C*-ALGEBRAS ASSOCIATED WITH CELLULAR AUTOMATA

KENGO MATSUMOTO

Abstract.
We construct C*-algebras from linear cellular automata by regarding them as topological dynamical systems. We prove that some of the resulting C*-algebras become Cuntz’s algebra \mathcal{O}_d. We show that the limit sets of configurations of cellular automaton evolutions, one of whose examples is the Sierpinski gasket, can be obtained by using the canonical endomorphism Φ_d of \mathcal{O}_d. We also study some automorphisms on these C*-algebras induced by basic operations on cellular automata.

1. Introduction.
In this paper, we introduce a method to investigate cellular automata from functional analytic point of view. We regard cellular automata as topological dynamical systems on a lattice (cellular space) and construct algebras of operators, called C*-algebras, on a Hilbert space based on the lattice. Let us consider a d-dimensional k-state cellular automaton. Let φ be its cellular automaton rule. The cellular space $\prod_{Z_k} \mathbb{Z}^d$ is a compact space in the product topology and φ is a continuous map on \mathcal{R}_d^d. We identify the cellular automaton with the topological dynamical system $(\mathcal{R}_d^d, \varphi)$. Take a φ-invariant probability measure μ on \mathcal{R}_d^d and consider the Hilbert space $L^2(\mathcal{R}_d^d, \mu)$ of all square integrable functions on \mathcal{R}_d^d. We represent the commutative C*-algebra $C(\mathcal{R}_d^d)$ of all complex valued continuous functions on \mathcal{R}_d^d on $L^2(\mathcal{R}_d^d, \mu)$ by multiplication. The rule φ induces a bounded linear operator V_φ on $L^2(\mathcal{R}_d^d, \mu)$. We define the C*-algebra associated with the cellular automaton φ, as the C*-algebra generated by $C(\mathcal{R}_d^d)$ and V_φ. We denote it by C_φ. We notice that the isomorphism class of the C*-algebra C_φ of course depends on the choice of the φ-invariant measure μ on \mathcal{R}_d^d. But as long as the Radon-Nikodým derivative with another φ-invariant measure is invertible, the resulting C*-algebras are isomorphic.

We will treat some 1-dimension 2-state 3-neighborhood linear cellular automata, numbered as 60, 90, 150 by S. Wolfram in [Wo1].

Received January 18, 1993; in revised form September 14, 1993.
In Section 3, we first show the C*-algebra C_{90} associated with the rule 90 becomes a simple C*-algebra called the Cuntz algebra \mathcal{O}_4 of order 4. It is one of a series of simple C*-algebras which many operator algebraists have been interested in, cf. [Ar], [Cu1], [Cu2], [Cuk], [ETW], [Ev], [Jo], [OP]. We show that the C*-algebra C_{150} constructed by the rule 150 is also isomorphic to \mathcal{O}_4 because the map φ_{150} associated with the rule 150 is topologically conjugate to φ_{90} as continuous map.

In Section 4, we show that the Sierpinski gasket as a limit set of a cellular automaton evolution can be seen in the algebraic structure of the C*-algebra C_{90}. In fact, in C_{90}, the cellular automaton rule corresponds to the canonical endomorphism Φ_4 of \mathcal{O}_4, in the following sense: If U_0 is the self-adjoint unitary $S_2S_1^* + S_1S_2^* + S_4S_3^* + S_3S_4^*$, and $l^{90}(k)$ is the number of cells with value 1 after time k if one starts with a state where only one cell has the value 1, using the cellular automaton rule 90, then we construct a faithful state τ^{90} on \mathcal{O}_4 and a number c such that

$$\tau^{90}(\Phi^k_4(U_0)) = c^{l^{90}(k)}.$$

A similar result is established for the cellular automaton rule 150. In [Wi1], [Wi2], S. Willson has showed that the Hausdorff dimension of the limit set is equal to its growth rate dimension (cf. [Ta1]). In our language, Willson’s result is thus that

$$\lim_{m \to \infty} \frac{\log \sum_{k=0}^{m} \log_{\tau^{90}(U_0)} \tau^{90}(\Phi^k_4(U_0))}{\log m} = \begin{cases} \log_2 3 & (\ast = 90) \\ \log_2 (1 + \sqrt{5}) & (\ast = 150) \end{cases}$$

where τ^\ast, $\ast = 90, 150$ are the faithful states on \mathcal{O}_4. The values $\log_2 3$ and $\log_2 (1 + \sqrt{5})$ are the fractal dimensions of the limit sets corresponding to the rule 90 and the rule 150 respectively.

