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SATURATED ACTIONS OF FINITE DIMENSIONAL HOPF
*-ALGEBRAS ON C*-ALGEBRAS

W. SZYMANSKI and C. PELIGRAD

1. Introduction.

A result announced by Ocneanu (see [15] for a proof due to Szymanski) states
that if N = M is an inclusion of type II; factors of depth 2 (see [2]) with
N'nM = CI and finite index [M:N] (see [4]), then M is isomorphic with the
crossed product of N by an (outer) action of a finite dimensional Kac algebra.
Motivated by this result we define below actions of finite dimensional Hopf
x-algebras on unital C*-algebras. Actions of Hopf algebras appear in [14].
Actions of finite dimensional Hopf x-algebras on von Neumann algebras are
considered in [15].

We then define and study in this framework several concepts which are known
in the case of group actions, such as; spectral subspaces, spaces of spherical
functions inside the crossed product, saturated actions (see [3,5,6,10]). We
obtain characterizations of simplicity and primeness of crossed products ana-
logues with those in [10] for group actions.

Finally, using the results we refered to, we prove that if a finite dimensional
Hopf x-algebra A acts in a saturated fashion on a C*-algebra M, then M ><t A is
isomorphic with the basic construction K(M)(=End(M)) for a pair M* = M,
and the index (in the sense of Watatani, see [16]) of the natural conditional
expectation E from M onto M equals (dim A)I. The latter generalizes a result by
Jones for I, factors (see [2,4]).

2. Finite dimensional Hopf «-algebras and their actions.

2.1. Finite dimensional Hopf x-algebras.

For reader’s convenience we collect in this section some basic facts about finite
dimensional Hopf x-algebras. By a finite dimensional Hopf x-algebra we under-
stand a compact matrix pseudogroup ([17, Definition 1.1]) corresponding to
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a finite dimensional C*-algebra, ie. a finite matrix pseudogroup in
Woronowicz’s terminology. Throughout this paper A denotes a finite dimen-
sional Hopf *-algebra. In the following we collect some basic properties of A,
which are either included in [17, Definition 1.1] or are its immediate conse-
quences [17, Proposition 1.8, Proposition A 2.2].

PROPOSITION 2.1. Let A be a finite dimensional Hopf *-algebra. Then the
Sollowing hold.
1. A is a finite dimensional C*-algebra.
2. There exist linear maps;
(a) comultiplication 4:A ® A,
(b) counit ¢: A — C (C denotes the complex numbers),
(c) antipode S:A — A.
Comultiplication and counit are C*-algebra homomorphisms. Antipode is
a x-preserving antimultiplicative involution. We have A(I) = I ® I, &(I) = 1,
and S(I), and S(I) = I, where 1 is the identity of A.
3. The following identities hold;
(a) (4 ®id)4 = (id ® 4) 4 is coassociative,
(b) t®id)4 =(d ® e) 4,
(c) m(S ® id)(4(a)) = e(a)] = m(id ® S)(4(a)) for any ac A, where m: A ®
A — A denotes the multiplication.

Ifae A, then wedenote 4(a) = Y, af @ af, A(af) = Y ;aif ® aff,and 4(af) =
Yjatt ®af®. With this notation we have; ), ;a' ®a*®@af =) ;af ®
af ® afR, Y e(ab)af = a = Y, e(@®ak, and YiaF S(@f) = e(@)] = Y, S(ah)af,
for any acA.

Consider amapoc:A®@ A - A® A, definedaso:a ® b — b ® a. Since S =
id, &S = ¢ ([17, Theorem 5.6]), and A4S = (S ® S)o 4 ([17, Proposition 1.9]), we
get e = &S = m(id ® S)4S = m(S ® id)o 4, and similarly ¢ = m(id ® S)o 4. This
means Y ;af S(al) = (@) = Y ;S(a})af for any acA.

The following theorem has been obtained by Woronowicz (see [17]) in much
greater generality for compact matrix pseudogroups. For A finite dimensional
the result takes a simpler form. In particular, the Haar state is a faithful trace,

which is not always the case for arbitrary compact matrix pseudogroups.

THEOREM 2.2 (S. L. Woronowicz). If A is a finite dimensional Hopf *-algebra,
then the following hold true.

1. There is a unique faithful normalized trace T on A, called the Haar trace, such
that (t ® id)(4(a)) = t(a)] = (id ® ©)(4(a)) for any a€ A. If p is a minimal central
projection in A such that pA = M, (C), then t(f) = d,(dim A)~ ! for any f-a
minimal projection in pA.
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2. Thereexistsabasis {®};|k = 1,...,N,i,j = 1,...,dy} of A with the following
properties; A(®f;) =Y D% @ D%, &(P ) = &;j, S(P* ) = (P4)*, and each of the
matrices [®*], whose i-j entry equals ¢, > IS a unitary element of M, (A).

