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KOROVKIN THEORY IN LINDENSTRAUSS SPACES

GREGOR DIECKMANN

Abstract.

In this paper the author investigates the Korovkin closure in simplex spaces with respect to positive
linear contractions and also the weak sequential Korovkin closure with respect to contractions in
general real and complex Lindenstrauss spaces. These Korovkin closures are characterized via their
uniqueness spaces in the separable case. We also give some results in the non-separable case.

1. Introduction.

Let K be a compact convex set in a locally convex Hausdorff topological vector
space, H € A(K)a subspace of the space A(K) of all real-valued continuous affine
functions and let T! A(K) — A(K) be a positive linear operator. One main task of
Korovkin theory is to characterize the Korovkin closure Kor™ (H, T) of H with
respect to T, i.e. the space of all functions f € A(K) with the following property: If
(L))ier 1s a net of positive linear operators L; A(K)— A(K) such that
lim;e; |L;h — Th|| = OVhe H, then it follows that lim;; |L; f — Tf|| = 0. In
[Alt] F. Altomare studied this problem in the case of general compact convex sets
for T = identity operator. He proved the so called standard characterization of
Kor*(H,id) for test function spaces H lying in the center of A(K) (cf. [Alt, Th.
1.5]). Using selection theorems, Leha-Papadopoulou ([L-P])and G. M. Ustinov
([U1], [U3]) obtained results in the case where K is a metrizable Choquet
simplex (cf. 2.8, too). If K is a Choquet simplex, then A(K) is a Lindenstrauss
space. For Lindenstrauss spaces more general selection theorems are available
([L-L], [O]), therefore it is natural to study Korovkin theory in Lindenstrauss
spaces.

In the second part, we study the Korovkin closure with respect to positive
contractions in simplex spaces, i.e. ordered Lindenstrauss spaces E (cf. 2.1). For
separable simplex spaces we characterize the positive contractive Korovkin
closure with respect to a general positive contraction T: E — E via its uniqueness
space U, (H,T). As an application, we obtain the result Kor*(H,T) =
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U.(H,T) for A(K) spaces, K a metrizable Choquet simplex, T: A(K) — A(K)
a positive linear operator. We also prove a result in the non-separable case.

In the third part, we study the weak sequential Korovkin closure
ow-Kor!(H, T) with respect to contractions T: E — E in general real and com-
plex Lindenstrauss spaces (without order). We characterize cw-Kor! (H, T) for
separable E and obtain a partial result for more special test function spaces H in
the non-separable case.

This paper is a part of the author’s doctoral dissertation. I am indebted to Prof.
Dr. G. Maltese for supervision and many useful suggestions.

2. Positive contractive approximation in simplex spaces.

2.1. Let E be a real or complex Lindenstrauss space, i.e. a Banach space with
a dual that is linearly and isometrically isomorphic to an abstrct L space (cf.
[L-L], [Lac]). Special cases are the (real) simplex spaces introduced by Effros in
[Eff]. A simplex space is a real Banach space with an order such that

(i) E™ is a closed cone.

(i) ET is an AL-space with order induced by the positive linear (bounded)
functionals on E.

It is shown in [Eff] that a simplex space E is linearly order and isometrically
isomorphic to A,(K) where

Ay(K):= {f: K — R: f affine continuous, f(0) = 0}
and K is the w*-compact convex set
K:=B{(E):={peE:pz0,|p| <1}

We now give the basic definitions of Korovkin theory in these spaces. If H < E is
a subspace and T: E — E a positive linear contraction (i.e. ||T|| < 1), then the
positive contractive Korovkin closure of H with respect to T is

Kor* !(H,T) = {yeE: If (L)), is a net of positive linear contrac-
tions L,: E - E, then lim;,, | L;h — Th| =
OVhe H implies lim,.; |L;y — Ty|| = 0}.

It is the aim of this section to show that for separable simplex spaces
Kor*'!(H, T) coincides with the so called positive contractive uniqueness clo-
sure of H with respect to T:

U, (H,T)={yeE: If pe B{(E) and qe d.B{ (E’) such that p =
qo T on H, then p(y) = q(Ty)}.

