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C*-ALGEBRAS ASSOCIATED WITH
CELLULAR AUTOMATA

KENGO MATSUMOTO

Abstract.

We construct C*-algebras from linear cellular automata by regarding them as topological dynamical
systems. We prove that some of the resulting C*-algebras become Cuntz’s algebra ¢),. We show that
the limit sets of configurations of cellular automaton evolutions, one of whose examples is the
Sierpinski gasket, can be obtained by using the canonical endomorphism @, of ¢,. We also study
some automorphisms on these C*-algebras induced by basic operations on cellular automata.

1. Introduction.

In this paper, we introduce a method to investigate cellular automata from

functional analytic point of view. We regard cellular automata as topological

dynamical systems on a lattice (cellular space) and construct algebras of oper-

ators, called C*-algebras, on a Hilbert space based on the lattice. Let us consider

a d-dimensional k-state cellular automaton. Let ¢ be its cellular automaton rule.

The cellular space | [ Z, = K} is a compact space in the product topology and ¢ is
zd

acontinuous map on K%. We identify the cellular automaton with the topological
dynamical system (R, ). Take a p-invariant probability measure x on & and
consider the Hilbert space L*(R%, p) of all square integrable functions on K¢. We
represent the commutative C*-algebra C(R§) of all complex valued continuous
functions on & on L*(R}, u) by multiplication. The rule ¢ induces a bounded
linear operator V, on L*(R{, u). We define the C*-algebra associated with the
cellular automaton ¢, as the C*-algebra generated by C(R{) and ¥,,. We denote it
by C,. We notice that the isomorphism class of the C*-algebra C, of course
depends on the choice of the @-invariant measure u on K. But as long as the
Radon -Nikodym derivative with another @-invariant measure is invertible, the
resulting C*-algebras are isomorphic.

We will treat some 1-dimension 2-state 3-neighborhood linear cellular auto-
mata, numbered as 60, 90, 150 by S. Wolfram in [Wol].
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In Section 3, we first show the C*-algebra C,, associated with the rule 90
becomes a simple C*-algebra called the Cuntz algebra @, of order 4. It is one of
a series of simple C*-algebras which many operator algebraists have been
interested in, cf. [Ar], [Cul], [Cu2], [Cuk], [ETW], [Ev], [Jo], [OP]. We show
that the C*-algebra C,s, constructed by the rule 150 is also isomorphic to O,
because the map ¢, 5o associated with the rule 150 is topologically conjugate to
(9o as continuous map.

In Section 4, we show that the Sierpinski gasket as a limit set of a cellular
automaton evolution can be seen in the algebraic structure of the C*-algebra
Cygo. In fact, in Cy,, the cellular automaton rule corresponds to the canonical
endomorphism @, of ¢, in the following sense: If U, is the self-adjoint unitary
S,8% + §,8% + S,8% + S35%, and 1°°(k) is the number of cells with value 1 after
time k if one starts with a state where only one cell has the value 1, using the
cellular automaton rule 90, then we construct a faithful state 7°° on ¢, and
a number ¢ such that

B (Up) = ™.

A similar result is established for the cellular automaton rule 150. In [Wil],
[Wi2], S. Willson has showed that the Hausdorff dimension of the limit set is
equal to its growth rate dimension (cf. [Tal]). In our language, Willson’s result is
thus that

lim log[ y log,awo,t*(di';(Uo))] / logm

m— oo k=0

~ {Iogz 3 (* = 90)
log, (1 + \/5) (x = 150)

where t*, x =90, 150 are the faithful states on ¢,. The values log,3 and

log, (1 + \/g) are the fractal dimensions of the limit sets corresponding to the
rule 90 and the rule 150 respectively.

In Section 5, we study automorphisms on cellular automaton C*-algebras
induced by two basic operations on cellular space | | Z,. These operations are

z
shift ({a,} - {a,+1}) and conjugation ({a,} — {a, + 1}). The C*-algebras Cqo
and C, s, are both isomorphic to ¢,. However, the automorphism induced by the
conjugation on Cy, is inner while the automorphism induced by the conjugation
on C;s¢ is outer as an automorphism on (,. We further show that both
automorphisms on 0, (= Cy = Cs,) induced by the shift are outer.

In Section 6, we generalize our construction for 2-state cellular automata to
general k-state cellular automata. As a consequence, we show that a C*-algebra
associated with a k-state cellular automaton corresponding to ¢ is isomorphic
to the Cuntz algebra 0. of order k2.
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In Section 7, we finally study a C*-algebra associated with a 2-state cellular
automaton rule numbered as 60. We show that the C*-algebra becomes an
inductive limit of a sequence of the Cuntz algebra @, of order 2. By a recent
theorem of Rerdam [Rgo], the algebra itself is then isomorphic to 0,.

The author is deeply indebted to Satoshi Takahashi and also to Jun
Tomiyama, Taku Matsui, Yasuo Watatani and Shinzo Kawamura for fruitful
discussions and suggestions and to Tomomi Goma for showing computer
graphics of cellular automaton evolutions. He also expresses his gratitude to the
referee for many suggestions and advice.