3. For a basis {®};} as above, we have

1
(D} (Ph,)*) = ‘d_éklaiméjn'
k

4. There exists a minimal and central projection e in A, called the distinguished
projection, such that ae = g(a)e for any ac A. We have ¢(e) = 1, S(e) = e, and
7(e) = (dim A)~ 1. Moreover,

dmAZ «®i;

Proor. 1. See [17, Theorem 4.2 and Appendix 2].

2. See [17, Theorem 5.7].

3. We have 1(9* (<15 ) = M 1600 f1(PE ;) (cf. [17, Formulae 5.9 and 5.25]),
where M, = f; (Z &%) ([17, Theorem 5.6]). f; is a linear functional introduced in
[17, Theorem 5.6]. However, as remarked by Woronowicz ([17, Appendix 2]),
we have f; = ¢ for A finite dimensional. The claim follows.

4. It follows from 3. above that for any I, m, n we have

1 i A
‘C<< d]mA ¢ii)(¢mn) ) - dlmA 5,,,,,

= 7(e(Ppun)®).
Since {(®.,,)*} form a basis of A, we have

r(( diri) A Z';dkd>§i>a> = 1(ea),

for any ae A. Faithfulness of t implies the formula for e.

A simplest example of a Hopf *-algebra is the complex group algebra C[G] of
a finite group G, equipped with 4: g+ g ® g,e:g +— l,andS:g > g ',forgeG.
The Haar trace 7 is given by t(g) = 4,5, where 1 denotes the neutral element of G.

This is in fact a special case of Theorem 2.2.(3). The distinguished projection
e equals |G|~ 1deag. This conforms to Theorem 2.2.(4).

PROPOSITION 2.3. A°, the space of linear functionals on A, is a Hopf *-algebra
with the following structure;

L. (multiplication) (¢ ® Y)(a) = (¢ ® Y)(4(a)),

2. (counit €°) e°(¢) = o(I),

3. (comultiplication 4°)A°(¢p)(a ® b) = ¢(ab),
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4. (antipode S°)S°(¢)(a) = ¢(S(a)),

5. (adjoint) ¢p*(a) = H(S(a*)).

Herea,be A, ¢,y € A°, and we identify A° ® A° = (A ® A)°. Moreover, ¢ is the
identity and t is the distinguished projection (i.e. ¢t = &°(¢)) in A°. The Haar trace
7° on A° is given by 1°(¢) = ¢(e).

ProOF. Itisclear that Formulae 1 and 5 above introduce a *-algebra structure
on A° (see also [17, Formula (1.50)]).

If {<I>’,-‘j} is a basis of A as in Theorem 2.2.(2), then the corresponding dual basis
{wf;} of A° (via the duality <a,¢)> = ¢(a), ac A, p€A®) is easily seen to form
a self-adjoint system of matrix units. Thus, A° is isomorphic to a multimatrix
algebra, i.e. a finite dimensional C*-algebra.

For each minimal central projection p, in A let {},,} be a self-adjoint system of
matrix units in p,A = M, (C). Let {¢},,} be the corresponding dual basis of A°
and let [¢"] be an element of M, (A°) having ¢},, as its m-n entry. It is clear that
the matrix having the matrices [¢"] along its diagonal (and zeros elsewhere)
satisfies requirements (1) and (2) of [17, Definition 1.1].

It is also clear that the map introduced by Formula 4 above satisfies require-
ment (3) of [17, Definition 1.1]. The remaining claims of the proposition are
easily verified.

One can easily check that A is canonically isomorphic with A°°.

If G is a finite group, then it is well known that C[G]° is an abelian C*-algebra
with minimal projections {p,|g € G}, comultiplication 4(p,) = Y necPn ® Pi- 14
counit &(p,) = J,, and antipode S(p,) = p,-:. We denote C[G]° by C(G).

2.2. Actions and crossed products.

We denote by M a C*-algebra with identity 1.

The notions of action and crossed product (in the context of Hopf algebras)
were introduced by Sweedler (see [14]). However, he did not consider the
*-operation.

DEFINITION 2.4. A bilinear map-: A x M — Misa (left) action iff the following
hold for any a,be A, x,ye M.

I-x=x,
a-I=c¢@l,
ab-x =a-(b-x),

a-xy =3 (a; x)a " y),

i

(@a-x)* = S(a*)-x*.
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EXAMPLE 2.5. The following are Hopf x-algebra actions.

1. a-x = e(a)x for any ae A, x e M. This action is called trivial.

2. ax =Y ;0(af)xo(S(af)) for any ac A, xe M, where ¢: A — M is a C*-alge-
bra homomorphism with g(I) = I.

3. The adjoint action of A on itself, denoted ad, defined as ad(a)-b =
Y :arbS(af), for any a,be A. This is a special case of the previous example.

4. Anaction of A° on A, denoted —, defined as ¢ — a = (id ® ¢)(4(a)), for any
acA, peA°.

5. Anaction of A on A°, defined as(a- ¢)(b) = ¢(S(a)b),foranya,be A, p € A°.

Proor. It is well known that the maps from Example 2.5 are indeed actions.
For illustration, we verify 2.