Here 0, B} (E') denotes the extreme points of Bf (E). The above mentioned results
of Effros ([Eff, Th. 2.2]) and the Krein-Milman theorem entail the equation:
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Ixl = sup [p(x)l= sup [q(x)|
peBy (E') qedqB{ (E)
for every x € E. Using standard techniques of Korovkin theory (cf. [M]) and the
above equation we get:

2.2. PrOPOSITION. Let E be a simplex space and H < E a subspace. Then for
a positive linear contraction T: E - E, || T|| £ 1, the inclusion

U, (H,T)cKor*'(H,T)
always holds true.

To prove the reverse inclusion is more difficult, because the standard tech-
niques of Korovkin theory using multiplication operators and Urysohn func-
tions are not applicable for general test function spaces H (but cf. [Alt] for test
function spaces lying in the center of an A(K) space). Leha-Papadopoulou ([L],
[L-P])and G. M. Ustinov ([U1],[U2],[U3], cf. 2.8 too) used selection theorems
to prove an analogous characterization of the Korovkin closure in more special
cases. We need the following selection theorem by Lazar:

2.3. THEOREM ([Laz]). Let E be a Fréchet space and ®: K — 2F a convex lower
semicontinuous correspondence such that ®(k) is closed for any ke K. Let K be
a Choquet simplex, then there exists an affine continuous selection mapping
f: K —» E with f(k\e ®(k)Vke K. If F is a closed face of K and ¢ is an affine
continuous selection map of @, then f can be chosen such that fir = ¢ holds.

A convex correspondence @: K — 2% is a map such that ®(k) + 0, ®(k) is
convex for any ke K and

AD(ky) + (1 — A)D(k,) < P(Aky + (1 — Dky),
ki, k,eK,0 < A < 1. @ is lower semicontinuous, if for any U open in E the set
{keK: (k) n U + 0}

is open in K.

Let E be a separable Banach space and K < E’ a w*-compact convex set.
A well known folk theorem says, that K with it’s w*-topology can be embedded in
a Fréchet space. Using a modification of Leha-Papadopoulou’s ideas, we obtain
the following:

2.4, LEMMA. Let E be a separable simplex space, H < E a subspace and
L: E— E a positive linear continuous operator with ||L| < 1. Further, let
peB{(E), g€ 0,B{ (E') and (q,)nen be a sequence in 0,B{ (E') with lim,_, , g, = g.
Finally, let p = qo L on H. Then there exists a sequence (L,),.n of positive linear
contractions L,: E — E such that
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lim |L,h — Lh|l =0VheH and gq,-L,=pV¥neN

n— oo

holds.

PROOF. As asubspace of E the space H is also separable. Let (h,),.y be a dense
sequence of H. Define the convex correspondence ¥,: Bf (E') — 2F,

¥(v):= {WGBT(E’)Z fo(hy) — Lv(hy)| < %Vie Nn} *0,

N,:={1,...,n},ve B{ (E'). F is the Fréchet space in which B} (E") is embedded.
The lower semicontinuity is a direct consequence of the following:

Claim: Let ve B{(E') and (v)cey be a sequence in B (E') with v, —» v and
suppose we ¥,(v). Then we ¥, (v,) for almost every ke N.

1
This is easy: We have |w(h;) — Lv(h;)| < " for ieN,. Now put

1
&:= max |w(h;) — Lv(h;)| < e

ieN,

Because of v, — v there exists k, € N, such that for all k = k,
1
|Lvg(h;) — Lv(hy)| < i

This implies for k = ko:

1 1
Iw(h;) — Lv(hy)l < [w(hy) — Lo(hy)| + |Lv(h;) — Ly(h)l < ¢ + P g
Now consider ®,(v):= D,(v) < B] (E'), ®,: B] (E') » é(B{ (E"). Here &(B; (E)) is
the set of all closed convex subsets of B (E’). Then &, is a convex lower
semicontinuous correspondence because of the equation:

{ve B (E): ¥,(0) N U + 0} = {ve B (E)}: ¥,() n U + 0}

for open subsets U in F.
Let (q)kcy as in the Lemma 2.4 be given. The relation pe @,(q)Vne N and the
above claim yield after passing to a suitable subsequence of (g, ). (also denoted

(@ ken):

(1) pe®,(q,)VneN.