In Section 5, we study automorphisms on cellular automaton C*-algebras induced by two basic operations on cellular space $\prod Z$. These operations are shift ($\{a_n\} \to \{a_{n+1}\}$) and conjugation ($\{a_n\} \to \{a_n + 1\}$). The C*-algebras C_{90} and C_{150} are both isomorphic to \mathcal{O}_4. However, the automorphism induced by the conjugation on C_{90} is inner while the automorphism induced by the conjugation on C_{150} is outer as an automorphism on \mathcal{O}_4. We further show that both automorphisms on $\mathcal{O}_4 (\cong C_{90} \cong C_{150})$ induced by the shift are outer.

In Section 6, we generalize our construction for 2-state cellular automata to general k-state cellular automata. As a consequence, we show that a C*-algebra associated with a k-state cellular automaton corresponding to φ_{90} is isomorphic to the Cuntz algebra \mathcal{O}_{k^2} of order k^2.
In Section 7, we finally study a C^*-algebra associated with a 2-state cellular automaton rule numbered as 60. We show that the C^*-algebra becomes an inductive limit of a sequence of the Cuntz algebra \mathcal{O}_2 of order 2. By a recent theorem of Rørdam [Ro], the algebra itself is then isomorphic to \mathcal{O}_2.

The author is deeply indebted to Satoshi Takahashi and also to Jun Tomiyama, Taku Matsui, Yasuo Watatani and Shinzo Kawamura for fruitful discussions and suggestions and to Tomomi Goma for showing computer graphics of cellular automaton evolutions. He also expresses his gratitude to the referee for many suggestions and advice.

2. Preliminaries on cellular automata.

Let \mathbb{Z}^d be a d-dimensional lattice $\mathbb{Z} \times \ldots \times \mathbb{Z}$ (d-times product of the integers \mathbb{Z}). We fix a natural number k. The state of the cell on each lattice point $i \in \mathbb{Z}^d$ is specified by a number $a_i \in \{0, 1, \ldots, k - 1\} = \mathbb{Z}_k$. A cellular automaton rule is a map to define the state of the next generation of each cell which depends on only a neighborhood of the lattice point $i \in \mathbb{Z}^d$. Namely, the rule is given by a \mathbb{Z}_k-valued map ψ defined on \mathbb{Z}_k^n by specifying that the state at site $i \in \mathbb{Z}^d$ for the next generation should be $\psi(a_{i-r_1}, \ldots, a_{i+r_n}) \in \mathbb{Z}_k$ where $\{a_i\}_{i \in \mathbb{Z}^d}$ is the state of the previous generation, and r_1, \ldots, r_n are fixed distinct elements in \mathbb{Z}^d. We call such a map ψ a transition function or simply a rule. Such a system is called a d-dimension k-state n-neighborhood cellular automaton.

For instance, the Pascal’s triangle of modulo 2 is realized as a 1-dimension 2-state 3-neighborhood cellular automaton as in the following way. Take the both side $i - 1, i + 1$ and itself i for a point $i \in \mathbb{Z}$ as a neighborhood of i. The transition function ψ is defined by $\psi(a_{i-1}, a_i, a_{i+1}) = a_{i-1} + a_{i+1} \mod 2$. If we take an initial cell configuration $\{a_i\}$ as $a_i = 1$ ($i = 0$), $a_i = 0$ ($i \neq 0$), this cellular automaton evolution is related to the Pascal’s triangle of modulo 2.