2. Preliminaries on cellular automata.

Let Z¢ be a d-dimensional latice Z x ... x Z (d-times product of the integers Z).
We fix a natural number k. The state of the cell on each lattice point i€ Z* is
specified by a number q;€{0,1,...,k — 1} = Z,. A cellular automaton rule is
amap to define the state of the next generation of each cell which depends on only
aneighborhood of the lattice point i € Z%. Namely, the rule is given by a Z,-valued
map ¥ defined on Z} by specifying that the state at site ieZ? for the next
generation should be Y(a;+,,,...,a;+, )€Z, where {a;};; is the state of the
previous generation, and ry,...r, are fixed distinct elements in Z¢. We call such
a map ¢ a transition function or simply a rule. Such a system is called
a d-dimension k-state n-neighborhood cellular automaton.

For instance, the Pascal’s triangle of modulo 2 is realized as a 1-dimension
2-state 3-neighborhood cellular automaton as in the following way. Take the
both side i — 1, i + 1 and itself i for a point ieZ as a neighborhood of i. The
transition function  is defined by Y(a;_ 1, a;,d; + 1) = a;— 1 + a;+ 1 (mod 2). If we
take an initial cell configuration {a;} as a; = 1 (i = 0), ; = 0 (i % 0), this cellular
automaton evolution is related to the Pascal’s triangle of modulo 2.

Following Wolfram [Wol], we number all 1-dimension 2-state 3-neighbor-
hood cellular automata as in the following way. Let i be a transition function,
which is defined on Z3. Hence there are eight possibilities of the state of the
neighborhood so that we have 28 = 256 possible transition functions. The state

of the cell of the next generation of a; is determined by the map , which is written
by

¥(0,0,0) = y°, ¥(0,0,1) =y, ¥(0,1,0)=y> (O 1,1)=y>
¥(1,0,0) = '/’4’ ¥(1,0,1) = lllsa ¥(1, 1, 0) = lllsa (L, 1L, 1) = ‘//7'
i=7

We define the number of Y by Y, 2"

i=0
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For instance, in the case of the preceding cellular automaton of the Pascal’s
triangle of modulo 2, one has number 90.

A cellular automaton is said to be symmetric if its transition function ¥ is
symmetric, that is, ! = y*, 3 = /°. Itis natural to restrict cellular automata to
ones with /° = 0. If a symmetric cellular automaton rule satisfies the condition
Y° = 0,itissaid to be legal. Thus, in 1-dimension 2-state 3-neighborhood cellular
automata, these restrictions leave 32 possible legal cellular automata. In general,
the limit sets of linear cellular automata are fractals (cf. [Ta2]). The invariance of
the Haar measure under a transition function on the cellular space &, = [[Z, is

z

an important property. In particular, the Haar measure is invariant under the
transition functions 60, 90, 150 which will be considered in the sequel.
3. 1-dimension 2-state cellular automaton C*-algebras.

We first treat a legal cellular automaton in the class of 1-dimension 2-state
3-neighborhood cellular automata. Hence the cellular space 83 = [ {0, 1} is the
z

Cantor set },. Let ¢, be a cellular automaton rule indexed as the number
n (0 = n £ 256). We denote by C, the associated C*-algebra C,, .

The cellular automaton associated with the Pascal’s triangle of mod 2, that is,
¥90, can be considered as the continuous map on !, defined by

poo{ai}) ={ai-1 + ais1}, {ai}eR,.

Let us study algebraic structure of the C*-algebra Cy,. It is easily seen that if
{b;} e K, is given, one may define {a;} with @go({a:}) = {b;} by choosing ay, a,
arbitrary, and then a,,a;,..., and a_,,a_,,... by induction. Thus, there are
4 distinct cross sections s;;, i,j = 0, 1, of @go (i.€. Qg s;; = id) satisfying the
conditions

Po(sij{as}) =i, Pysy({a.}) =j, Lj=0,1, {a,}eR,
where each P, is the function on &, defined by Pi({a,}) = a;. We conclude:
LEMMA 3.1. The continuous map @ is surjective and 4-to-1.
Let u,,, be the measure on {0, 1} defined by p,,({0}) = uy,2({1}) = 1/2. The
infinite product measure | | ;,, on &, is called the Haar measure and is denoted

ra
by u. The lemma below is easily seen by a direct computation or as a special case
of [SR; 2.4. Theorem].

LEMMA 3.2. The measure u is @qo-invariant.

Lemma 3.2 also follows from the next easily proved lemma.
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LEMMA 3.3. The Radon-Nikodym derivative (dp - s;;)/dp is 1/4 i,j = 0,1.

We denote by $ the Hilbert space L*($,,u) of all complex valued square
integrable functions. We define the bounded linear operator V,, coming from the
map ¢@go on $ by

(Vood)({an}) = &eoo({an}), (€9, {a.}eR,.
Then one can show the following lemma by routine computtion.

LemmMmA 3 4.

D Vhdad) =2 3 si{a)), Ce9 {a}e9,.

i,j=0,1
(i) Vg5Veo = 1.
We now discuss the range of the projection Voo Vg%. Let h, and hy be the

homeomorphisms on R, exchanging the state of a cell located in even lattice
points and in odd ones, respectively. That is,

b a,—a,+1 (n:even) ja,—>a, (n: even)
“la, — a, (n: odd)”’ “lay,—a,+1 (nodd)

Let W,, W, be the unitaries on $ defined by
W O)({an}) = &he({an}), *=eo0, (€9, {a.}eR,.
The operator W, is a self-adjoint unitary. Hence, the decomposition
W, =1+ W)2—(1-W)2
is the spectral decomposition of W,.. Put @, = (1 + W,)/2, * = ¢, 0.
LeEMMA 3.5. Voo Vet = Q.Q,.