Let a,beA, x,yeM. We have I-x = g(I)xo(I)=x, and a‘I =) ,0(aF)
To(S(@) = e(uai S(af)) = e(a)1.
Since 4 is an algebra homomorphism and S is an antthomomorphism, we get

ab-x =}’ e((ab))xe(S(ab))
= . e((arbj)xe(S((ai'b}))
= 2 e(a)e(b})xe(S(b)e(S(a)

=a- (b x).
Applying twice the identity from Proposition 2.1.(3.a), we get

Y (@i x)af-y) = Y elai)xe(S@i®)akl) ye(S@i’)
i i,j.k

= ¥ elafx")xe(S@ai™) ai") ye(S(ar))

= i;k (@) xe(S(aix ) aii®) ye(S(a)
= ‘; 0 <2,: elai)ai)xy Q(S(af‘)>

= Zl: plal)xyS(ar)

=a-xy.

Finally, since 4S = (S ® S)o4 and both S and 4 preserve *, we get
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(@x)* = <z e(a%)xe(S(a:‘»)*
= YelS(ay)x*e(@h)

= S(a*)- x*.

If A acts on M, then we define a: A — Endc(M) as a(a)(x) = a-x for aeA,
xeM. We call an action faithful iff « has trivial kernel.

DEFINITION 2.6. If A acts on M, then we define a new *-algebra M >< A, called
the crossed product. in the following way.

M ><1 A is just M® A (the algebraic tensor product) as a vector space but
multiplication and *-operation are defined as follows.

(x®a)(y ® b)*¥ ¥ x(af - y) ® af'b,

(x ® a)* &Y (aFy* - x* @ (aR)*
fora,beA,x,ye M.

It is well known (see [14]) that M >< A is an associative algebra with identity
I ® I. One can easily check that the maps A > M >t A, a— I ®a, and M -
M >< A, x — x ® I, are injective *-homomorphisms. Identifying a with I ® a
and x with x ® I we can write xa (instead of x ® a = (x ® I)(I ® a)) for elements
of the crossed product.

For any a€ A, x e M the following useful formula holds;
(M xa =Y af(S(a;)" x).

Indeed,
Z al(S(af)-x) = Z (af"-(S(af)- x))af®

= ). (a5" (S(a") x)ai

3 e

= x(Tetahat)

13

= Xa.

We can now check that M ><1 A isin fact a x-algebra. Indeed, foranyac A, xeM
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(xa)** = (z ((aby*- x*)(a:‘)*)*
= ¥ (af*-(S(ab)- x))al"
= Y.ak(S(ah)-x)

= Xa.

Thus, * in M > A is an involution.
It follows immediately from our definitions that (xa)* = a*x* forac A, xe M.
Hence, for any a,be A, x,ye M

((a)(yb)* = (z_ x(aty)a b>*

= ¥ b*(af)*(ak-y)*x*

= b*(z (afy*(S(ab)* -y*))x*
= b*y*a* x*
= (yh)*(xa)*.

Thus, * in M > A is antimultiplicative, and we see that M > A is a unital
x-algebra.

DEFINITION 2.7. If A acts on M, then there is a dual action of A°on M > A
defined as

¢ xa™ x(¢—a),
for ae A, ¢ € A°, x e M. Here — denotes the action from Example 2.5.(4).

One can easily verify that this is in fact an action.

If G is a finite group acting on M and g € G is identified with an element of the
crossed product M > G, then g-x = gxg~ ' = gxS(g) for any xe M. This for-
mula readily extends to an arbitrary Hopf #-algebra as follows. If A ats on M,
then for anyae A, xeM

2 ax= Za{‘xS(a{‘).

Here, as usual, we identify A and M with appropriate subalgebras of the crossed
product. Indeed, we have
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Y arxS(al) =Y (a5t - x)a;*S(af)
i i,j

=) (af - x)a; S(al®
i,j

= (Z s(a?)af) X

=a-x.
We define a linear map F: M > A —» M as
3) F:xa 1(a)x,
for anyaeA, xeM.

ProPOSITION 2.8. F is afaithful (i.e. F(ff*) = O implies f = 0, for fe M > A)
conditional expectation from M > A onto M.

ProoF. It is clear that F(x) = x and F(xya) = xF(ya) for any ae A, x,ye M.
Moreover,

F((xa)*) = 3 F(((ai)* - x*)(ai")*)

11

= (Z t(a{‘)a{‘>* L X*
= Ta)x*
= F(xa)*

for any ae A, xe M. Thus, F is a conditional expectation.

Let {a;} be a basis of A such that 7(a;a}) = d;;. Suppose that we have
F((Qixia)(Yi xia:)*) = 0 for some {x;} in M. Hence, 0 = ), ; F(x;a;a}x¥) =
Yijt(@a)xx¥ = Y x;x¥, and we have ) ; x;a; = 0. Thus, F is faithful.

2.3. An action of A on A°.

Before moving forward we want to take a closer look at the action of A on A°
from Example 2.5.(5). The main purpose of this is to prove Proposition 2.10
below.