Following Wolfram [Wo1], we number all 1-dimension 2-state 3-neighborhood cellular automata as in the following way. Let ψ be a transition function, which is defined on \mathbb{Z}_2^3. Hence there are eight possibilities of the state of the neighborhood so that we have $2^8 = 256$ possible transition functions. The state of the cell of the next generation of a_i is determined by the map ψ, which is written by

\[
\begin{align*}
\psi(0, 0, 0) &= \psi^0, & \psi(0, 0, 1) &= \psi^1, & \psi(0, 1, 0) &= \psi^2, & \psi(0, 1, 1) &= \psi^3, \\
\psi(1, 0, 0) &= \psi^4, & \psi(1, 0, 1) &= \psi^5, & \psi(1, 1, 0) &= \psi^6, & \psi(1, 1, 1) &= \psi^7.
\end{align*}
\]

We define the number of ψ by $\sum_{i=0}^{\infty} \psi^i 2^i$.

For instance, in the case of the preceding cellular automaton of the Pascal's triangle of modulo 2, one has number 90.

A cellular automaton is said to be symmetric if its transition function ψ is symmetric, that is, $\psi^1 = \psi^4, \psi^3 = \psi^6$. It is natural to restrict cellular automata to ones with $\psi^0 = 0$. If a symmetric cellular automaton rule satisfies the condition $\psi^0 = 0$, it is said to be legal. Thus, in 1-dimension 2-state 3-neighborhood cellular automata, these restrictions leave 32 possible legal cellular automata. In general, the limit sets of linear cellular automata are fractals (cf. [Ta2]). The invariance of the Haar measure under a transition function on the cellular space $\mathcal{R}_2 = \prod_z \mathbb{Z}_2$ is an important property. In particular, the Haar measure is invariant under the transition functions 60, 90, 150 which will be considered in the sequel.

3. 1-dimension 2-state cellular automaton C^*-algebras.

We first treat a legal cellular automaton in the class of 1-dimension 2-state 3-neighborhood cellular automata. Hence the cellular space $\mathcal{R}_2^1 = \prod_z \{0, 1\}$ is the Cantor set \mathcal{R}_2. Let φ_n be a cellular automaton rule indexed as the number n $(0 \leq n \leq 256)$. We denote by C_n the associated C^*-algebra C_{φ_n}.

The cellular automaton associated with the Pascal's triangle of mod 2, that is, φ_{90}, can be considered as the continuous map on \mathcal{R}_2 defined by

$$\varphi_{90}(\{a_i\}) = \{a_{i-1} + a_{i+1}\}, \quad \{a_i\} \in \mathcal{R}_2.$$

Let us study algebraic structure of the C^*-algebra C_{90}. It is easily seen that if $\{b_i\} \in \mathcal{R}_2$ is given, one may define $\{a_i\}$ with $\varphi_{90}(\{a_i\}) = \{b_i\}$ by choosing a_0, a_1 arbitrary, and then a_2, a_3, \ldots, and a_{-1}, a_{-2}, \ldots by induction. Thus, there are 4 distinct cross sections $s_{ij}, i, j = 0, 1,$ of φ_{90} (i.e. $\varphi_{90} \circ s_{ij} = id$) satisfying the conditions

$$P_0(s_{ij}(\{a_n\})) = i, \quad P_1(s_{ij}(\{a_n\})) = j, \quad i, j = 0, 1, \quad \{a_n\} \in \mathcal{R}_2$$

where each P_k is the function on \mathcal{R}_2 defined by $P_k(\{a_n\}) = a_k$. We conclude:

Lemma 3.1. The continuous map φ_{90} is surjective and 4-to-1.

Let $\mu_{1/2}$ be the measure on $\{0, 1\}$ defined by $\mu_{1/2}([0]) = \mu_{1/2}(\{1\}) = 1/2$. The infinite product measure $\prod_z \mu_{1/2}$ on \mathcal{R}_2 is called the Haar measure and is denoted by μ. The lemma below is easily seen by a direct computation or as a special case of [SR; 2.4. Theorem].