ProoOF. For a vector £€$ and an element {a,} € H,, we have

Voo VsoO){an)) =3 3. &lsijo @ool{an})

i,j=0,1

and

(Q.0.8){an}) = (1 + W, + W, + W.W,),({an}))
=1 2 &h.oh{an).
i,j=0,1

One easily shows that the set of the four elements {s;;° 990({as})}:, j=0, 1 coincides
with that of the four elements {h. o hi({a,})}i j=0. 1. Hence we get Voo Vs = Q.Q,.

For each neZ, the continuous function P,e C($,) defined by P,({a;}) = a,
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satisfies the condition P, = P? = P*. The sequence of these projections {P,}
gives all the information of the configuration of the states of cells. Set
U,=1-2P,. As {P,} generate the C*-algebra C(,), these unitaries {U,}
generate it.

The proof of the next lemma is left to the reader.

LEmMA 3.6.
(i) For an even integer n, P,W,= W,(1 — P,), P,W, = W,P,.
(ii) For an odd integer n, P,W, = W,(1 —P,), P,W,=W,P,.

COROLLARY 3.7.
(i) For an eveninteger n, U,Q.= (1 —Q.)U,, U,Q,=Q,U,.
(i) For an odd integer n, U,Q,=(1 —Q,)U,, U,Q.=Q.U,.

Now put
(301) S1 = V90, Sz = U0V9o, S3 = U1V90, S4 = UpU, Vao.

ProrosITION 3.8. Keep the above notations. We have the following operator
relations of a Cuntz algebra (cf. [Cul])

4
(32 SESi=1 (i=1,234), Y S5.SF=1.
i=1

Proor. Following the direct sum decomposition of the Hilbert space $:

0.0+ (1 —0QJQ + (1 — Q)+ (1 - Q)1 — Q) = 1.
4
one obtains the relation Y, S;S¥ = 1 by Corollary 3.7.

i=1

Let C*(S;, 1 £ i £ 4) be the C*-algebra generated by S;,i = 1,2, 3,4. Since the
generators S;, i = 1,2,3,4 satisfy the relation (3.2), we know, by [Cul], that
C*(S;, 1 £i £ 4) is uniquely determined up to isomorphism and is simple. It is
denoted by 0,.

LEMMA 3.9. Both unitaries U, and U,; belong to the C*-algebra
C*S,15ig4).

Proor. By U3 = 1, it follows that
UoS1 =82, UpS, =Sy, UpS3 =354, UpSs=S;.

4
Hence from the identity Y S;S¥ = 1, we have
i=1

Uo = str + SIS;: + S4S§ + S3S1“
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Similarly one sees
U1 = S3S’1't + S4S; + Slsg= + SzSI.
Therefore one obtains the following:

PROPOSITION 3.10. The C*-algebra C*(U,,Uy, Vy() generated by the three oper-
ators Uy, U;, Vo coincides with C*(S;, 1 £ i < 4), that is, the Cuntz algebra 0,.

The C*-algebra C*(U,, Uy, Vy0)is a subalgebra of Cq4, but we will see that they
actually coincide by the further discussion.
The rule @q, satisfies the condition

®90({an}) = {an-1 + ays1}  (mod 2).

As(ay—1 — Gy41)* = dy—y + Gy+, (mod 2), the next lemma and the corollary are
immediate.

LEMMA 3.11. VyoP, = (P,_; — P+ 1)*Voo, nel.
COROLLARY 3.12.
(3.3) VooU, = U,-1U,+ Voo, nel.
Hence we obtain

LemMA 3.13. For every neZ, the unitary U, belongs to the C*-algebra
C*(UOa U1> V90)‘

Proor. By induction, it suffices to show that for an arbitrary but fixed integer
k, both operators U, , and U, _; belong to the C*-algebra C*(Uy, Uy . 1, Vo0). By
using a similar discussion to the previous one, we can show the identity below
from Corollary 3.7:

1= VooV + UVoo Voo Uk + Ups 1Voo Voo Ui+ 1 + UrUi s 1 Voo Voo Ui+ 1 Uk
Hence, one has, by (3.3):
(34)  Uisz = UVooUi+1Vsh + Voo Ui+ 1 Vo Uk + UnUs+1 Voo Ui+ 1 Vs Uiy
+ Ui+ 1Vo0 Ui+ 1 Vo Uk + 1 Uk

This implies U, , , belongs to C*(Uy, Uy + 1, Vo). Similarly, we see that U, _, does
to it.

Consequently, we arrive at the theorem below.

THEOREM 3.14. The C*-algebra Cyy (= C*(C(R,), V50)) associated to the cellu-
lar automaton @, is isomorphic to the Cuntz algebra O, (= C*(S; 1 i < 4))
under the following correspondence:
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S1="Voo, S2="UoVeo, S3=UVso, Sa=UoU,Vso.
Proor. This is immediate from Proposition 3.10 and Lemma 3.13.

REMARK 3.15. Let §;;,i,j = 0, 1 be the bounded linear operators on $ defined
by
(8,9 an}) = &sij{an}), £€9, {anjeR,

where s;;, i,j = 0,1 are the four sections for @g, cited before. We then see the
following relations:

Soo + So1 + 810 + 814 = 45T, Soo + So1 — S10 — 811 =483,
So0 — So1 +S10— 811 = 4S§, So0 — 301 — S0+ 811 = 452,

and we have

i,j=0,1

Namely, the four operators %S;“j, i,j = 0,1 generate the C*-algebra Cyy, and
they satisfy the Cuntz relations for ¢,. Hence we have an another proof of the
result that Cg is isomorphic to 0.