Themap f,: [0, g,] = By (E'), /(A0 + (1 — A)g,):= (1 — A)p,A€[0, 1],isan affine
continuous selection of @, , ; and [0, g,] is a closed face of B {(E'). By Lazar’s

selection theorem there exists an affine continuous selection ¢,: B} (E') — B; (E)
with the properties:
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@ @u(v) € P, (v)VveE B{ (E), 9.(d) = p, ¢,(0) = 0VneN.

Now the operators L,: E — E can be constructed as follows. Let x € E be given.
Define by ¢, ,: B{ (E') = R, @, .(v):= ¢,(v)(x), ve B (E'), an affine w*-continu-
ous function. The unique extension of ¢, , to a linear functional on E’ is by the
Krein-Smulian theorem w*-continuous. Therefore this extension is of the form
z,€ E,and we define: L,: E — E, L,(x):= z,. Then L, is a positive linear contrac-
tion:

ILu(X)l = sup |@n ()] = sup |, @)x) = lIxl,

veB{ (E') veB{ (E)
and for x = 0 it follows:
U(La(x)) = @u(v)(x) Z OVve By (E),
because ¢,(v)e ¥,(v) < B; (E). Finally, we get for x € E:
L,qu(x) = gu(LnX) = @4(ga)(x) = p(x).

To prove lim,, ,, || L,h — Lh|| = OVhe H, choose ¢ > 0 and he H and a positive
integer ny e N such that

€ 1 €
“h,,o—h”<_3‘ and —’;<§

For n = ny we obtain:
I Lyh — Lh|
ILah — Lyphy, || + | Lyhy, — Lhy, || + |Lh,, — Lh|

IIA

& &
<+ + lILyha, — Lh -
3+ [Lahay = Ly, | + 5

2
<=+ sup [o(Lyhs, — Lhy)|

3 veB{ (E)
2 ,
<5+ sup [@u(e)hn,) — Lvlhy,)
veB{ (E')
2
é _E + .__1__ <eg,
3 no
because ¢,(v)€ D,(v) = ¥,(v) for all ve B{ (E’). This completes the proof.

2.5. THEOREM. Let E be a separable simplex space, H < E alinear subspace and
T: E - E a positive linear contraction. Then

Kor*''(H,T) = U, ((H, T).
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ProOF. Only the inclusion Kor***(H, T) < U, {(H, T) remains to be proved.
Let yeKor*''(H, T), pe Bf (E'), ge 0.B; (E') such that p(h) = T’q(h) for every
he H.Choose asequence (¢,)penin 8. B (E') with lim,, , , g, = q. Then Lemma 2.4
guarantees the existence of a sequence (L,),.y Of positive linear contractions
L,: E — E with the properties:

lim ||L,h — Th|| = O0VheH and gq,(L,y) = p(y)YneN.
The relation ye Kor**!(H, T) implies lim, _, , | L,y — Ty|| = 0, and in particular
it follows that lim,, , ., g,(L,y) = q(Ty). Because of q,(L,y) = p(y)Vne N we finally
get: p(y) = q(Ty).

2.6. Let K be a compact convex set in a locally convex Hausdorff topological
vector space and denote by A(K) the space of all real-valued affine continuous
functions on K with the supremum norm and the natural order. For a positive
linear operator T: A(K) — A(K) and a subspace H = A(K) we define the positive
Korovkin closure of H with respect to T as in the introduction. The respective
uniqueness closure is:

U,(H,T):={feAK): Ifue A, (K)isa positive linear functional
and x € 0K such that u(h) = 8,0
T(h)Vhe H, then u(f) = d,° T(f)}.