Lemma 3.2. The measure μ is φ_{90}-invariant.

Lemma 3.2 also follows from the next easily proved lemma.
LEMMA 3.3. The Radon-Nikodým derivative \((d\mu \circ s_{ij})/d\mu\) is \(1/4\) if \(i, j = 0, 1\).

We denote by \(\mathcal{S}\) the Hilbert space \(L^2(\mathcal{S}_2, \mu)\) of all complex valued square integrable functions. We define the bounded linear operator \(V_{90}\) coming from the map \(\varphi_{90}\) on \(\mathcal{S}\) by

\[
(V_{90}\xi)(\{a_n\}) = \xi(\varphi_{90}(\{a_n\})), \quad \xi \in \mathcal{S}, \quad \{a_n\} \in \mathcal{R}_2.
\]

Then one can show the following lemma by routine computation.

LEMMA 3.4.

(i) \((V_{90}\xi\xi)(\{a_n\}) = \frac{1}{4} \sum_{i,j=0,1} \xi(s_{ij}(\{a_n\})), \quad \xi \in \mathcal{S}, \quad \{a_n\} \in \mathcal{S}_2.

(ii) \(V_{90}^* V_{90} = 1\).

We now discuss the range of the projection \(V_{90} V_{90}^*\). Let \(h_e\) and \(h_o\) be the homeomorphisms on \(\mathcal{R}_2\) exchanging the state of a cell located in even lattice points and in odd ones, respectively. That is,

\[
h_e: \begin{cases} a_n \to a_n + 1 \quad (n: \text{even}) \\
a_n \to a_n \quad (n: \text{odd})
\end{cases}, \quad h_o: \begin{cases} a_n \to a_n \quad (n: \text{even}) \\
a_n \to a_n + 1 \quad (n: \text{odd})
\end{cases}.
\]

Let \(W_e\), \(W_o\) be the unitaries on \(\mathcal{S}\) defined by

\[
(W_e^*\xi)(\{a_n\}) = \xi(h_e(\{a_n\})), \quad * = e, o, \quad \xi \in \mathcal{S}, \quad \{a_n\} \in \mathcal{R}_2.
\]

The operator \(W_e^*\) is a self-adjoint unitary. Hence, the decomposition

\[
W_e = (1 + W_e)/2 - (1 - W_e)/2
\]

is the spectral decomposition of \(W_e\). Put \(Q_* = (1 + W_e)/2, * = e, o\).

LEMMA 3.5. \(V_{90} V_{90}^* = Q_e Q_o\).

PROOF. For a vector \(\xi \in \mathcal{S}\) and an element \(\{a_n\} \in \mathcal{S}_2\), we have

\[
(V_{90} V_{90}^*\xi)(\{a_n\}) = \frac{1}{4} \sum_{i,j=0,1} \xi(s_{ij} \circ \varphi_{90}(\{a_n\}))
\]

and

\[
(Q_e Q_o \xi)(\{a_n\}) = \frac{1}{4} (1 + W_e + W_o + W_e W_o) \xi(\{a_n\}) = \frac{1}{4} \sum_{i,j=0,1} \xi(h_e^i \circ h_o^j(\{a_n\})).
\]

One easily shows that the set of the four elements \(\{s_{ij} \circ \varphi_{90}(\{a_n\})\}_{i,j=0,1}\) coincides with that of the four elements \(\{h_e^i \circ h_o^j(\{a_n\})\}_{i,j=0,1}\). Hence we get \(V_{90} V_{90}^* = Q_e Q_o\).

For each \(n \in \mathbb{Z}\), the continuous function \(P_n \in C(\mathcal{S}_2)\) defined by \(P_n(\{a_i\}) = a_n\)
satisfies the condition $P_n = P_n^2 = P_n^*$. The sequence of these projections $\{P_n\}$ gives all the information of the configuration of the states of cells. Set $U_n = 1 - 2P_n$. As $\{P_n\}$ generate the C^*-algebra $C(S_2)$, these unitaries $\{U_n\}$ generate it.