There is an another interesting legal cellular automaton rule numbered as 150,
which is defined by
¢150({an}) = {an—l + ap + ay + 1} (mOd 2)
Corresponding to the relation (3.3), we have
(3.5 VisoUp = Up—1UUp+1 V150, nelZ
By a similar discussion to the previous one or the argument below, one has

PROPOSITION 3.16. The C*-algebra C;so (= C*(C(R3), Vy5s0)) associated with
the cellular automaton ¢so is isomorphic to the Cuntz algebra 0,
(=C*(S;, 1 £ i £ 4)) under the following correspondence:

Sl = V150y S, = U0V150, S3 = Uleso, S4 = U0U1V150-

Once one knows Theorem 3.14, one atomatically obtains Proposition 3.16,
because it is known that there is a homeomorphism h on the Cantor set K,
satisfying ho @go = @150 © h. In fact, take a homeomorphism on &, induced by
the following automorphism on the algebra C(R,) defined by the correspon-
dence: i = 0,1



C*-ALGEBRAS ASSOCIATED WITH CELLULAR AUTOMATA 203

U,' s Ui
Ui-1Uivy - Ui-1UiU; sy
Ui ,Uis, - Ui _,U U,

-

Ui-SUi—lUi+1Ui+3 Ui—3Ui—2UiUi+2Ui+3

Since C(R,) is the universal C*-algebra generated by countable infinite mutually
commuting self-adjoint unitaries, it is easy to see that the above correspondence
gives rise to a well-defined automorphism on it. Hence, by taking a unitary
operator W on $ induced by the homeomorphism h one knows that

W*V90 W= V150, W*C(Rz)W = C(Rz)

so that both C*-algebras Cy, and C 5o are isomorphic each other.

4. The Sierpinski gasket in (¢, and the growth rate dimension.

In this section, we first show that a cellular automaton evolution may be
identified with the canonical endomorphism on the Cuntz algebra ¢),. Thus we
represent the Sierpinski gasket, as a limit set of a cellular automaton evolution by
(P99, in the C*-algebra Cy, by using an endomorphism on Cg,. Hence it is
possible to describe the growth rate dimension of the evolution by using a certain
state on (,. We construct a faithful state on ¢, which counts the number of cells
with value 1 in the evolution at each stage. Then we describe the growth rate
dimension of the limit set. A similar discussion works for the cellular automaton
C*-algebra Cj 5.

We first explain notations following [Cul]. Let S;, 1 < i < 4 be the generators
of the algebra Cq, (= 0,) defined by (3.1), which satisfy the relation (3.2). Let W,
k =1,2,... be the set of all k-tuples (u(1),..., u(k)) with 1 < p(i) < 4. We denote
by S, the isometry S, = S, ** S, for pe Wy, Let F, be the C*-algebra

generated by {S,S* u,ve Wf} and &, be the C*-algebra generated by | ) Fyu.
k=1

As in [Cul], %, is isomorphic to the 4 x 4* complex full matrix algebra M«
because {S,S*; u,ve Wy} become a system of matrix units of My«. The identity
4
S,8% = Z S,S:S¥S¥ defines an inclusion F4c © Fyury = My @ Fax so that Fy
i=1

becomes a UHF-algebra of type 4 ([Cul; 1.4. Proposition]).

Consider the two sequences of unitaries {(@5o{Ui)}men i = 0,1 obtained by
iterating the morphism @, defined by

¢9O(Un1Un2”‘ Unk) = Un,—IUn,+1 ' Unz—lUnz+l Unk—~1Unk+1
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We will show in a moment that (4, is well-defined as a morphism, and extends to

the one-sided shift on #, = ® M,. We have
1

¢8O(Uo) = U,, ¢8O(U1) =U,

¢90(U0) =U_,U,, $oo(Uy) = UyUy,
¢90(U0) =U_,U,, @go(Ul) =U_,Us,
@go(Uo) =U_3U_,U,Us, (i’gO(Ul) =U_,U,U,U,,

¢9o(U0) = U—4U4, @30(U1) = U—3U5-

Namely, each of two sequences {@5o(U;)}men» i = 0, 1 shows the cellular automa-
ton evolution stating from a state containing a single cell with value 1.
LeEMMA 4.1. Each unitary U,, neZ belongs to the algebra U % ,.. Hence the
k=1
two sequences {Pp3o(U;)}mens> | = 0,1 belong to the UHF-algebra #,.

0
Proor. We already know that both unitaries Uy, U; belong to U F 4 asin
k=1
the proof of Lemma 3.9. Under the assumption that two unitaries Uy, Uy,
0

belongto U Z 4, we see that Uy, ,, U, _; also belong to it by the identity (3.4).
k—1
We now show that @4, extends to a morphism of %,.

PropoSITION4.2. Fori=0,1,05,(U)=1®@ . ®1QU,eM, ® Q@ M, ® M,:
(m + 1)-times tensor product of M,.

To prove Proposition 4.2, we provide notations and a lemma.