The Korovkin theory of these spaces was studied in [Alt] for T= id. For cofinal
subspaces H = A(K) (i.e. H contains a strictly positive function hye H) the
inclusion U, (H, T) < Kor " (H, T) always holds. (Use a modification of the proof
of Th. 1.1 in [M].) As an application of the above lemma we obtain the following
result:

2.7. THEOREM. Let K be a metrizable Choquet simplex, H = A(K) a cofinal
subspace and T: A(K) — A(K) be a positive linear operator. Then

Kor*(H,T) = U, (H, T).

Proor. If suffices to prove the inclusion “<”. Let f be in Kor * (H, T), x€ 0K
and ue A, (K) a positive linear functional such that u(h) = d, - T(h)Vhe H holds
and choose a sequence (x,),cy in 0.K with lim, ., , x, = x.

Claim: If hy 2 1, hy € H, then there exists a sequence (7T,),.y Of positive linear
operators T,: A(K) —» A(K) with || T,|| < || The||¥neN,

lim |T,h — Th| =0VheH and 6, T, = uv¥neN.

n-—*oo

To see this, consider in the case Thq + 0 the operator || Thy|| ~* Tand the positive
linear functional || Thy|| ~ *u. The positivity of T and u imply
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ITholl ™1 T(1) < | Tholl ™' T(ho) < 1
and
ITholl~*u(1) < [ Tholl ~* p(ho) = I Tholl = * x> T(ho)
= || Tho || "' Tho(x) £ 1.

Therefore | Tho| ™" |ul| £ 1and || Thy|| ~!||T|| £ 1,and an application of Lemma
2.4 yields a sequence (L,),.y Of positive linear contractions L,: A(K) - A(K) with
the properties:

lim ||[L,h — | Thol| ™' T(h)| = 0 and &, oL, = | Thol| 'u¥neN,
because d, — J, and the d,, are extreme pointsin the positive part of the unit ball
of A'(K). The T,:= || Thel L, is the sequence we seeked. In the case Thy = 0 it
follows that T = 0 and p = 0, so we can choose T, = 0V¥neN.

Now by an application of the claim we obtain as in the proof of Theorem 2.5
that u(f) = 6,0 T(f). This completes the proof.

2.8. REMARK. G. M. Ustinov also states Theorem 2.7 for more special metriz-
able Choquet simplices K, which he calls simple, [U1], [U3]. In his proof he
needs the assertion that for a compact Choquet simplex K in a Hilbert space and
a closed face F of K the best approximation ¢: K — F, defined by |a(x) — x| =
min,r || x — y|, is affine (continuous). But this is unfortunately not true. To see
that o is not affine in general, consider a triangle K as below:
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We have a(z) = 0 = o(x) and a(y) = 1. With z = Ax + (1 — A)y, A€(0, 1), we get
the contradiction: 0 = a(z) = Aa(x) + (1 — Aa(y) =1 — A

2.9. For the next section we recall some properties of Lindenstrauss spaces.

(1) Let E be a real or complex Lindenstrauss space and H < E be a separable
subspace. Then there exists a real or complex closed separable Lindenstrauss
space Z such that H € Z c E.

(i) Let K be a Choquet simplex and H a separable subspace of A(K) contain-
ing the constant functions. If we choose a separable closed Lindenstrauss space
Zasin(i), H € Z < A(K), then Z isisometrically and order isomorphic to A(K)
where K is a metrizable Choquet simplex.

(i) is Lemma 1 in [Lac, Chap. 7, §23]. To prove (ii), define

Ki:={yeZ:y 20, |yl =1=yd)}

As an archimedean ordered space with order unit 1 that is complete in the order
(= sup-) norm, Z is isometrically isomorphic to A(K) via f+ f, feZ, f(y):=
V(f), ¥ €Ky, and K, is a metrizable Choquet simplex because Z’ is a separable
AL-space (cf. [Alf, Th. I1.1.8] and the definition of a Choquet simplex).