The proof of the next lemma is left to the reader.

Lemma 3.6.
(i) For an even integer n, $P_nW_e = W_e(1 - P_n)$, $P_nW_o = W_oP_n$.
(ii) For an odd integer n, $P_nW_e = W_o(1 - P_n)$, $P_nW_o = W_eP_n$.

Corollary 3.7.
(i) For an even integer n, $U_nQ_e = (1 - Q_e)U_n$, $U_nQ_o = Q_oU_n$.
(ii) For an odd integer n, $U_nQ_o = (1 - Q_o)U_n$, $U_nQ_e = Q_eU_n$.

Now put

(3.1) $S_1 = V_{90}$, $S_2 = U_0V_{90}$, $S_3 = U_1V_{90}$, $S_4 = U_0U_1V_{90}$.

Proposition 3.8. Keep the above notations. We have the following operator relations of a Cuntz algebra (cf. [Cu1])

(3.2) $S_i^*S_i = 1$ $(i = 1, 2, 3, 4)$, $\sum_{i=1}^{4} S_iS_i^* = 1$.

Proof. Following the direct sum decomposition of the Hilbert space S: $Q_eQ_o + (1 - Q_e)Q_o + Q_e(1 - Q_o) + (1 - Q_e)(1 - Q_o) = 1$.

one obtains the relation $\sum_{i=1}^{4} S_iS_i^* = 1$ by Corollary 3.7.

Let $C^*(S_i, 1 \leq i \leq 4)$ be the C^*-algebra generated by $S_i, i = 1, 2, 3, 4$. Since the generators $S_i, i = 1, 2, 3, 4$ satisfy the relation (3.2), we know, by [Cu1], that $C^*(S_i, 1 \leq i \leq 4)$ is uniquely determined up to isomorphism and is simple. It is denoted by C_4.

Lemma 3.9. Both unitaries U_0 and U_1 belong to the C^*-algebra $C^*(S_i, 1 \leq i \leq 4)$.

Proof. By $U_0^2 = 1$, it follows that $U_0S_1 = S_2$, $U_0S_2 = S_1$, $U_0S_3 = S_4$, $U_0S_4 = S_3$.

Hence from the identity $\sum_{i=1}^{4} S_iS_i^* = 1$, we have

$U_0 = S_2S_1^* + S_1S_2^* + S_4S_3^* + S_3S_4^*$.
Similarly one sees
\[U_1 = S_3 S_1^* + S_4 S_2^* + S_1 S_3^* + S_2 S_4^*. \]

Therefore one obtains the following:

Proposition 3.10. The C*-algebra \(C^*(U_0, U_1, V_{90}) \) generated by the three operators \(U_0, U_1, V_{90} \) coincides with \(C^*(S_i, 1 \leq i \leq 4) \), that is, the Cuntz algebra \(\mathcal{O}_4 \).

The C*-algebra \(C^*(U_0, U_1, V_{90}) \) is a subalgebra of \(C_{90} \), but we will see that they actually coincide by the further discussion. The rule \(\varphi_{90} \) satisfies the condition
\[\varphi_{90}(\{a_n\}) = \{a_{n-1} + a_{n+1}\} \pmod{2}. \]

As \((a_{n-1} - a_{n+1})^2 = a_{n-1} + a_{n+1} \pmod{2} \), the next lemma and the corollary are immediate.

Lemma 3.11. \(V_{90} P_n = (P_{n-1} - P_{n+1})^2 V_{90}, \quad n \in \mathbb{Z}. \)

Corollary 3.12.
\[(3.3) \quad V_{90} U_n = U_{n-1} U_{n+1} V_{90}, \quad n \in \mathbb{Z}. \]

Hence we obtain

Lemma 3.13. For every \(n \in \mathbb{Z} \), the unitary \(U_n \) belongs to the C*-algebra \(C^*(U_0, U_1, V_{90}) \).