Let Ws be a unitary operator on $ induced by the forward shift
(S: {a,} = {ay+1}) on K,. Put ¢® = Ad Wj. Since the shift commutes with the rule
P90, We have

US(V90) = Vs, O'S(Un) =U,+1, nel

Thus o® gives rise to an automorphism on the C*-algebra Cy,. Since one has, by
the relation (3.4),

4.1) U, = UpVoo Ui Vol + Voo Ui Vs U + UgU Voo U Vi Uy
+ U, VU, V5 UL U,
= 8,U;St + 8,U,8% + S,U,S% + S, U, 8%,
one obtains, by (3.1),
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08(51) =S, O'S(Sz) = S3, Us(Sa) =S,U,, 0'5(54) =8,U;

(cf. [MT]).
4
LemMA 43. U,_ U, = Y. S;U,S¥, nel

i=1

ProoF. By (4.1), one sees,
UQUZ

4
i=1

4
Since 6°(U,) = U, 4, one can show the identity U,_; U, = Y, S;U,S¥ for all
i=1

i

4
neZ by applying the map ¢° (n — 1)-times to the identity U U, = ¥ S;U,S*.
=1

It is clear that Lemma 4.3 implies Proposition 4.2, and, moreover:
COROLLARY 4.4. (g isrealized as the canonical endomorphism &4 on O, defined

4
by &4(X) = Y S;XS¥, X €, ([Cull), that is

i=1
¢90(Un) =Uy_1Upsy = ¢4(Un), nelZ

Note that the commutative C*-algebra C(R,) coincides with the C*-algebra
C*Up1®U,1®1® U,...,i =0, 1) generated by the following two sequences
of unitaries in &,

UO, 1®U0, 1®1®U0, 1®1®1®U09 1®1®1®1®U03"‘
U, 19U;,, 181®U,, 11®10U,, |®1®1Q1QU,,...

Hence C(R,) is a maximal abelian C*-subalgebra of #,. This is because the
algebra generated by Uy, U, is unitarily equivalent to the algebra consisting of all
dagonal elements of M,, see also [Cul,CuK].

We will next express the fractal (Hausdorff) dimension (see [Fa]) of the
Sierpinski gasket in C*-algebra language by using the above discussion. In
[Wil], [Wi2], Willson has showed that the frctal dimension of the limit set of the
cellular automaton evolution starting from a state containing a single cell with
value 1 is equal to its growth rate dimension D,, defined by

D, = lim log N(t)/logt

t— o0
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where N(t) is the number of cells with value 1 until time ¢.

We express the number N(¢) in terms of the C*-algebra.

Let F, be the conditional expectation from () to the UHF-subalgebra &,
defined by

FO(X)=J‘ p=(X)dz, Xel,

where p is the action of the circle T defined by p,: S; — zS;,z€ C, |z| = 1. We next
construct a conditional expectation from %, to C(R,) in regarding C(R,) as
a maximal abelian C*-subalgebra of #,. One easily sees that the map e below
gives rise to an expectation from M, to the subalgebra C*(U,, U;) of M,:

e(A) = #(A + UpAU, + U, AU, + UgU, AU, UY), AeM,.
The map £°° = lof[@)e yields an expectation from F,(= ]f[@ M,) to C(R,)
(= ﬁ ® C*(Uy,U,)), under the identification between C(],) and
1
lf[@ C*(U,, U,). Let us consider the faithful tracial state , for 0 <1 < 1 on
C(8,) defined by the integral induced by the measure ﬁ ® u;, where

— 00

1 A . .
wa({0h) = TiiH 1) = 1+1 By composing these maps, one has a faithful

state 73° on Cy, for each 0 < A < 1, namely,

190 =, 06%%6 Fy: C°° -2 &7, 2, CR®,) 2 C.
One now easily proves:
LEMMA 4.5.
V(UL U,...Uy) = (%i—)k for distinct numbers iy, i,,..., .

Let 1°°(k) be the number of cells with value 1 at time k starting from a state
containing a single cell with value 1. The sequence {I°°(k)}, is inductively
determined by the following relations:

19°0) =1, 1%°1) =2, 1°°Q" +k)=2°(k) 0<k<2m

-2
Putc, = . By Corollary 4.4, one sees

1+ 4
APV, = 5%, neZ, k=0,1,2,...
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Since N(m) = Y 1°°(k) and the fractal dimension of the associated limit set is
k=0
log, 3, we reach

lim logI: Y log:o () r?O(cD’;(Uo))] / logm = log, 3.
m— o k=0

We may analogously construct a state t1°° for the rle 150 which has similar
properties. As a result, we have

lim log[ Y log,isowo,r}lso(di’;(Uo))]/logm =log, (1 + \/3).

m— o k=0

5. Automorphisms induced by operations on cellular automata.

In this section, we study automorphisms on cellular automaton C*-algebras
induced by some basic homeomorphisms on cellular space. Our main purpose to
study these automorphisms is to make clear the differences between cellular
automaton C*-algebras associated with different cellular automaton rules. For
instance, as we have seen in Section 3, the C*-algebras Cqq, C;5, are mutually
isomorphic to O, as C*-algebra. Hence there are no difference between them as
C*-algebras. However, the two rules @q¢, @50 are different. We look at some
operations on cellular space !, and consider automorphisms on Cgyq, C;so
induced by them. We see that their behavior on Cy are different from those on
Cyso- Namely, we show that the difference between ¢o and ¢,so appears as
a difference of a property of certain automorphisms on the two C*-agebras Cqq
and C;5,. These automorphisms seem to belong a new class of automorphisms
on the Cuntz algebra, which has not been treated in [Ar], [ETW],[Vo],...,etc.
The following lemma proved in [MT] is used in the sequel.