We consider a Hilbert space [%(A, 1), whose vectors are elements of A, with
inner product {a,b) = t(b*a). An a€ A, considered an element of [*(A, 1), will be
denoted by the same symbol. #(I%(A, 1)) denotes the C*-algebra of linear en-
domorphisms of [%(A, 7). Recall that the Haar trace t, viewed as an element of A°,
is the distinguished projection in A°.

The following proposition is essentially a very special case of duality for Hopf
algebra actions.
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PROPOSITION 2.9. If A acts on A° as in Example 2.5 (5), then the crossed product
A° > A is isomorphic to B(I*(A, t)). Moreover, the unique normalized trace T on
A° > A is given by T(¢a) = 1°(p)t(a), for ac A, p e A°.

PrROOF. We define a linear map 0: A° >t A — B(I*(A, 1)) by setting
(pa)(b) = (¢ ®id)(A(ab)), for acA, peA®, bel*A,1). We claim that 0 is
a C*-algebra isomorphism.

At first we observe that the following four identities hold; 6(ab) = 6(a)6(b),
0(oy) = 0()0(Y), O(¢pa) = 0(¢$)0(a), and 6(ag) = B(a)0(¢) for any a,beA,
¢,y € A°. Since their proofs are similar, we check only the fourth one. Indeed, for
anyacA, pe A’ bel*(A,1)

Bag)(b) = 0(2_ (a} ¢)a:*> (b)
= ¥ (@} §) ® id)(A(alb)

= Y d(S(a)a, bagi b

i,k

= Y ¢(S(agaf bi)aitbs

i,j.k

- (Zotahat) (S et
= a(¢ ® id)(4(b))
= (6(a)0(¢))(b).

For any a,be A, ¢, € A° we have

0(¢a)b)) = Y. 0((ai - Y)a'b)

= 00Tt i )y

= 6(¢)6(ay)0(b)
= 6(¢a)(yb).

Thus, 6 is an algebra homomorphism. We leave it to the reader to verify that
0 preserves *.

Take an arbitrary aeA with t(aa*) = 1. For any bel*(A,7) we have
B(ata*)(b) = O(a)((r ® id)(4(a*b))) = t(a*b)b(a)(I) = t(a*b)a. Thus O(ata*) is an
orthogonal projection onto the one-dimensional subspace of I%(A, 7) spanned by
a. It follows that 8(A° > A) = %(I*(A, 7)) and 6 is a C*-algebra isomorphism.
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For T, defined in the proposition, we have T(I) = 1 and it suffices to show that
T(¢ab) = T(bga) and T(day) = T(Y¢a) for any a,be A, ¢, € A°. Indeed,

T(bga) = Y. T(bF- $)ba)
= 3 (b B)elbla)
= ¥ ¢(S(bHeyu(ba)

— (S oot ) )

= (¢)r(ba)
= T(¢ab).
The other identity is established in a similar fashion.

For any p, a minimal central projection in A, we denote by {v%;|i,j = 1,...,d,}
a system of matrix units in pA. That is vfpf, = 6,,0;m0h, (VF)* =%, and
t v

PROPOSITION 2.10. For {v};}, a basis of A as above, we have

Ae) = Z —dl—v{’j ® S(b%).
L,J,p P

PrOOF. Since T(t) = (dimA)~?, we see that t is a minimal projection in
A° > A. Hence, there is a inear functional 4 on A such that tat = A(a)t for any
aeA. Taking T of both sides we get A(a) = t(a).

We define a linear map y: A ® A —» A° >t A asy: a ® b — atS(b). This map is
a vector space isomorphism. To see this one can choose a basis {a;} of A such that
t(a;a¥) = d;;, and check that T(y(a; ® a;)*y(a, ® a,)) = (dim A)~'8;,,0;,. This
shows that {y(a; ® a;)} are linearly independent.

It follows from Formula (2) that y(4(a)) = a‘t for any ae A. Since clearly
e'7 = (dim A) " ‘¢ and ¢ is the identity of A°, we have y(4(e)) = (dim A)~'I.

Since tvfjt = d,(dim A)~'9;;7, one can check that {(dim A)d, YvPTv%} are pair-
wise orthogonal projections in A° > A. Since each of these projections has
trace(T) equal to (dim A) ~?, they sum up to I. Thus, we have

1 1
v( X vh® S(vi-’i)> = Y —-vfk
i,j.p dp i,j,p dp
1
= L
dim A
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Since y isa 1 — 1 map, our claim follows.

By virtue of Theorem 2.2.(2 and 4) we have

4) Ae) = —— z d % ® .

i, jk
Thus, a(4(e)) = A(e), where 0: A @ A > A® A, 6:a® b — b ® a. Consequent-
ly, the formula from Proposition 2.10 may be rewritten as

(5) o) = ¥ S ®
i,j,p d

A finite dimensional Hopf *-algebra A has two kinds of particularly useful
bases. In the first class there are bases composed of systems of matrix units {v7;}.
Such bases are related to the structure of irreducible modules of A. In the second
class there are bases of the form {®};}, related to the structure of irreducible
comodules of A. Proposition 2.10 and Formulae (4) and (5) show how to express
A(e) in bases of both kinds.

