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INTEGRABILITY AND REMOVABILITY RESULTS FOR
QUASIREGULAR MAPPINGS IN HIGH DIMENSIONS

T. IWANIEC, L. MIGLIACCIO, L. NANIA and C. SBORDONE!

1. Introduction.

This paper is dedicated to a detailed study of the integrability and removability
results for quasiregular mappings, see [IM1], [11] and the references given there.
Our arguments are based on new estimates for singular integrals [IM2] and
non-linear commutators [IS] adapted from the Rochberg-Weiss interpolation
theory [RW]. We are thus led to various refinements of the results in [IM] and
1.

Let us begin by recalling the following Caccioppoli type inequality:

THEOREM A ([IM],[I]). For eachdimensionn = 2,3,..., and K = 1, there exist
exponents q(n, K) < n < p(n, K) such that if f: Q < R" - R" is K-quasiregular (in
a weak sense) and belongs to the Sobolev class W %(Q,R") for some
q(n,K) < s < p(n, K), then

(1.1) L lo(x)I|Df (x)I° ds = C(n,K) L Vo) 1S ()] dx

for each test function ¢ € C3(2Q).

Caccioppoli’s inequality seems to be fundamental for the regularity properties
of quasiconformal mappings. Quite a few of these properties depend rather
strongly on g(n, K) and p(n, K). These exponents are at present far from being
identified, even in two-dimensional case. In the present paper we are particularly
interested in finding how ¢q(n, K) and p(n, K) depend on the dimension. In recent
years the theory of quasiregular mappings has progressed in many directions.
One of these is the nonlinear elasticity theory of John Ball, which deals with
mappings of finite dilatation. With these future developments in mind we shall
recall basic notions of such mappings.
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the other authors were supported by M.U.R.S.T. (40%, 1992).
Received August 13, 1993.
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There are a few definitions of the dilatation of a mapping. It often does not
matter which of them is chosen. The success of our work, however, will depend on
the following one.

For £ an open subset of R”, we consider a mapping f: Q — R" of Sobolev class
WL5(Q,R", 1 <s < . The differential, denoted by Df(x), and its Jacobian
J(x, f) = det Df(x) are defined at almost every x € Q. Throughout we assume that
S preserves the orientation of R”, that is, J(x, f) = 0. Define the operator norm of
Df(x): R" - R" by |Df (x)| = sup{|Df(x)¢l; £eS" '}

Then f is said to have finite dilatation if

(1.2) IDf ()" = K(x)J(x.f)

where 1 < K(x) < oo, for almost every x € Q. For such mappings, the dilatation
function is defined by

K(x) = l—JD(];(’% if Df(x) exists and J(x,f) >0
1 otherwise

Now, a mapping f e W;2:5(Q,R") is said to be weakly K-quasiregular if its
maximal dilatation K = esssup {K(x);xe Q} is finite. If s = n, our definition
agrees with the one given in [Re] for a K-quasiregular mapping, see also [BI] and
[V]. This choice of the maximal dilatation seems to be the best adapted to our
study of the integrability exponents g(n, K) < n < p(n, K), see also [IM1].

We prove the following strengthening of Caccioppoli’s inequality

THEOREM 1. For any K = 1 there exists a positive number y = y(K) such that
inequality (1.1) is true with

_ 7
(1.3) g, K) = n(l logn)
and

_ ?
(1.4) p(n, K) = n(l + logn)'

It may very well be that Theorem 1 still holds if we drop logn. This would
follows from dimension free estimates of a singular integral, which we have not
been able to prove yet, see [IM2] for partial results.

Essential to the proof of Theorem 1 are new equations for quasiregular
mappings, which also hold for mappings with finite dilatation. Some of these
equations are simply relations between [ x [-minors of the Jacobian matrix
Df(x), with I near half of the dimension. The advantage of using such equations is
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n . . . .
that for | ~ B we need [P-estimates of a singular integral with p close to 2 only.

The [2-theory, together with standard interpolation arguments, enables us to
establish sufficient estimates.