In the situation of (i) let Z be infinite-dimensional. Then there exists a sequence
(Z,)nen Of finite-dimensional subspaces Z, € Z,Z, < Z,,; Vne N such that Z, is
isometrically isomorphic to I,(n,K), K=R or C, and Z = {J,.xZ, ([Lac],
[M-P], [N-O]). The subspaces Z, have a so called admissible basis, i.e. there
exist vectors {z/}{_, < Z,, ne N and scalars {a]}]_, ne N, such that

IIA

n
A=t dAiL1isn Y a1,
i=1
for every neN. Now we can construct contractive projections P,: E —» Z,
as follows. Choose ¢feZ’ with ¢}(z}) =6;; and put ¢j(x):=a; for x =
Yr jaizieZ,. Then | ¢l = 1. Extend the ¢}’s with preservation of the norm to
E (we use the same notation) and define:

P(x) = Y ¢i(x)z/ € Z,
i=1
for xeE. P, is a projection with |P,| =1 (Z, ~1,(nK)) and we have
lim, .o, |PJz) — z|| = 0Vze Z.

Analogously, in the situation of (ii) there exist subspaces Z, = Z = A(K),
Z =JpenZn, Z, ~ 1, (n,R)VneN, and the spaces Z, are spanned linearly by
“peaked partitions of unity”, i.e. there exist functions f{",. .., £ € A(K) with the
properties:

R WAESH A
i=1
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(cf. [M-P, Prop. 5.1]). Choose k"€ 0,K,i =1, ..., n, with (k") = §;;. Then
P,: AK) - Z,,

(PuN):= 3 SN0, xeK, fe AK),

is a positive projection with ||P,|| = 1.
After these lengthy preparations we obtain

2.10. THEOREM. Let K be a Choquet simplex and H < A(K) a separable sub-
space with the following properties:

(i) 1€ H and H separates the points of 0.K.

(ii) For any xe0.K, e > 0and f € H with f(x) = O there exists g€ H such that
g=fandg(x)<e.
We then have:

Kor* (H,id) = U, (H,id).

PrOOF. We need only prove the inclusion “<”. Assume, f,€ Kor* (H,id), but
fo&éU,(H,id). Then there exists x,€0.K and a positive linear functional
@ e A’.(K) with the properties:

3 @1 = 0xn and @(fo) F fo(xo).

Let [H U { f,}] be the linear hull of H and f,. To this separable subspace of A(K)

choose as in 2.9 (i) a separable closed Lindenstrauss space Z with [H U {f,}] <

Z < A(K) such that Z ~ A(K,) via f— f, () = ¥(f), f€ Z, y eK,. Define t:

K — K, 1(x):= 6, z€ K,. Obviously, 7 is affine continuous and surjective.
Claim: 1(6.K) < 0.K,. To see this, consider for x € dK:

Q%:={yeK: h(x) = h(y)Vhe H}.

By Prop. 4 of [E-VS], Q7 is a closed face of K. Therefore Q¥ = ©56(0,0%)
(Krein-Milman) and 0,Q% < 6,K. Assumption (i) then implies Q¥ = {x}. To
prove the claim, consider t(x) = At(x;) + (1 — A)7(x;) with 7(x;)eK, i=1, 2,
2€(0,1) (t is surjective). This obviously implies Ax; + (1 — A)x, € Q¥, so that
X = x; = x, because xe K. Therefore t(x) = 1(x;) = t(x,), and the claim is
proved.