2.4. Fixed point algebra.
The notion of fixed point algebra for an action of a Hopf algebra appears in

[14].

DEFINITION 2.11. If A acts on M, then the set of fixed points, denoted by MA, is
defined as

MA Y (xeM|(VaeA)a- x = g(a)x}.
It is easily seen that the fixed points from a unital *-subalgebra of M.

PROPOSITION 2.12. If A acts on M, then E: M — M, defined as E: x +— e- X, is
a faithful conditional expectation from M onto M* such that

(6) E((a- x)y) = E(x(S(a)" )
forany aceA, x,y e M.

PROOF. A straightforward calculation shows that E is a conditional expecta-
tion onto MA. We verify that E is faithful. Indeed, suppose that E(x*x) = 0 for
some x € M. By virtue of Theorem 2.2.(2 and 4) we have
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0=-e x*x
dlmA Z‘p XX
(D% x*)(P%; - x
dlmA ‘;k ()i x)
1
= ¥ (@04 x)

i,j,k

Thus, <I>§,-‘x = 0 for any i, j, k. Since { } form a basis of A, we conclude that
x=1x=0.

In order to establish Formula (6), it sufficies to verify thatin M > A
E((a- x)y)e = E(x(S(a)" y)e.
At first we observe that
(7 (a-x)e = axe
forany ae A, xe M. Indeed, axe = Y ;(a; - x)afe = (3. &(af)al) - x)e = (a- x)e. By
virtue of Formula (2) we have
E((a- x)y)e = (e*((a" x)y))e
= e(a- x)ye

=Y ea;xS(af)ye

= ex$S (Z s(a{“)af‘) ye

= ex(S(a)" y)e
= E(x(S(a)" y))e.
This completes the proof.

EXAMPLE 2.13. The following hold true:

1. The fixed point algebra for the adjoint action from Example 2.5.3) is equal to
the center of A.

2. The fixed algebra for the dual action of A° on M ><1 A equals M.

ProoF. 1. By virtue of Proposition 2.12 the fixed point algebra is spanned by
{e-vZ,}, where {vZ,} is a system of matrix units described in the previous section.
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By virtue of Proposition 2.10 we have e-vh, =) ;,d, "vhvd, 5=
Omndy 'Y V% = O,ad, 'q. The claim follows.

2. The distinguished projection in A° is 7. For any a;€ A, x;e M we have
T (Quixia;) = Y i xi(t—a;) = Y i 1(a;)x;. The claim follows.

2.5. Covariant modules.

We assume that A acts on M. Let # be a Hilbert space that is both hermitian

A- and M-module. By a hermitian module we understand a Hilbert space of
a x-representation of a C*-algebra. We say that the two modules are covariant iff

@ a(x¢) = ). (ai - x)af?)

for any ae A, xeN, e #. In such a case we also say that the corresponding
representations are covariant. If ,# and ,# are covariant, then J# becomes
a hermitian (M >t A)-module via

(xa)¢ & x(ag).
We omit a tedious but not complicated verification of this fact.

PROPOSITION 2.14. If A is a hermitian M-module, then there are covariant A-
and M-module structures on A = # ® [*(A, 1), related to the following represen-
tations;

2@ E® b > E® ab,
7(x): £ ® b - T (S(bH) x)E @ b,

forac A, xeM,bel*A,1),EeH. Therefore, there is arepresentation 0 of M > A

on A", and this representation is faithful if the representation of M on 3 is faithful.
If A and M are identified with subalgebras of M > A as in Section 2.2, then
0 extends both ¢ and .

PROOF. Again, a tedious but straightforward calculation shows that ¢ and
7 are covariant representations. Assuming that s is a faithful M-module we
check that J¢ is a faithful (M ><t A)-module.

Suppose that Y, x; 5 ®}; acts trivially on .f", for some x;; € M. For any ¢e #
we have

0= < Z xijk(p{"j>(é ®1I)

ik

= Z (((pfni)*'xijk)é®¢:‘"j‘

i,j,k,m

Hence, for any j, k, m we have
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Z(‘ply‘ni)* X = 0.
Since matrix [@*] is unitary, for any n we get
0=t (S0
= YN (05 i

= Xpjk-
This completes the proof.

In what follows we keep the notation of the previous proposition. We denote
by #(") the C*-algebra of bounded operators on #". The following proposition
allows us to introduce a norm in M > A, with which M > A is a C*-algebra.

PROPOSITION 2.15. The image of M > A in B(A") under the representation
0 constructed in Proposition 2.14 is norm closed.

PROOF. Let f, =) ; i« x{0®K, with x{% €M, be a net of elements of M > A

ijs
such that 6(f,) —"———"o T, for some T e B(X).