Our proof makes appeal to precise inequalities concerning non-linear commu-
tators, see inequality (3.5).

Two consequences of Theorem 1 merit mentioning here.

THEOREM 2 (The Regularity Theorem). Let y = y(K), ¢ = n — ny/log n and
p = n + ny/logn, be as in Theorem 1. Then every weakly K-quasiregular mapping
of class W;X: U2, R") actually belongs to WF(Q2, R") and, therefore, is K-quasiregu-
lar.

In even dimensions, this result has previously been established in [IM1]. It was
shown, in particular, that every weakly 1-quasiregular mapping of Sobolev class

Wléﬁ(Q, R") must be Mobius and the Sobolev exponent g = n/2 is the lowest
possible for such a conclusion to be true. In odd dimensions, however, our
estimate for g(n, K) is the best known even in the case of K = 1. One interesting
question, still unanswered, is whether Theorem 2 holds with g(n, 1) = n/2 for
n=23,517,...

A geometric consequence of the Caccioppoli estimate, which in fact motivated
our work, is the following improvement of the removability theorem.

THEOREM 3 (The Removability Theorem). Set o = afn, K) = ny/logn,y = y(K)
being determined in Theorem 1. Let E = R" be a closed set of Hausdorff dimension
dimy(E) < a. Then, every bounded K-quasiregular mapping f: Q\E — R" extends
to a K-quasiregular mapping on .

The classical result here is the theorem of P. Painlevé and A. S. Besicovitch
which states that a bounded analytic function f: Q\E — C extends analytical to
Q if the one dimensional Hausdorff measure of E equals zero. For a recent
account for the removability results we refer the reader to [12], [JV], [KMa],
[Ril] and [Ri2].

We give the proof only for Theorem 1, the other follow by the same arguments
as in [11]. However, for the convenience of the reader we repeat the relevant
material from [IM1] and [I1] without proofs, thus making our paper
self-contained.

This paper grew out of our attempt to simplify arguments from [I1]. The
estimates we obtain in the course of this work seem to be interesting on its own
right.

REMARK. Quite recently, Kari Astala [A] proved that in dimension 2 the
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2 /K 2./K

assertion of Theorem 2 holds with any q > ——[— and p < —\/——— and that
JK +1 JK -1

these bounds for the integrability exponents are sharp. He also identified the

largest number o = o2, K) for the removability theorem to be true, namely

2
o2,K) = ————.
1+ /K
We conjecture that Caccioppoli’s inequality (1.1) (in dimension 2) holds if

2 /K 2 /K
— <SS < —F
JK +1 JK -1

Unfortunately, Astala’s arguments do not apply to this problem. However, our
conjecture on sharp Caccioppoli inequality would follow if the p-norms of the

1
complex Hilbert transform were equal to 4, = max {p -1, ;’——1} . This ques-

tion is of independent interest in harmonic analysis.

2. The Signature Operator.

We follow the notation of [IL], which is slightly different from that of [IM1] and
[11]. Accordingly, the linear space of all I-covectors in R" is denoted by
A' = AY(R"). The standard inner product in R", denoted by - | -), induces an inner
product in A'(R"). We use the same angular brackets {a | 8 to designate the inner
product  a;f; of a =Y aye’ and B =) Be’.

The Hodge star operator * A(R") — A" {R") is defined by the rules:
xl=e' A... Ae"and a A *f = B A xa = ={a| B, for «, B A(R").

If G: R" > R" is a linear mapping, then its algebraic dual is denoted by
G,: A'(R") - A'(R"), which extends naturally to a linear mapping of A(R"). For
abbreviation, we continue to write G,: A’ — A* for this extension.

If 44, 45,. .., A denote the singular values of G, then the products 4; - 4;,-... - 4;,
are the singular values of G,: A'—> A", for each ordered I-tuple
1fij<...<iZn

A differential form o (of degree 1) on Q@ < R" is simply a locally integrable
function or a Schwartz distribution with values in A'(R"). We shall use few spaces
of differential forms whose notation is self-explanatory.