Now put gy : = |@(fo) — fo(xo)| > 0and choose a net (x,),c 4 in 6.K with x,, = x,.
There exists an oy € A such that for every o = oy we have

) [foloo) = folxa)l < =2
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The net (t(x,))y3q, in 0.K; converges to t(x,), and because K, is metrizable we
can construct a sequence (x,),.y S {X,: o = oo} such that t(x,) — t(x,). An appli-
cation of the claim in the proof of Theorem 2.7 yields a sequence (L,,),.y Of positive
linear contractions (T = id, hy = 1) L,: A(K,;) = A(K,) with the properties:

) lim |L,i — k| =0VheH and L,fo((x,)) = @(fo)

n— o

for every ne N. With the positive projections P,: A(K) = Z,,, | P,|| = 1, of 2.9 we
define positive linear operators U, : A(K) —» A(K) by (U, f)(x):= L.(P.f)" (z(x)),
neN, xe K, fe A(K). For he H we obtain:

sup |Uph(x) — h(x)l = sup |Ly(P,h)" (c(x)) — A(z(x)

xeK t(x)eK
= | L(P,h)~ — k|
< |Lu(P,h)” — Lokl + || Lok — Al
< | Lall |(Pah)™ = K| + | Lk — R
< |Ph = hl| + LA — &l 0.

But f,eKor*(H,id) and therefore we get lim,,,, |U, fo — foll = 0, in particular
limn—mo |Unf0(xn) - fO(xn)l = 0. Then

&0 = |@(fo) — fo(xo)l
< lo(fo) — folxa)l + | folxn) — fo(Xo)l

<19(fo) = folxa)l + - by definition of x,, (4

(_SS.-) |Lnf0(1:(xn)) - Ln(Pnf0)~(T(xn))| + lUnfO(xn) _fO(xn)l + %

< Lall 1o = (Pafo)” Il + 1Un folxn) — folxa)l + %0,

a contradiction for sufficiently large ne N.

REMARK. The sequence (P,),.y in the above proof converges exactly on the
space Z to the identity. Therefore Kor*(H,id) < Z.

3. Weak approximation in Lindenstrauss spaces.

3.1. In this section we want to characterize the weak sequential Korovkin
closure ow-Kor!(H, T) of a subspace H of a real or complex Lindenstrauss space
E,where T: E — Eisa linear contraction. We show that this closureis equal to an
appropriate uniqueness closure V;(H, T). Let us give the relevant definitions. If
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E is a real or complex Banach space and T: E — E a linear contraction, then the
weak sequential contractive Korovkin closure sw-Kor!(H, T) of a subspace
H < E with respect to T is the space:

ow-Kor'(H, T):= {y€ E: If(L,),cn is a sequence of linear contrac-
tions L,: E — E such that lim,,_, ,
p(L,h — Th) = OVpe E'Vhe H holds,
then lim,, ,, p(L,y — Ty) = OVpeE'}.

The appropriate uniqueness closure is:

Vi(H,T):= {yeE: If pe B,(E’) and q € 0,B,(E’) such that
p(h) = q(Th)¥Yhe H, then p(y) = q(Ty)}.

The inclusion Vy(H, T) < sw-Kor! (H, T) holds in general. To see this (cf. 3.4), it
is useful to make the observation that Rainwater’s theorem also holds for
complex Banach spaces:

RAINWATER’S THEOREM. Let E be a real or complex Banach space and (x,),cn
a sequence in E. Then x, — x weakly, if and only if (x,),cy is norm-bounded and
q(x,) — q(x) for every q € d.B(E").

R. R. Phelps proved this theorem in the real case using the integral representa-
tion theorem of Bishop-de Leeuw, [P, p. 33—-34]. In the complex case, consider E’
asareal space. Then B(E’') is a w*-compact convex set in E’ and d,B;(E’) remains
the same set in this point of view. By Bishop-de Leeuw’s theorem there exists
a o-ring & with 0,B{(E')e¥ and a probability measure u on & with
W(B(EN\G.B4(E")) = 0 such that

Lp) = JLdu

holds for all w*-continuous affine real-valued functions L on B,(E’). But the real
parts #x,,, &% of X, X are functions of this kind (" is the embedding of E in E").
Lebesgue’s dominated convergence yields

Rp(Xs) = RXn(p) = J%”cndu - J RX dp = R%(p) = Ap(x)

for p e By(E"), if we assume (x,),.y t0 be a norm bounded sequence in E such that
q(x,) = q(x)Vq e 0,B{ (E'). Do the same with the imaginary parts; this proves the
non-trivial implication. The rest is clear.

