(T) > CZ U { £ 00}) Xg.p 2% = 2CHZ2) = 2C(T?) 0

where the ideals on the left have ben identified with #” ® C(T) in a suitable way
for each fixed face B, while the right vertical arrow is induced by ¢. Note that the
right arrow induces the identity map and the isomorphism ¢ on the K,-group
and the K -group respectively, and that the lower short exact sequence can be
obtained by tensoring

0->H >CZu{tow}) x,Z-2CT)—>0

with C(T). Since the regular representation of y; _ + xz_0; is a Fredholm oper-
ator of index one, we get by lemma 2 the 6-term exact sequence
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Z = Ko#) SKoCZU{+o0}) x,2)> 2Ko(C(T) =Z2DZ
T n
Z@®Z=2K,(C(M) < Ky(CZU{+0}) x,Z)« KH) = 0

in which 7' = 0 and '(m,n) = m — n. So we get Ko(C(Z U {+ ©}) x,Z) = Z* and
Ki(C(Z v {£0}) x,Z) =Z. With the help of Kiinneth formula for K-groups
[Sc], we get

Z =KoHX R®CTMBKGCZU{+0})xZ?)— 2Ko(C(TY)) =Z22@Z2

T in
@72 = 2K (C(T?) <K (CZu{tow})x,Z) KX RCT)= Z

where 7(u,v) = p, — v, and iy, v) = ¢(W1 — ¢(V)1 = plps — V1) + gz — v2).
(Note thatif B = E or N, then the result is the same except that we have now only
one end point and hence only one copy of K ,(C(T?)) in the above diagram with
(P,q) = (1,0) or (0, —1).)

(iii) If the slope a of F is rational and the slope of B is not 0, then, under
a change of basis for Z? as we did in (ii), ® | X5 is the transformation groupoid
(Ru {4 0}) x,Z* with only the first component of Z? acting non-trivially on
R (by translation) and so the lower short exact sequence of (3) can be obtained by
tensoring

0-CM®A > CRuU{+w}) x,Z-2C(T)->0

with C(T). By the results of [Pi-Vo, B], it is easy to show that the 6-term exact
sequence corresponding to the above is

Z =Ko(CM®AH)SKo(CRU{£t0}) x.Z)> 2Ko(C(T) =Z@Z
1 in
Z®Z= 2K,(C(TM) «K;(CRu {i oo}) x. )= K{(CM®A)= Z

in  which ((mn=m—n=n(mn), Ky(CRuU{tx})x,2)=2Z and
K (C(Ru{+w}) x,2) =Z. Again, with the help of Kiinneth formula for
K-groups, we get

Z®Z =K(ATHR®H)S K(CRU{tw0}) x,Z)— 2K(C(T?) =2*@Z?
11 in
2272 = 2K,(C(MY) <K (CRU{t0}) % Z)<K\(CT)®@H)= ZBZ

where n(u,v) = u — v and 1, v) = Pp(u) — $(v) with ¢ as defined in (ii).
Piecing together the data obtained in the above discussion, we can describe the
6-term exact sequence corresponding to (1) in the following diagram
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Z®Ko(CHB | X)) — Ko(CHB|0X)) » Z®Ko(C({p} x T?)
129, 1%,
ZPK(C({p} x T) « K{(CH® | 0X)) « Z®K (CHG | X))

where, for pe I, the map 7, takes value in the sum of (two) K (C*(® | Xp))’s with
Band I having a common end point and is determined according to the slope of
Band the slope « of the corresponding F as we have seen in the above three cases.
Now since K,(C({p} x T?)) and K ,(C*(® | X;)) are free abelian, we have

Ko(C*® | 0X)) = ker(2®7,) ® coker(Z®1,)
and
K,(CX® | 0X)) = ker (2®1,) ® coker(2®7,)

where the right hand sides can be computed once the data about the boundary
geometry of D are given.

We summarize in the following.

PROPOSITION. If D is a Reinhardt domain in C? considered in [Sh1] withn. = 2
and with only finitely many connected components of 0,C, then

Ko(#(D)) = ker(2®1,) @ coker(2®1,)
and
K,(#(D)) = ker(2®1,) ® coker(2®n,) © Z.

Note that 2®1, and Z®7, can be represented by integral matrices. In the next
section, we compute their kernels and cokernels, and get a more explicit relation
between the K-groups and the boundary geometry.

Section 3.

In this section, we shall compute the kernel and cokernel of £®1, and 2®y,, in
terms of the boundary geometry of D.

Nowlet I, I,,...,I,and E = Bg, By,..., B, = N be the enumerations of I's and
B’s used in section 2 such that B; has common end points with I; and [;; ;. So the
homomorphisms Z®7, and Z®i, in section 2 can be written as Z®n; and 29,
respectively, where i ranges from 1 to n. We group B’s into the following three
categories: (i) the slope a(F) of the corresponding face F is not rational, (ii) a(F) is
rational and a(B) is zero (including B = E and B = N), (iii) «(F) is rational and
a(B) is not zero. Since K,(C*(® | Xp)) is isomorphic to Z if B belongs to the
category (ii) and to Z? otherwise, we get £®», and X ®1; homomorphisms from Z2"
to Z2"~*, where # is the number of B’s in category (ii) not equal to E or N.
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We first prove that ker (£®n,) = Z* * ! and coker(2®#;) = Z. According to the
result of section 2, X®y; has a matrix representation of the form