For example, [7(Q, A') denotes the usual Lebesgue space of differential forms
such that

+
floell, = (L(z o (x)|2)% dx) < 0.
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The class L5(£2, A') consists of I-forms w for which Ve is a regular distribution in
IP(Q,R"® A"). Similarly, W'-?(Q, A") stands for the usual Sobolev space of
differential I-forms.

Next, recall the exterior derivative d: W1'P(Q, A) — I7(Q, A'*!) and its formal
adjoint operator (Hodge codifferential), defined by

(2.1) d* = (=1 rsd* WhrQ, A Y - /(2,4

Of special importance to our arguments will be the following Hodge decompo-
sition in R".

TueoreM B ([IM1]). For each weIP(R", A'), 1 < p < oo, there exist forms
aeL5(R" A"~ 1) and Be LF(R", A'*1) such that

2.2) o =da + d*B
(2.3) IVall, + IVBI, = Cn,p) loll,

Note that do and d *§ can be expressed by means of singular integrals of w. To
this effect we introduce the signature operator S: IP(R", A') - L#(R", A", defined
by Sw = da — d*f,for w = da + d*p. Thus S acts as identity on exact forms and
minus identity on coexact forms. It is fairly easy to see that S is an isometry in
L*(R", A%, foreach [ = 1,2,...,n — 1. For a thorough discussion of the operator
S we refer the reader to [IM1-2], where some estimates for the p-norms of § are
given. These norms are expected to be dimension free. If so, we would obtain
qualitatively sharp estimates for the exponents g(n, K) and p(n, K); namely
q(n, K) = [1 — »(K)]n and p(n, K) = [1 + y(K)]n.

The following estimate of the p-norm of S gives a linear growth with respect to
the dimension

2.4 IS: L2(R", A') > LP(R™, AY)| = S,(n,1) < (n + D4,

where 4, = 5,(2, 1) denotes the p-norm of § in dimension n = 2. In terms of the
familiar Riesz-transforms the operator S: I?(R%, A') — [F(R?, A'), also known as
the complex Hilbert transform or the Beurling-Ahlfors transform, can be identifi-
ed with § = (R, + iR,)% LP(C) - L*(C).

Inequality (2.4) might not suffice, but it does so after an interpolation.

1
i ] > —— = .
PROPOSITION 2.1. Given any integer n = 2 suppose that |1 p‘ = Ziogn
Then
(2.5) S,(n,1) =72

Joreveryl=12,....n— 1.
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Proor. The conditions stated above imply that pe[o,t], where o =
8logn 8logn
Zogn +1 "= Zlogn =1
duality arguments and convexity property of the p-norms it follows that
S,(n,1) = S,(n,1) = S,(n,I). Therefore, we shall have established inequality (2.5) if
we prove it for p = 7. Let us first estimate the 4-norm of the complex Hilbert

transform. Writing S = (R, + iR,)?, by triangle inequality, we obtain

. Note that ¢ and 7 are Holder conjugate. By

As S (IRila + IR ll0)? = oot 2 = 41 + /27 <24,
(Very recently, Rodrigo Banuelos and Gang Wang [BW] established the esti-
1
mate A, < 4 max {p - 1,;—1} )
Here we have used precise formulas for the p-norms of the Riesz-transforms,
namely

cotl for p=2
IR:ll, = -
tan-?; for 1<p<?2
for any dimension nand all i = 1,2,...,n, see [IM2]. Now, (2.4) yields
Sa(n, 1) < 24(n + 1).
We next sharpen this result by using Riesz-Thorin convexity theorem [BS]. To
this effect, we decompose

1_8+£ where ¢ = !
2 4’ " 2logn’

1_
-=
Accordingly,

S 1) < Sy(n, 1) ~*Sa(n, 1Y < (24n + 24)7Tozn < 72.
This completes the proof, the detailed verification of the last step being left to the
reader.
3. A Nonlinear Commutator.