Let F be the conditional expectation from M > A onto M as in Formula (3).
Clearly ||n(F(g))ll = |6(g)]] doe any ge M > A. Theorem 2.2.(3) implies that
x@ = dF(f,(P.,,)*) for any m, n, I. Therefore n(x?,)) = d,n(F(f,(®",,)*)) con-
verges in norm to some (Ymm), Vmm € M. Consequently,

0(/.) Jé‘l‘!" 9( ) yu'jk@j)-
i,j,k
This completes the proof.

For any k we have a unitary matrix [o(®*)] € M, (#(X)), whose i — j entry
equals o(®%). We consider f(®*) — an automorphism of M, (#(X")) given by

B(*)(T) & [o(P*)]1TL(PY)1*,

for any T e M, (#(X')). For any xe M we denote by D(x) a diagonal matrix in
M, (#(X)) with n(x) along its diagonal. It follows from Formula (2) and The-
orem 2.2.(2) that

7@ x) = i — j entry of H(@)(Dy(x))
for any x e M, and any i, j, k. As an immediate consequence we have the following.

PROPOSITION 2.16. If A acts on M, then o(a): M — M is norm continuous for any
aeA, where a(a): x — a- x.
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3. Spherical Functions.

Throughout this section we assume that A acts on M. For p, a projectionin A, the
spectral subspace (of the first kind) of M corresponding to p is

) M;(p)¥ {p-x|xeM}.

PROPOSITION 3.1. With the above definition we have the following.
L IfI= Zi pi» then M = @, M(p;).

2. My (p)* = M,(S(p)).

3. Each M,(p) is an MA-bimodule.

4. If pis central, then M(p) is A-invariant.

We leave the straightforward proof of this proposition to the reader.
Let p be a minimal central projection in A. There is a left A ® pA-module
structure on M ® pA, namely

(10) @Rbx®c)Ea x® be.
Let {v%} be a system of matrix units in pA. We define
(11) UA-DIWATA

ivj
(12) v d, 'Y S(0f) ® vh

LJ

Note that v} is the unique unitary element in pA ® pA with trace (t ® 7) equal to
d,(dim A)~! and such that (u ® w)v} = vi(w ® u) for any u, we pA. Thus, the
definition of v¥ is independent on the choice of {v%;}. Since v} = d, (S ® id)(1]),it
is well defined too.

Following [3, 10] (see also [6, 7]) we give the following definitions.

DEFINITION 3.2. The spectral subspaces (of the second kind) of M corresponding
to p are

Mi(p) & {v2(x ® p) | xe M},
MZE(p) & {v&(x ® p)| xeM]}.
It is clear that MX(p) = (M4(p))*.

DEFINITION 3.3. For p, q, minimal central projections in A, we define the
subspace of spherical functions inside the crossed product M > A as

S,.. % pM > A)g.
If p = q, then we put S, = S, ,.
Each S, is a hereditary C*-subalgebra of M >< A.
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An easy proof of the following proposition is omitted.

ProrosiTION 3.4. For any p, q, r, s, minimal central projections in A, withq % r,
we have the Sollowing.

L {0}

2. ( ) =

3. SpqS CS s

4. S, .S, p is a two-sided ideal of S,.
5. Spe"Ml(p)e

We denote A'n(M >aA)by LandsetI, =1InS,.
It is clear from Example 2.5.(2) and Formula (2) that an action of A on
M extends to an action of A on M >< A given by

a-f<Y atfS(ak),

for aeA, feM > A. The fixed point algebra for this action is denoted by
(M > A)A.

ProPoOSITION 3.5. For any p, a minimal central projection in A, we have the
following.

L I=M>Ar

2. The map pA®I,->M>1A, given by pa® f > paf, establishes
a x-isomorphism between pA ® 1, and S,,.

3. Amap pA® 1, > M > A, given by pa ® f > paf, establishes a *-isomor-
phism between pA ® 1, ad S,,.

PrOOF. 1. If f belongs to I then a- f = Y ;arfS(@af) = 3 aFSaf)f = ea)f,
for any ae A. Hence, fe(M >a A)*. Conversely, let fe(M > A)*. Then, by
virtue of Proposition 2.10, f =e- f =Y, ; ,v7,fv%. Thus, for any vf,, we have
vl =Y ,vLfvl, = fvi,. Hence, fel

2. and 3. are clear

We define a left A-module structure on M ® A as
(13) ax ®NEY af - x ® af*bS(afh),
i

for a,be A, xe M. We leave it to the reader to verify that this definition in fact
produces a module structure. Similarly to [3, 5, 6, 10] we have the following two
propositions.

PROPOSITION 3.6. Let y:M >1A - M ® A be defined as : xa — x ® S(a),
for aeA, xeM. For any p, a minimal central projection in A, y establishes
a *-isomorphism between 1, and (M ® S(p)A).
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Proor. Clearly ¥ is a linear isomorphism from M > A onto M ® A. More-
over, for any a,be A, xeM we have

Wla-xb) =y <2 a{“be(af*))

=y (Z (aj- x)a{;RbS(a,B)>
iJj
=3 ai" x ® afS(b)S(al®
i)
= l‘z;af X® aﬁRS(b)S(ag.L)
= ay(xb).