Recall, that an L-projection P: E — E is a linear map such that P2 = P and
Ix}| = ||Px|| + ||x — Px||VxeE. A subspace F < E is called an L ideal, if there
exists and L-projection P with P(E) = F. Let E be a Lindenstrauss space and g be
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an extreme point of B;(E’). Then the subspace [q] spanned by g in E' is
a w*-closed L-ideal.

To prove a substitute of Lemma 2.4, we need a suitable selection theorem for
symmetric or T-symmetric correspondences ¥: B,(E’) — 2E. ¥ is symmetric or
T-symmetric, if ¥Y(—p) = —¥(p) or ¥(tp) = t¥(p) holds for pe B,(E’) and
teT:={zeC:|z| = 1}, respectively. Lazar-Lindenstrauss (real case) and Olsen
(complex case) proved the following selection theorem.

3.2. THEOREM ([L-L],[O]). Let E be areal or complex Lindenstrauss space and
F a real or complex Fréchet space. If ¥: B{(E') — ¢(F) is a convex symmetric or
T-symmetric w*-lower semicontinuous correspondence, then there exists a w*-con-
tinuous affine symmetric or T-symmetric, respectively, selection ¢: B,(E') - F,
¢(p)e ¥(p)VpeBy(E).

Let S be an essentially closed face of B,(E") (i.e. a face of B(E’) such that
co(Su —S8)is w*-closed), V:=co(Su —S) and f: V — F a w*-continuous affine
symmetric selection of ¥\y. Then ¢ can be chosen such that @y = f holds (real
case).

Let N be a w*-closed L-ideal and f: N n By(E') —» F a w*-continuous affine
T-symmetric selection of ¥ |y g, ). Then ¢ can be chosen such that ¢\yp,&) = f
holds.

3.3. LEMMA. Let E be a real or complex separable Lindenstrauss space, H < E
a subspace and L: E — E a linear contraction. If pe B,(E') and qe d.B(E’) are
elements such that p(h) = q(Lh) holds for any he H, then for any sequence (q,)nen in
0,B(E’) with limit q there exists a sequence (L,),cy of linear contractions L,: E - E
with the properties:

lim ||L,h — Lh|| = OVheH and gq,(L,y) = p(y)VneNVyeE.
SKETCH OF A PROOF. The proof follows the same lines as that of Lemma 2.4.

Choose a dense sequence (h,),cn in H and define for neN the correspondence
¥,: B,(E') - c(By(E")) by

Y. (v):= {weB,(E): |w(h;) — v(Lh))| < %Vne N,} # 0.

¥, is convex symmetric (T-symmetric) and w*-lower semicontinuous. The same
is true for @,(v):= ¥,(v) < By(E), ve By(E'). Because of pe ®,(q)VneN, after
passing to a subsequence, one can assume p € ®,(q,)Vne N. Theorem 3.2 yields
a w*-continuous affine symmetric (T-symmetric) selection @,: Bi(E") — B(E’)
with the properties: .

@n(v)€ P,()VveEB,(E) and  @,(g,) = p¥neN.
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In the same way as in the proof of Lemma 2.4 one can now define the sequence
(Ly)nen With the desired properties.

We now give the promised characterization of cw-Kor'(H, T) for separable
Lindenstrauss spaces.

3.4. THEOREM. Let E be areal or complex Banach space, H < E a subspace and
T: E - E a linear contraction. Then

Vi(H,T) < ew-Kor!(H, T).
If E is a separable real or complex Lindenstrauss space, then we have the equality:
Vi(H,T) = cw-Kor*(H, T).