Given w € L*(R", A'), formula (2.2) provides us with the exact form da € L*(R", A,
which is the nearest one to w. Then, Calderon-Zygmund theory of singular
integrals gives LP-estimates for d*f = w — da

G.1 lw — dall, = C(n, p) |l ,.
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Obviously, if o is an exact form, this holds with constant C(n, p) = 0. Now, one
may ask whether an w = |du[* du, being a nonlinear perturbation of an exact form
du, is nearer to the space of exact forms than the generic weI?(R", A'). An
affirmative answer to this question and rather fairly complete discussion of the
nonlinear I?-projections onto the space of exact forms is presented in [IL].

The following special case of the result therein is the key tool in our present
work.

2
THEOREM 3.1. Given any ueL%,*%(R", A'" '), where n>33,2<p g——"—l—,
n—

le] < dlog™'n, 0 < § < 3, consider the Hodge decomposition

(3.2) |dul® du = do + d*p.
Then
(3.3) ld*plloxe < 1046 ||dul|, 1.

We only outline the main idea of the proof. For this, recall the signature
operator S: IP(R", A') - LP(R", A", 1 < p < o0, defined in the previous section.
Accordingly,

(3.4) d*B = T(dul® du)
where T = 3(Id — ).

An important point here is that T vanishes on exact forms, which follows from
the uniqueness of the Hodge decomposition. For abbreviation, we denote
f = du, thus Tf = 0. When this is substituted in (3.4) d*f takes the form

d*g = T(f1f) = ITfI' Tf

where we think of the right hand side as a commutator of T and the non-linear
mapping f+|f|°f, see [IS].

It is worthwhile discussing here more general situation.

Let (X, u) be a measure space and let # be a separable complex Hilbert space.
Denote by IP(X, #), 1 < p < oo, the usual Lebesgue space of s#-valued func-
tions on X. Furthermore, suppose that T: [F(X, #) — L*(X, #) is a bounded
linear operator with norm || T'|| ,, for all pfrom aninterval [0,7],1 S0 <t < 0.
Finally, consider the non-linear transformation

A% (X, #) > Live(X, #)

given by 4%/) = < ulﬂ

In [IS] we have shown that

s
1+e¢

> f, where both s and belong to the interval [g, 7].
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(3-5)  ITAS) — AT = = lel

2s(t — o) e
m(llﬂla + TN 1 f1ls

o)(t — s)

However, in this paper we only need the following special case of this result.

PROPOSITION 3.2. Under the above hypotheses, if moreover f € ker T, then

2 —
(6  ITUfNls < ol

B SEGT =y Tl + ITIIA 12

8logn and 1 = 8logn

1+4logn 4logn —1°
p+e
1+e¢

PROOF OF THEOREM 3.1. Denote by ¢ = An

easy computation shows that p+ ee[o,7] and €[o,17], because

8logn < n — 1for n = 33. It then follows that
2(p + ¢)(r — o)

p+e—o)t—p—¢

(3.7 lld*Blleze <[] (ITle + 1T Ndull; 2

Before making some other estimates we recall inequality (2.5), which yields
(3.8) ITle + 1Tl < 31+ 72) + 3(1 + 72) = 73

It remains to estimate each factor of the right hand side of (3.7). We easily find
that

|8|<logn
p+e=<>S
T—0<
logn
o 2 1
—022— —12-
pte—o2 logn ( 4logn+1)>8logn
2 2 o 1
—p—g> S —
TP 8=2+4Iogn—1 <2+n—1> logn>810gn

Inequality (3.3) is now immediate.

4. A Lemma.

In this section we prove two elementary inequalities that will be used to show
Caccioppoli type inequality.

LEMMA 4.1. Suppose X and Y are vectors of an inner product space. Then
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1—
4.1) [1X1°X — Y|P Y] §—82_‘|X - Y|'*e
1+e¢

for —1 <e=<0,and
(42) NXIX =YY <1+ (Y] + X - Y|F|IX — Y|
fore = 0.