LemMa 5.1. ([MT; Corollary B]). Let o be an automorphism on the Cuntz
algebra O, with «(S,) = S;, where S, is a generator of isometries satisfying

n
Y. S:S¥ = 1. If «is not trivial, it is outer.
i=1

Let y be a homeomorphism on &, satisfying the condition
Yo Py =Py, * = 90 or 150.

Let W, be the unitary on $ = L*(,, p) induced by y. Put 0 = Ad W,. Lemma 5.1
is used in our situation as:

LEMMA 5.2. If'y is not trivial, o gives rise to an outer automorphism on Cyq and
Cl 50-
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Proor. Under the usual correspondence
(5.1) Si=V,, S;=UsV,, S3=UV,, S,=UUV,, =*=090,150,

the condition yo @, = ¢, oy implies o(S;) = S;.

Let us consider some automorphisms of the C*-algebras C,, induced by basic
homeomorphisms on ],. We first deal with automorphisms induced by shift on
R,. Let wg be the unitary on $ induced by the forward shift: Son &, = [ [ Z,. Put

4
S = Ad W. Since one has So ¢, = @, S, * = 90, 150, ¢° yields an outer auto-
morphism on Cgy and on C, s, by Lemma 5.2. We write these outer automo-
rphisms as 65, and o3 5, respectively. Under the correspondence (5.1), one can
easily write down automorphisms ai by using the generators S;, 1 < i < 4,in the
following way (cf. [MT])

{030(51) =8;, 050(S3) = S2(S18% + S35F + 5,8% + 5.5%),
030(82) = 83, 030(S4) = Sa(S1S% + S38% + S,8% + 8453,
{sto(sx) =81, 0150(S3) = Sa(S1S% + S38% + S,5% + 5,5%),
0'?50(82) = S3, 0"550(54) = SZ(SIS;: + S3ST + SzSI + S4S§)

Since each automorphism o3, * = 90, 150, shifts U; to U, ;,i€ Z,(03)", n(+ 0)eZ
is not trivial and satisfies (63)(S;) = S;, n€Z. Therefore we have:

PROPOSITION 5.3. Both the automorphisms 63, 03 5o on O, induced by the shift
on K, give rise to outer automorphisms. Moreover each of them yields an outer
action of the infinite cyclic group Z on 0.

REMARK 5.4. Let p(34), P34 be the automorphisms on O induced by the permuta-
tions (24), (34) on the generators Sy, S,, S3, S4 respectively. Then we have the
relations:

— S —
‘7{50 =090 °P34) = Pa)° Ugo'

Now we refer a compatibility the automorphisms %, with the states t¥, * = 90,
150.

PROPOSITION 5.5. ©3° (resp. 11°°) is invariant under a3, (resp. o3 5). However, it
is not invariant under o3 5, (resp. o’y;).

Proor. The invariance of 73° (resp. 715°) under a3, (resp. a3 ;) is easy from
2 p. T2 90 P- Tis0 y
their definition. We show 13° 0 63 50 % 73°. As we have p4,(U,) = Uy U,, we get

1-2)\? .
13°0 paay(Uy) = (m) and hence 13°0paq)(Uy) £ 13°(U,).  Since
0350 = 090 ° P(34)» We conclude 130005 50(Uy) # 13%(Uy) so that 13°0 655 + 73°.

Similarly, we have 1;°% 0 65, # ©3°°.
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We do not know whether or not the two automorphisms 63, 055, are
conjugate on (,. However the following automorphisms on ¢, make a clear
distinction between the two rules @q0 and ¢5,. They are induced by a homeo-
morphism J on K, called the conjugation, defined by

J({an}) = {an + 1} (mod 2), {an} eR,.

Let W, be the unitary on § induced by J. Hence we have W, = W, W, where W,,
W, are unitaries defined in Section 3. Put ¢°= Ad W, so that one has
o‘(U,) = — U,. We first notice:

@90°J = P90, @150°J = Jo@ys0.
By lemma 5.2, we have
LEMMA 5.6. ¢° gives rise to an automorphism of period 2 on C sq, which is outer.

We denote by a9 5, the above automorphism on C, 5¢.
On the other hand, we obtain

LEMMA 5.7. ¢° gives rise to an automorphism of period 2 on Cqq, which is inner.

Proor. Itsuffices to show that W, belongs to Coo. We notice that W, = W, W,
W, =20, — 1, * = e, 0. As in Section 3, we know that

Q.05 = VooVdo, Q1 — Qo) = Ui Voo Voo UY, (1 = Q)0 = UoVooVooUg
so that Q, and hence W, * = ¢,0 belong to Cgo.

We denote by 6§, the above automorphism on Cgy.
Thus we conclude the following:

THEOREM 5.8. The two pairs (Cqg, 0%5¢) and (Cy 50,09 50) of cellular automaton
C*-algebras with automorphisms induced by the conjugation on &, are not conju-
gate each other. In fact, 6% is inner but o< 5, is outer.

We can explicitly write the implementing unitary W, of the inner automo-
rphism o, on O, as

W; = (2Q. — 1)(2Q, — 1)
=40.0, —20. — 20, + 1
= 4S,S* — 2(S,S* + S55%) — 2(S,S* + S,5%) + 1
= §,5% — $,5% — S,5% + S,S%.
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Hence it follows that
050(S1) = S1W), 050(S2) = —S2 W, 040(S3) = —S3W;, 050(S4) = SaWj.

On the other hand, as we have 69 54(V;50) = V50, 0150(Uy) = — U, it follows
that

0950(81) = 81, 0950(82) = =82, 0950(S3) = =83, 0950(84) = Ss4.