Hence, by virtue of Proposition 2.12, ¥ is a linear isomorphism from (M > A)*
onto e(M ® A). Proposition 3.5 implies that y is a linear isomorphism from I,
onto (M ® S(p)A).

Moreover, | is a *-homomorphism. Indeed, let Y ; x;a; and Y ; y;b; be in I,,.
Since I, = A’, we have

(5 (3om)) 2ol (5om)e)
=y <§ xiyjbjai>

= Y%y, ® S@)S(b)

=y <Z xiai> 1 (Z y,-bj) :
i i
Hence, i preseerves multiplication.

Let f = Zik xk,@% be in I, for some x;; € M. Since f commutes with (&,,,)* for
any m, n, I, we have

Z xijk¢li(j((p£nn)* Z ((pinn)*xijk(pi'(j

ik ijk

Y (@he)* - Xig) (D) * @l

i,j.k,s

Il

I

I

(S((pim) ’ xijk((pin)*(p,i(j'
i,j.k,s
Applying conditional expectation F (as in Formula (3)) to both sides of the above
equality and taking into account Theorem 2.2.(3) we get
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(14) Xmnl = 2 S(¢im) * Xsnls

for any m, n, I. Thus, we have

w(f*)

< Zk ((Q uk)((p )*>
Zk (PE)* - Xt ® (S(PL)*

K, S

) (Z S(85) xi30* @ (S( )>*

= ( Y X ® S(‘ij))*

s, j,k
= y(f)*.
Hence, Y preserves *.
ProposITION 3.7. For any p, a minimal central projection in A, we have
Yle-S,,Se,p) = ME(S(P)M5(S(p)).

ProoF. For X,Y « M > A we denote XY =span{xy|xeX, yeY}. We
have MA =M > A = AM. Therefore, §,.S.,=pM >1A)e(M >1A)p =
pPMAeAMp = pMeMp. This together with Formula (7) implies that

Sp.eSe.p = span{(p- x)eyp|x, ye M}.
Taking adjoints of both sides of the equality in Formula (7) we get
(15) e(a- x) = exS(a),
for any ae A, x e M. Hence, taking into account Formulae (7) and (15), we get

e ((p-x)eyp) = Y ei(p- x)eypS(e;)
= 3 (er- (p- x)eyS(eMp
= 3 (pe.* xJe(el  y)p,

for any x, y e M. By virtue of Proposition 2.10 and Formula (5) we get



SATURATED ACTIONS OF FINITE DIMENSIONAL HOPF *-ALGEBRAS... 235
Yle  ((p- x)eyp)) = l//( Y, (pS(%) - x)e(vs;- y)p>
i.j.q

(S@i™)- X> e(vi” y)p)

(S@™)- X) (Vhn (057 Y)SE)P)

(3 s ) 5P Y)SE)

i,j,m

. (S(E”) 90D @

(3
2.
(

However, it is an immediate consequence of Formulae (11) and (12) that

(US(p)(x ® p))(vS(p)(y ® p Z (S(US(‘”) x)(vs(p) y) ® v}-?'s'p)

i,j,m

for any x, ye M. This completes the proof.

ReMARK 3.8. It follows from the proof of the above proposition that we have
(e Sp,,eSe,p) E S, eSe, p» and consequently

e Sy eSep=5peSe,NL

4. Saturated Actions.

Let A act on M. Following [1, 5] we consider below a natural [M > A) —
bimodule, which under some conditions becomes an imprimitivity bimodule (see
[12]). We also look at the algebras of MA-module endomorphisms of M, (see
(8,9, 12, 13]).

Me = M > A becomes an MA-valued inner product bimodule (see [8, 9, 12,
13]) if we set

(xe, ye)ya = E(y*x).
As a consequence of Proposition 3.1 we have the following.

PrOPOSITION 4.1. IfI =Y ; p;, thenMe = @; M(p;)e is a direct sum of pairwise
orthogonal MA-subbimodules.

We consider a left (M > A)-module structure on Me given by

def

(xa)ye = x(a- ye.

We also consider an (M > A)-valued inner product on M defined by

def
(xe, ye)y»aq = xey*.
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The following definition is due to Rieffel (see [11]).

DEFINITION 4.2. We say that an action of A on M issaturated iff Me is an
(M > A) — M2 imprimitivity bimodule (in the sense of [12, Definition 6.10]).

The following two theorems are Hopf *-algebra analogues of the resultsin [10]
for compact group actions.

THEOREM 4.3. The following are equivalent.

1. The action is saturated.

2. The two-sided ideal generated by S, equals M > A.

3. For any p, a minimal central projection in A, S, .S, , equals S,.

4. For any p, a minimal central projection in A, eM ® pA) is equal to

ME(p)M5(p).