Proor. We can certainly assume that X $ Y. First we find thatfor0 <t £ 1
d
lEItX —tY+ YP(X —tY 4+ V)| =

X —tY + YE(X —Y)+eltX —tY + YF 2 x
X —tY+ Y| X —YHXX —tY + 1) <
IT+]ehtX —tY + YFIX — Y| =

A—etIX—Y| —|Y|FIX—Y] —1<e<0
A+e(Y]+IX - Y)FIX—Y] e=0.

The case ¢ > 0is immediate, by Mean-Value Theorem. For —1 < ¢ £ 0, integra-
ting with respect to the parameter ¢ [0, 1] yields

1
XX — 1YY =(1—¢)|X — YI”‘J |t —al*dt
0

where

Y]

a=|X——Y|_'

By an elementary geometric argument we obtain

1 b+1 1/2 1
t — al°dt £ max lt!“dr=J [tlfdt = .
.fol | b L -1/2 251 +¢)

Hence the lemma follows.

5. A-Harmonic Equation for Mappings with Finite Dilatation.

Let f: 2 — R" be a mapping of finite dilatation, so its differential Df(x):
R™ — R"is nonsingular except at those points x €  where Df (x) = 0. The matrix
dilatation of f is a function G: Q — GL(n) defined by the Beltrami equation

(.1) D'f(x)Df (x) = J(x, NGx)
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where D' f(x) stands for the transpose to Df(x). In case J(x, f) = 0 we choose the
identity matrix to define G(x). Thus G(x)is a symmetric positive definite matrix of
determinant 1. If G(x) is the identity everywhere the Beltrami equation reduces to
the n-dimensional Cauchy-Riemann system:

2
(5.2) D'f(x)Df (x) = J(x, f)nl.
Denote the eigenvalues of G(x) by 0 < A3(x) £ A%(x) £ ... £ AX(x) < oo, thus

A1(X)A2(x). .. Au(x) = 1.
It follows from the Beltrami equation that

IDf ()" = sup IDf(x)h" = J(x, f) sup <G(x)h|h)Z

lhl=1 lhl=1
= J(x, f)2(x).

where we recall that f has finite dilatation. Therefore, the dilatation of f can be
expressed in terms of the largest eigenvalue of G(x), namely

(5.3) K(x) = 2%(x).

Next, we consider the I-th exterior power G, !(x): A(R")— AR"),
I=1,2,...,n — 1, of G~ !(x). Recall that eigenvalues of G, ' are the products

(4, -Aiz-...-l,-,)‘z corresponding to all ordered I-tuples 1 £i; <...<i < n
This clearly yields
A 200) . A2 () 18P = (G M (R)ENE) S AXX). - A () 1

for every ¢ e A'(R"). In particular,

(5.4) K n(x) 22 < <G (%) | &) < Kn(x)|¢.

Similar arguments yield

(5.4) 1G5 ()] < Kn(x) €]

Some first order differential systems follow from the Beltrami equation. To see
them fix an integer /= 1,2,...,n—1 and assume that the mapping
=414, f": Q > R" belongs to the Sobolev class Wi:%(€, R"), where
s = max{l,n — I}. This assumption makes it legitimate to apply the operators
d and d* to the differential forms

55 u=fldf'A...ndf'"' and v=xfTUIT2 AL A AT
respectively. This results in the following formulas
(5.6) du=(=1D"tYdf' A... Adf' and d*v=(—1)\T'*xdf'""' A... A df"

Note that the coeflicients of du, being | x I-minors of Df, are locally integrable.
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Similarly, the coefficients of d*v are (n — I) x (n — I)-minors of Df, thus locally
integrable as well.