6. Generalization to k-state cellular automata.

There is no essential obstruction to generalizing our preceding discussions for

2-state to k-state (k = 3). We consider the 3-state version of ¢q¢. It is the Pascal’s

triangle of modulo 3. Let R, be the infinite product [[Z; of Z; = {0,1,2}.
z

Consider the cellular automaton rule
Y({a,}) = {an-1 + a,+1} (mod3) {a,}eR,.

Take a probability measure u on K, which is the infinite product of the measure
H1/3 on Zy defined by

#1/3({0}) = #1/3({1}) = Hx/a({z}) = ’ﬁ‘

It is easy to see that ¥ is a 9-to-1 onto map on K3 and p is Y-invariant. Let V, be
the linear operator on the Hilbert space $3 = L*(R3, u) induced by the map .
We define two unitaries W,, W, on $3 induced by similar homeomorphisms h,, h,
on K; to the previous ones respectively. Let w be the principal 3-rd root of unity.
Put

0% =41+ W, + W), 0: =11 + @*W, + oW)p),
Qi =é—(1 +60W*+(D2W*2) x=¢,0.

Hence we have W, = 0} + 0Q; + 0’Q%  *=e¢,o0.
Corresponding to Lemma 3.5, one has
LEMMA 6.1. V}V, =1, V, V;* = Q207
Let E‘e C(Z3) = C{0} ® C{1} @ C{2} i = 0,1,2 be projections defined by

1 (x=1)

Ei(")={0 (x+i) ix=01,2

Three sequences {E.},.z, i = 0,1,2 of projections in C(R3) are defined by
Ei{a}) = Ea,), i=0,1,2, {a,}eR;.
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Put unitary U, = E? + wE}! + w?E?, neZ. Similarly to Lemma 3.6 and Corol-
lary 3.7, one has

LEMMA 6.2. Fori=0,1,2 (mod 3),
() For an even integer n, E.W,= W,Ei*!, E.W, = W,E..
(i) For an odd integer n, E.W, = W,Ei*!, E.W,= W,E..

COROLLARY 6.3. Forj=0,1,2 (mod 3),

(i) For an even integer n, U,Q! = Qi*'U,, U,Q! = QiU,.
(i) For an odd integer n, U,Q} = Qi*'U,, U,Q\ = QiU,.
Put S, =V, S, = UsV,, Sy = UV, S, = UZV,, Ss = U2V,

Se¢ = UpU W, S7 = U0U12V¢, Sg = UgUle, Sy = U(%U%V:y-

It is obvious that S}S; = 1,1 <i £ 9. By the decomposition of the Hilbert space
below
1=@+0I+0)Q+0+0)= ¥ 0,
kiLo1 2
9
one has Z S:8¥ = 1. As we see the identity V,U,=U,_ U, V,, neZ, we
i=1

consequently have the next theorem by a similar argument to the previous one.

THEOREM 6.4. The C*-algebra C*(C(R,), V,)) generated by the commutative
C*-algebra C(R3) and the isometry V,, coincides with the Cuntz algebra O,
(=C*S;, 1 £i<9)) generated by 9 isometries.

More generally, for a k-state cellular automaton ¥ defined by

Y({a}) = {ai-1 + aiv 1}, {a}e =117

we can summarize our discussion as the following theorem:

THEOREM 6.5. Let C*(C(Ry), Vy)) be the C*-algebra generated by the com-
mutative C*-algebra C(RK,) and the isometry Vi induced by the cellular automaton
rule ¥. Then C*C(8K),Vy)) is isomorphic to the Cuntz algebra 0.
(=C*(S;,1 £ i £ k?)) generated by k* mutually orthogonal isometries UL U’ Vg,
i,j=0,1,...,k — 1 satisfying:

Y (UUIR)U U V)* = 1
i,j=0,1,...,k—1
k-1 k-1
where Uy = Y, o'E}, Uy = Y o'E'| and w is the principal k-th root of unity and
i=0 i=0

{EL} are projections defined in a similar way to the previous ones.
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7. C*-algebras associated with illegal cellular automata.

Finally, we treat an example of a non-symmetric and hence illegal cellular
automaton. It is the 1-dimension 2-state 3-neighborhood cellular automaton
numbered as 60 which is defined by

(P60({an}) = {an-— 1 + an} (mOd 2)9 {an} € ‘RZ'

Itis easy to see that the map @ is surjective and 2-to-1. As the measure u cited in
Section 3 is also @gg-invariant, our previous discussions basically work for ¢g.
We denote by Vs, the operator on the Hilbert space $ = L*(K,, u) induced by ¢¢,
asusual. Let s;, i = 0, 1 be the two cross sections for @ satisfying Py(s;({a,})) = i,
i=0,1, {a,}€R,. Since the Radon-Nikodym derivative (duos;)/dp =1/2,
i=0,1, one has

LemMma 7.1.
O (V&dH{a}) = %._0 Esi{an)), ¢€9, {a.}eR,.
(ii) Ve Veo = L. '

Let h be the homeomorphism on K&, defined by h({a,}) = {a, + 1} and W the
unitary on $ induced by h. Put @ = (W + 1)/2.

LEMMA 7.2. VioVE = Q.
Let U,, neZ be the self-adjoint unitaries defined in Section 3.
Lemma 73. U,Q=(1 - Q)U,, nel
LEMMA 7.4.
(7.1 VooU, = U,_1U,Vs9, nelZ.
We fix an arbitrary integer N henceforth. Put
SI;J = Vo, SQ’ = Uy Veo.