[Boy O O . . 0 ]
Bix B2 O . 0

0 B2z Baz . . 0

. . ﬂ(n—l)(n-l) ﬁ(n—l)n
0 0 0 . 0 Bun
where fo; =(0 1), =0 —1),8;=0 —1)and ;4 =0 1)if B;isin
. —1 0 1 0\.. .. D

category (i), and f;; = ( 0 1) and i) = ( 0 1) if B; is in categories (i)
and (ii). We rearrange the columns and rows of this integral matrix in the
following way. Each B; determinesaminor(0 ... 0 f; Bi+yy O ... 0)
which consists of either one or two rows denoted by p;; and p;, where p;; (not p;;)
is void when there is only one row in the minor. (So po and p,, are always void.)
We permute the rows so that the new rows listed from top to bottom are pg,, p1 2,
P225-++5Pn25 Po1sP115> P215+ - -5 Pn1- Now let Y1 V255 V2n be the columns (nOt the
block columns) in the new matrix listed from left to right. We permute the
columns so that the new columns from left to right are Y5, 4, .-+, Y2m V15 V3» -
Yan—1- After the above two permutations, we get a matrix of the form

ey

1 0 0 . . 00 0
-1 1 0 . . 00 0
0 -1 1 . . 00 0
0 0 —1 . 0
00 0
. . .. =1 1 0 0
0 0 0 . 0 -1 0 0
0 0 0 . 0
. . . . . . *
| 0 0 0 . 0 0 |
where * is a n — # — 1 by n matrix with rows of the form 0 . . 0 -1
1 0 . . 0)such that the leading —1’s in all these rows appear in distinct

columns (in fact, the column number of such leading —1 increases as its row
number increases). Thus by some elementary row reductions on the first n + 1
rows and some elementary column reductions on last n columns, this matrix can
be reduced to a (similar) matrix with exactly n4+(n — # —1)=2n — # —1
non-zero entries (in fact, — 1) sitting in distinct rows and distinct columns. Thus
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the kernel and cokernel of this new matrix (and hence the original matrix) are free
abelian groups. Furthermore. the rank and the corank of this new matrix (and
hence the original matrix) are 2n — # — land 2n — #) —(2n— # — 1) = 1.
So we get ker(Z®n;) = Z* *! and coker(Z®y;) = Z as we claimed.

Next we prove that ker(2®1,) =~ Z* and coker(2®i;) = 0. According to the
result of section 2, X®1; has a matrix representation of the form

[Bor O O 0 7
Bii Bz O 0

0 BZZ ﬁ23 . . 0
ﬂ(u— )@n—-1) ﬁ(n— )n

_0 0 0 . 0 Bun
where foy =(1  0),8,, =0 1),B;=(p; q:)and B+, = — f;; for some rela-

. .. .. i bi
tively prime integers p; and g; if B; is in category (ii), and §; = (Z d) and

Bii+1y = — Bi; for some (j’ d') in SL(2, Z) if B; is in categories (i) and (iii). Now
let y, 75, ..., ¥, be the block columns in this matrix listed from left to right. By
elementary row reductions, we can replace each y; by y; + 7y, + ... + 7; and get

an equivalent matrix

_BO 1 ﬁOl ﬂOl BOI 1 0_
By O 0 00
0 B2 O 0 0
. N B(n —1)(n—-1) 0 0

_0 0 0 0 0 1_

which can be further reduced, by elementary column reductions, to
) 0 0 0 1 0]
Bii O 0 00
0 By O 00
. . ﬁ(n —-1)n—1) 0 0
_0 0 0 0 0 1_
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Since B;;’s are either elements in Z2 with relatively prime components or elements
in SL(2,2), it is easy to see that the kernel and cokernel of the last matrix (and
hence the original matrix) are free abelian groups, and that the rank and the
corank of this new matrix (and hence the original matrix) are 2n — # and 0. So
we get ker(2®1;) = Z* and coker(Z®1;) 0 as we claimed.

THEOREM. If D is a Reinhardt domain in C? considered in[Sh1] withn, = 2 and
with only finitely many connected components of 3,C, then

Ko(#(D) = 2% !
and
K(#(D) = Z*,

where # is (as defined above) the number of lower horizontal faces B (not including
E and N) of the polygons P (constructed in [Sh1]) corresponding to linear faces F of
C, the logarithmic domain of the pseudoconvex hull D of D, with rational slopes.

Proor. From the proposition in section 2 and the above computation, we
have

Ko(#(D)) = ker(Z®n,) @ coker(Z®) = Z* 1 @0 = 2* !
and
K (#(D)) = ker(2®1;) @ coker(Z®y)0Z=Z2* ®Z0Z=7".

When D is already pseudoconvex (and hence D = D) [Sa-Sh-U], each face
F(= F)of C(= C) has corresponding polygon P degenerated into a horizontal
segment B and so we get the following corollary.

COROLLARY. If D is a pseudoconvex Reinhardt domain in C* with n,, = 2 and
with only finitely many connected components of 0,C, then

Ko(#(D) =Z2**!
and
K (#(D) = Z%,

where # is the number of non-horizontal and non-vertical linear faces F (of the
logarithmic domain C) with rational slopes.

It was conjectured by some people that the K ;-group of .#(D) for a pseudocon-
vex D is always trivial. But this corollary gives a negative answer.
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