In conformal case, corresponding to G(x) = I, it was shown [I1] that

(5.7) ldulP~2du = d*»  p =%

or, equivalently

(5.8) |d*v|?” 2d*v = du q=

Here we notice that (p, q) is a Holder conjugate pair.
. . . . n .
In even dimensions, of special interest is the case | = 5 because it leads to

a linear Cauchy-Riemann system du = d*v. For more general mappings with
finite dilatation, we have the following linear Beltrami type equation

(5.9 du = G4 (x)d*v

See [IM1] for a more complete theory of this equation. In odd dimensions,
however, we need to consider a non-linear mapping A4: Q x A'(R") - A'(R")
given by

(5.10) A9 = (G, 'WEIO TG W p=T

Its inverse with respect to & can be computed by solving the equation { = A(x, £)
for &;

A7 60 = G DTG, q=
Then, equations analogous to (5.7) and (5.8) for a general mapping are the
A-harmonic equations
(5.11) A(x,du) = d*v
or, equivalently
(5.12) A~ Yx,d*v) = du.

Of course, for a given mapping f: Q — R", there are more 4-harmonic equations.
They all are obtained from these particular ones by permuting the coordinate
functions (11, f2,..., f").

We finish this section with the following
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LeMMA 5.1. Let 1 £ K(x) < oo denote the dilatation function of a mapping
feWL(Q,R", s = max{l,n — 1}. Then A, defined by (5.10), satisfies

(59 lA(6, 0l £ ME)IEP™,  M(x) < K'7(x)
(sii) CA(x, )18y = mx) |87, mx) 2 K~ '(x)
(5iii) A(x,t&) = |t|P~ 2tA(x, &, teR.

This Lemma is a straightforward consequence of the definition of A(x, &) and
estimates (5.4) and (5.4’).

As a corollary, for f a weakly K-quasiregular mapping, we obtain the follow-
ing dimension free estimates

(5.13) K™HEP < (A%, 918> < 1AM, Ol = K (&1

6. Caccioppoli Inequality.

Having disposed of the preliminary steps, we can now prove Theorem 1. We need
only consider n = 33; the other cases of dimension less than 33 are covered by
Theorem A. Let us reveal in advance that our arguments will work for all
exponents s such that

©.1) po Y& o WK
) logn = = logn
where
1
¢2 "0 =107
n—1

if n is odd.

We choose integer [ = % ifniseven and [ =

Let f =(f%,...,f": Q2 > R" be a weakly K-quasiregular mapping of class
Wa:%(, R™). Observe that s = max {I,n — I}. We want to estimate the differential
forms u and v introduced by (5.5). These forms solve the A-harmonic equation
(5.11), that is

(6.3) A(x,du) = d*v

where duel} (2,4 and d*ve L} (2, A"). Let ¢peCP(Q) be an arbitrary
non-negative test function. Multiplying (6.3) by ¢? ~ !, in view of the homogeneity
property (5iii) we obtain

(6.4) A(x, pdu) = "~ 'd*», p= "11
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Our nearest goal is to derive the following estimate

(6.5) J lpdulP** < CKJ |ulP*¢ |do|?

Q 2

+ Cx f (1ol ldo? = Pp=1,
2
where ¢ = % — p, which in view of (6.1)+6.2) verifies the condition
10*K? || logn < 1.

Denote 6 = [¢|logn to obtain
(6.6) 10°K25 < 1.

We only give the main steps of the proof of (6.5); the details are standard and left
to the reader.

First, we split the differential form |d(¢pu)|® d(¢u) by using Hodge decomposi-
tion as in Theorem 3.1

(6.7) ld(ou)° d(u) = do + d*f

where, in view of (3.3), we can estimate the terms do and d*f as follows
(6.8) ld*Bllz+e < 10 |d(@u)l ;3.

Hence

(6.9) ldallz+e < 10% (@)l

Next, we compute the inner product of the forms in the left hand side of (6.4) and
(6.7);

(6.10) J CA(x, pdu) | |doul® d(pu)) = J CoP~ld*v|da + d*B>
R” Rn
=j (v|ldeP™! A da) +J (A(x, pdu) | d*B>.
R™ R
Writing |doul® d(pu) = |@dul® pdu + B(p, du) we find from Lemma 4.1 that
1—c¢
< - 1+e
6.1 1B, dul < 127" ldo A u

for —1 <& <0and
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[B(p,du)| = (1 + ellodul + |do A ul)*|de A ul
for ¢ > 0. Identity (6.10) yields

(6.12) J‘ <A(x,¢du)||¢d“|e¢du>§J ol |de? ™ *||do] +
R" Rn

+ Ln |A(x, pdu)| (Id*B| + |B(¢, du))).