By Lemma 7.3, we have the following relations
2
SVxSN =1 (i=1,2), Y SHSY* = 1.
i=1

As we have the identity
Uy = S5SY* + SYSY*,

we know the following lemmas.
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LEMMA 7.5. Under fixing aninteger N, the C*-algebra C*(Uy, Vo) generated by
the operators Uy and Vi, coincides with the C*-algebra C*(SY, S5) generated by SY,
SY, which is the Cuntz algebra O, of order 2.

LEMMA 7.6. The C*-algebra C*(U,; k £ N, Vo) generated by the sequence Uy,
k < N and Vi, coincides with C*(Uy, Vso) and hence with C*(SY, S5) (= 0,).

Proor oF LEMMA 7.6. It suffices to show that the unitary Uy _; belongs to
C*(Uy, Vs0) by induction. As we have

1 = Voo Véo + UnVsoVéo Uns
it follows that, by (7.1),
Uv-1 = UxVeoUnVeo + VeoUnVeoUx-
Hence one sees that Uy _ belongs to C*(Uy, Vo).

We denote by C¥, the C*-algebra C*(U,; k < N, Vo). Thus we have a sequence
of natural inclusions of C*-algebras {C¥,}ycz-

N-2 N-1 N N+1 N+2
cCqp "= Cqp <=Cgoc=Cqp < Csp

Each of C*-algebras {Ckg}icz is isomorphic to ¢,. We study the inclusion
C¥, = CY¥;! by a C*-algebra technique.
Put ay = Ad Uy, . By the relation (7.1), we have

an(SY) =83, an(S3) = SY.

Namely, ay yields the “flip-flop” automorphism on ¢, (= C¥;) studied by R
Archbold. His result in [Ar] says ay is outer on ¢,. Let C*(Uy 4 {, CY,) be the
C*-algebra generated by the unitary Uy, ; and the algebra C,. It is nothing but
CY+1. Obviously, there is a canonical surjective homomorphism ny , ; from the
crossed product C3y X o, Z, (=0, X, Z,) of C¥, by the action ay of the group
Z,(= {0,1}) to the algebra C*(Uy +, C¥,). By [Kil, C§o X 4, Z2 is simple so that
iy + ¢ 18 injective. Thus we have

LEMMA 7.7. The C*-algebra C¥;' is isomorphic to the crossed product
Clo X o Z; through themap my . ;. The isomorphism is compatible with two natural
inclusions iy: C¥o — C¥s' and jy: Cgo = Co X o, Z;. Namely the following se-
quence of diagrams is commutative.

s CY Cist -

N JN N
<+ = Ceo —7 Cgo X gy s >

Although the following corollary is a special case of the theorem in [CuE], our
approach to the result is completely different from Cuntz-Evans’s one.
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COROLLARY 7.8 ([CuE; Theorem]). The crossed product O, x ,Z, of O, by the
Aip-flop automorphism is isomorphic to the original Cuntz algebra 0,.

Weidentify C{g ' with C§y x ,, Z,in the previous way. Therefore we conclude

THEOREM 7.9. The C*-algebra Cgo (= C*(C(R,), Vso)) generated by the com-
mutative C*-algebra C(R ,) and the isometry Vg is isomorphic to the inductive limit

C*-algebra llm C¥o- Hence Cgy is also simple.
lN

Proor. Since C(R,) is an inductive limit C*-algebra of the sequence of the
C*-algebras {C*(Uy; k < N)}nen» Ceo is also an inductive limit of the sequence of
the C*-algebras {C¥o}nen- It is well known that an inductive limit of simple
C*-algebras is also simple.

By a recent result of Rerdam, [Rg], it follows that Cg, is isomorphic to 0,.
REMARK 7.10. The morphism ¢gq given by ¢go(U,) = U, U, is also repre-
sented as the canonical endomorphism @, on (), defined by @,(X) = Z S: XS¥,

because we have

2

Z SlUnS:'= = Un—lUn (=¢60(Un))
i=1

We easily see that the sequence {®}} of the endomorphism at each C*-algebra
C¥, is compatible with the inclusions iy: C¥, — C¥s! so that {®)} define an
endomorphism on hm C¥,. Hence we can continue to discuss on the C*-algebra

’N

Cgo in a similar fashion to the previous ones Cqyg and Cj 5, as in Section 4.

ReMARK 7.11. It is easy to generalize our discussions to a general k-state
cellular automaton rule corresponding to the rule ¢49. Consequently, we have an
inductive limit C*-algebra lim G, of the sequence of the Cuntz algebra ¢, of order

’N

k under the inclusion iy: O — O x 5, Z; = O, where oy is the action induced by
the cyclic permutation of generators of isometries S, S, ..., Si.

As a generalization of the above fact O, x, Zk O, M. Izumi privately
informed the author about the following fact:
For a finite group G of order n, consider the action « of it on @, by a,(Ss) = S,

g,he G, where {S,},. are generators of isometries of 0, with ' S,S¥ = 1. Then
geG
the crossed product @), x , G is isomorphic to 0,.

We notice that this fact may be similarly proved if we start with the cellular
space [ | G in place of [ ] Z, and consider the corresponding map ¢$, on [[G,
z z z
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defined by p¢({g:}) = {9:-19:}. {9:} €[ | G. Infact, the resulting C*-algebra is an
z

inductive limit C*-algebra liLn 0, of 0, under the inclusion iy: 0, - 0, x, G = 0,.
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