Proof. By induction, it suffices to show that for an arbitrary but fixed integer \(k \), both operators \(U_{k+2} \) and \(U_{k-1} \) belong to the C*-algebra \(C^*(U_k, U_{k+1}, V_{90}) \). By using a similar discussion to the previous one, we can show the identity below from Corollary 3.7:
\[1 = V_{90} V_{90}^* + U_k V_{90} V_{90}^* U_k + U_{k+1} V_{90} V_{90}^* U_{k+1} + U_k U_{k+1} V_{90} V_{90}^* U_{k+1} U_k. \]

Hence, one has, by (3.3):
\[(3.4) \quad U_{k+2} = U_k V_{90} U_{k+1} V_{90}^* + V_{90} U_{k+1} V_{90}^* U_k + U_k U_{k+1} V_{90} U_{k+1} V_{90}^* U_{k+1} U_k + U_{k+1} V_{90} U_{k+1} V_{90}^* U_{k+1} U_k. \]

This implies \(U_{k+2} \) belongs to \(C^*(U_k, U_{k+1}, V_{90}) \). Similarly, we see that \(U_{k-1} \) does to it.

Consequently, we arrive at the theorem below.

Theorem 3.14. The C*-algebra \(C_{90} \) (= \(C^*(C(S_2), V_{90}) \)) associated to the cellular automaton \(\varphi_{90} \) is isomorphic to the Cuntz algebra \(\mathcal{O}_4 \) (= \(C^*(S_i, 1 \leq i \leq 4) \)) under the following correspondence:
\[S_1 = V_{90}, \quad S_2 = U_0 V_{90}, \quad S_3 = U_1 V_{90}, \quad S_4 = U_0 U_1 V_{90}. \]

Proof. This is immediate from Proposition 3.10 and Lemma 3.13.

Remark 3.15. Let \(S_{ij}, i,j = 0,1 \) be the bounded linear operators on \(\mathfrak{H} \) defined by

\[(S_{ij}\xi)(\{a_n\}) = \xi(s_{ij}(\{a_n\})), \quad \xi \in \mathfrak{H}, \quad \{a_n\} \in \mathfrak{K}_2 \]

where \(s_{ij}, i,j = 0,1 \) are the four sections for \(\varphi_{90} \) cited before. We then see the following relations:

\[S_{00} + S_{01} + S_{10} + S_{11} = 4S_1^*, \quad S_{00} + S_{01} - S_{10} - S_{11} = 4S_2^*, \]
\[S_{00} - S_{01} + S_{10} - S_{11} = 4S_3^*, \quad S_{00} - S_{01} - S_{10} + S_{11} = 4S_4^*, \]

and we have

\[S_{ij}S_{ij}^* = 4, \quad \sum_{i,j=0,1} S_{ij}^*S_{ij} = 4. \]

Namely, the four operators \(\frac{1}{2}S_{ij}^*, i,j = 0,1 \) generate the C*-algebra \(C_{90} \), and they satisfy the Cuntz relations for \(\mathcal{O}_4 \). Hence we have another proof of the result that \(C_{90} \) is isomorphic to \(\mathcal{O}_4 \).

There is another interesting legal cellular automaton rule numbered as 150, which is defined by

\[\varphi_{150}(\{a_n\}) = \{a_{n-1} + a_n + a_{n+1}\} \pmod{2}. \]

Corresponding to the relation (3.3), we have

\[V_{150}U_n = U_{n-1}U_nU_{n+1}V_{150}, \quad n \in \mathbb{Z}. \]

By a similar discussion to the previous one or the argument below, one has

Proposition 3.16. The C*-algebra \(C_{150} (= C^*(\mathfrak{K}_2), V_{150}) \) associated with the cellular automaton \(\varphi_{150} \) is isomorphic to the Cuntz algebra \(\mathcal{O}_4 (= C^*\{(S_i, 1 \leq i \leq 4)\}) \) under the following correspondence:

\[S_1 = V_{150}, \quad S_2 = U_0 V_{150}, \quad S_3 = U_1 V_{150}, \quad S_4 = U_0 U_1 V_{150}. \]