The task is now to estimate each of the above integrals. From now on we continue
the proof only for ¢ negative. The other case of ¢ > 0, being similar, is left to the
reader.

On account of conditions (5.13), we have

'IJ lpdul”** < j |l ldo? ™| |da] + KJ lodul”~ " |d*p|
R" n n

s)K

p—1 1+e
e J lodul” = (ulIde)
Then, by Holder’s inequality

K™% lodullpi: < |l 1ofldp? ™| lleze |ldallpte
+ K llpdull}; d*B]pxe

(1— oK 8
T gpe w1l dol 137

Next, we use estimates (6.8) and (6.9)
K™ pdulb1s < 10% || o] |de? ™| lete ld(Qu)l; i

+ 10*K |odul}; ld(@u) i +

(1 ——8) 1+¢
+ (1 + 8)28 ||‘Pdu||p+e ” |u| ’d(Pl |p+£.

Writing
Id(@u)liz s = lldp A u + odul 7 <
< |l A ullpi: + lodull,i:

we obtain
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lpdullpis < 10°K? |odulb 3 +

pte = p+e

(1—e¢) 8
* K2|:(1 + )28 1045] lpdull53 2 |l lulldol 1,57 +

+ 10* | Jo] [d? ™| lexe [l fulldol I35 + lodull, i

pte pted>

where we notice that 10*6K* <3 < 1.

What remains is to separate (pdu in the right hand side from the other terms.
This can be done routinely with the aid of Young’s inequality. We then conclude
with estimate (6.5).

Recalling that p + ¢ = % estimate (6.5) takes the form

(6.13) f lpdult < Cg f lult |doli
0 (9]

+ CKJ Ivlﬁ ld(pnT_l|ns—1‘
(o]
What is left is to relate inequality (6.13) to (1.1). From (5.5) we have point-wise
inequalities
lul < If1IDFI™" and o] S |f1IDFP"H

We need to replacee ¢ in (6.5) by ¢'. After making such a replacement, by
Holder’s inequality, we obtain

s s (-1)s s(il—1) s
(6.14) JI(PISIdulléCJ IfIEIDfTT " ol T ldolt
Q2 Q
S (n—1—1)s (n l 1)
CJ |fI"=TIDf T n=T""|o| \deli=1
Q

-1

sc(] 1 |d<p|3>%( [, torior)”

1 -1

+ cq P |d<p|5)m< f ol IDf|‘>
o 0

Recall that the coefficients of the form du are precisely the | x I-minors of Df(x),
that is:

a2 1)

O(Xj,, Xjps o5 X5,
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corresponding to all [-tuples | <j; <...<j; £n.
On the other hand, we could replace f!,f2,...,f' by any other set of

I-coordinate function of f. Thus (6.14) actually provides us with estimates for all

possible! x I-minors of Df (x). Finally, we need an inequality which is well known

in the theory of determinants

A, i

oxXjy5n 05 X))

Jox,f) = detDf(x) S C)- Y,

1<i .<i1Zn
1 .<Jji=n

1<..
j1<..

HAIA

see [IL] for the precise constant.
The above arguments show that estimate (6.14) remains valid if the term |du|% is
replaced by |J(x, f )ﬁ, that is
-1

1 -1
Lw Jox, < C< L IfF ldcpv)' ( Llwufr) Lt

1 -1

(o)

The last step is to use the dilatation condition, |Df}* < Ki.](x, f )rs“r. Hence, by
Young’s inequality, we conclude with (1.1) completing the proof of Theorem 1.
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