PrROOF. “<”. Assume ye Vy(H, T) but y¢ ocw-Kor!(H, T). Then there exists
a sequence (T,),.n of linear contractions such that T,h — Th weakly for all he H
but T,y + Ty weakly. (T,),.n is norm-bounded, therefore by Rainwater’s the-
orem there exists an element q € 0, B{(E’) such that g(T,y) + q(Ty),1.e., there exists
& > 0 such that

(6) lq(Ty) — q(Ty)| 2 &

holds for infinitely many neN. Alaoglu-Bourbaki yields a subnet (¢;);c; of
(g o T,),en With functionals ¢; satisfying |¢;(y) — q(Ty)| = ¢ for every iel that
converges to peB,(E'). Of course, p(h)=q(Th)Vhe H, but this implies
p(y) = q(Ty) because ye Vy(H, T). For sufficiently large i€ I we get a contradic-
tion to the definition of the ¢; and (6).

“2”. This is an easy application of Lemma 3.3.

We close this section with an analogon to Theorem 2.10.

3.5. THEOREM. Let E be a real or complex Lindenstrauss space, H in E a sub-
space. If H is separable, separates the points of 6,B((E’) and if the map 1. E' - H',
©(p):= p\u, € E’ has the property 1(0.B,(E")) < 0.B,(H’), then the equation

Vy(H,id) = sw-Kor!(H, id)
holds.

Proor. It suffices to prove the inclusion “2”. Let yeow-Kor!(H,id),
peB,(E) and qed,By(E’) with p(h) = q(h)Vhe H. [H u {y}] is separable, and
using 2.9 (i) we can find a separable Lindenstrauss space Z such that
[H v {y}] = Z < E. With the inclusion t(d,B,(E")) < 0,B;(H’) and the assump-
tion that H separates the points of 9, B, (E’), one can show just in the same way as
in the proof of Theorem 2.10: g,z € 0.B(Z’). By Lemma 3.3 there exists a sequence
(S,)nen Of linear contractions S,: Z — Z with the properties:
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lim [[S,h — h| =0VheH and qz(S.y) = p;z(y)VneN.
Asin 2.9 there exist subspaces Z,, of Z and linear projections P,: E — Z, such that
IP.)l =1, neN, and lim,, ||P,z— z| =0VzeZ. Now define L, E—E,
L,:=S,oP,,neN. L, is a linear contraction, and for he H = Z we have:

[Lah — kIl < IS4l I1Puh — h]| + |Syh — b —2- 0.
yeosw-Kor'(H,id) now implies lim,_, ., g(L,y — y) = 0. Because of
[p(y) — a)I = 19(Sny) — q(Lay)l + lg(Lny) — a)l

S ISall lly = Payll + la(Lny — y)| >0
we get p(y) = q(y). This completes the proof.

4. Remarks.

4.1. One can also consider Korovkin closures with respect to contractions and
the strong topology (cf. [Alt], formulas (2.1) and (2.3); there T = id). Using
Lemma 3.3 it is now easy to prove, that for separable Lindenstrauss spaces E and
linear contractions T: E — E the equation

Kor!(H, T) = Uy(H, T)

holds for a subspace H < E. But “in general” we have J,B,(E") = B{(E’) (cf. [K]
for a more precise statement), in particular 0e 6,B,(E’). Hahn-Banach therefore
yields H = U,(H, T) = Kor!(H, T).

4.2. Let K be a compact convex set in a locally convex Hausdorff topological
vector space and T: A(K) - A(K) a positive linear operator. For a subspace H of
A(K) define:

ocw-Kor*(H, T):= {f € A(K): If (L,)ney is a sequence of positive linear
operators L,: A(K) — A(K) such that
lim ¢(L,h — Th) =0Vepe A(K)Vhe H,

then lim @(L,f — Tf) = 0¥ p e A'(K)}

n-— oo
and

Vi(H,T):= {fe AK): If peA',(K) and x € 0.K such that ¢(h) =
0,0 T(h)Vhe H, then o(f) = d, T(f)}.

Let H be a cofinal subspace of A(K) and K a metrizable Choquet simplex. Using
the claim in the proof of Theorem 2.7 and Rainwater’s theorem it is now easy to
show that
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oow-Kor*(H,T) = V.(H,T)
holds (cf. [Alt, Prop. 2.3, Th. 2.4]).
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