ProoF. Itis clear that Me may fail to be the imprimitivity bimodule only if the
range of the (M > A)-valued inner product is not dense. This, however, is
equivalent to 2. (since M >< A contains identity, every dense ideal equals the
whole algebra). Thus, 1. and 2. are equivalent.

It is clear that 2. implies 3. Equivalence of 3. and 4. follows from Propositions
3.6 and 3.7.

Suppose that 3. holds, and for each p, a minimal central projection in A, let x?,
yP € M(p) be such that ) ; xPey? = p. We have Y, ,xPey? = I, and consequently
S. generates M ><t A. Thus 2. holds.

One can verify without difficulty that the actions from Example 2.5.(4 and 5)
are saturated. More interesting examples of saturated actions of finite dimen-
sional Hopf *-algebra on C*- and von Neumann algebras will be provided in
a subsequent paper.

The proof of the following theorem is almost identical with those of [10,
Theorems 3.4 and 3.11, Corollaries 3.7 and 3.12]. Therefore, we verify the
characterizations of simplicity only.

THEOREM 4.4. The following are equivalent.

1. M >< A is simple (prime).

2. For any p, a minimal central projection in A
(@) S,.+ {0},
(b) S, is simple (prime).

3. For any p, a minimal central projection in A
(a) M,y(p) + {0},
(b) (M ® pA) is simple (prime).

PROOF. (2<3) Since S,,= M;(p)e by Proposition 3.4.(5), and S, =
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M (C)®I, =M, (C)® (M ® S(p)A) by Propositions 3.5. (3) and 3.6, it is clear
that 2. and 3. are equivalent.

(1 <>2) Let M >< A be simple, and suppose for a moment that S, , = {0} for
some p, a minimal central projection in A. But then p(M > A)
S.M>1A) =S5, (M >A)= {0}, and the ideal generated by S, is proper,
a contradiction. Thus, S, , % {0} for any p. It is well known that simplicity of
M >< A implies that each hereditary subalgebra of M >< A, in particular S, is
simple.

Conversely, if S, . + {0} forany p, and each S, is simple, then S, .S, ,equals S,
(by virtue of Proposition 3.4.(4)). Since by Theorem 4.3 M >< A and S, = M%e
are Morita equivalent, it follows that M ><A is simple.

M is an M*-valued inner product module if we set

<%, yoma = E(y*x).

If ' M — M is a norm bounded right M*-module endomorphism, then a norm
bounded operator T*: M — M is called the adjoint of T if (Tx,ydpys=
{x, T*y) yafor any x, ye M (see [8, 12]). We denote by End (M) the *-algebra of
those norm bounded right M*-module endomorphism of M that possess ad-
joints.

We have a x-algebraembedding L: M ¢, End (M), given by L(y) = xy. It easily
follows from Propositions 2.12 and 2.16 that a: A — End(M) is a *-algebra
homomorphism. We also consider e,; € End (M), defined as ey, (x) = E(x). Clearly
ey is a projection commuting with L(M?*), and such that for any xe M

(16) eMLxeM = LE(x)eM.
The algebra of compact operators is defined as
K(M) % span {L,ey L, | x, ye M}.

Clearly K(M) is a two-sided self-adjoint ideal of End (M).

The notion of the index of a conditional expectation in the context of
C*-algebras was introduced by Watatani in [16]. If e N « M are C*-algebras
and E: M — Nis a conditional expectation, then E is said to be of index finite type
if there exists a finite family {(u, w,), ..., (4, w,)} of elements of M such that

Z E(xu)w; = x = ZuiE(Wix)

for any x e M. Such a family is called a quasi-basis. If E is of index finite type then
Index(E) = Y ;u;w;, and this definition does not depend upon the choice of
a quasi-basis. One can always choose a quasi-basis (if there is one) such that
w; = uf.
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PrROPOSITION 4.5. If an action of A on M is saturated, then M > A =~
K(M) = End(M) and Index(E) = (dim A)I.

Proor. By virtue of Theorem 4.3 we have
17 M >< A = span{xey|x,yeM}.
We define a map ¢: M >1 A — K(M) as
¢ Z x;ey;+— Y L, eyL,,

for x;, ;€ M. Saturatedness implies Y ; x;ey; = 0 iff (Vee M)(Y; x;ey;)te = O iff
vVeeM)(Q L,emL, )(t) = 0. Thus ¢ is well defined and injective. Clearly ¢ is
surjective too. With help of Formula (16) one can easily check that ¢ is
a *-homomorphism. Since K(M) contains the identity, it follows that
K(M) = End(M).

By (17), one can choose a finite family {uy,...,u,} in M > A such that
I =Y ueuf. Forany xe M we have xe = (3 ; u;eu¥)xe = Y ; E(u¥x)e (by virtue of
Formula (7)). Hence x = ; u;E(u}x). It follows that {(u;,u¥*)} is a quasi basis.
With F as in Formula (3) we have I = F(I) = F(Q,u;eu¥) = Y, u;F(eJu¥ =
dim A)~' Y uu¥. Hence, Index(E) = Y, u;u¥ = (dim A)I.
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