Once one knows Theorem 3.14, one automatically obtains Proposition 3.16, because it is known that there is a homeomorphism \(h \) on the Cantor set \(\mathfrak{K}_2 \) satisfying \(h \circ \varphi_{90} = \varphi_{150} \circ h \). In fact, take a homeomorphism on \(\mathfrak{K}_2 \) induced by the following automorphism on the algebra \(C(\mathfrak{K}_2) \) defined by the correspondence: \(i = 0,1 \).
\[\begin{align*}
U_i & \rightarrow U_i \\
U_{i-1}U_{i+1} & \rightarrow U_{i-1}U_iU_{i+1} \\
U_{i-2}U_{i+2} & \rightarrow U_{i-2}U_iU_{i+2} \\
U_{i-3}U_{i-1}U_{i+1}U_{i+3} & \rightarrow U_{i-3}U_{i-2}U_iU_{i+2}U_{i+3} \\
\vdots & \vdots
\end{align*} \]

Since \(C(\mathcal{R}_2) \) is the universal \(C^* \)-algebra generated by countable infinite mutually commuting self-adjoint unitaries, it is easy to see that the above correspondence gives rise to a well-defined automorphism on it. Hence, by taking a unitary operator \(W \) on \(\mathcal{S} \) induced by the homeomorphism \(h \) one knows that

\[W^*V_{90}W = V_{150}, \quad W^*C(\mathcal{R}_2)W = C(\mathcal{R}_2) \]

so that both \(C^* \)-algebras \(C_{90} \) and \(C_{150} \) are isomorphic each other.

4. The Sierpinski gasket in \(\mathcal{O}_4 \) and the growth rate dimension.

In this section, we first show that a cellular automaton evolution may be identified with the canonical endomorphism on the Cuntz algebra \(\mathcal{O}_4 \). Thus we represent the Sierpinski gasket, as a limit set of a cellular automaton evolution by \(\varphi_{90} \), in the \(C^* \)-algebra \(C_{90} \) by using an endomorphism on \(C_{90} \). Hence it is possible to describe the growth rate dimension of the evolution by using a certain state on \(\mathcal{O}_4 \). We construct a faithful state on \(\mathcal{O}_4 \) which counts the number of cells with value 1 in the evolution at each stage. Then we describe the growth rate dimension of the limit set. A similar discussion works for the cellular automaton \(C^* \)-algebra \(C_{150} \).

We first explain notations following [Cu1]. Let \(S_i, 1 \leq i \leq 4 \) be the generators of the algebra \(C_{90} (= \mathcal{O}_4) \) defined by (3.1), which satisfy the relation (3.2). Let \(W^k_4, k = 1, 2, \ldots \) be the set of all \(k \)-tuples \((\mu(1), \ldots, \mu(k))\) with \(1 \leq \mu(i) \leq 4 \). We denote by \(S_\mu \) the isometry \(S_\mu = S_{\mu(1)} \cdots S_{\mu(k)} \) for \(\mu \in W^k_4 \). Let \(\mathcal{F}^k_4 \) be the \(C^* \)-algebra generated by \(\{ S_\mu S^*_v; \mu, v \in W^k_4 \} \) and \(\mathcal{F}_4 \) be the \(C^* \)-algebra generated by \(\bigcup_{k=1}^{\infty} \mathcal{F}^k_4 \).

As in [Cu1], \(\mathcal{F}^k_4 \) is isomorphic to the \(4^k \times 4^k \) complex full matrix algebra \(M_{4^k} \) because \(\{ S_\mu S^*_v; \mu, v \in W^k_4 \} \) become a system of matrix units of \(M_{4^k} \). The identity \(S_\mu S^*_v = \sum_{i=1}^{4} S_\mu S_i S^*_i S^*_v \) defines an inclusion \(\mathcal{F}^k_4 \subset \mathcal{F}_{(k+1)} = M_4 \otimes \mathcal{F}^k_4 \) so that \(\mathcal{F}_4 \) becomes a UHF-algebra of type \(4^\infty \) ([Cu1; 1.4. Proposition]).

Consider the two sequences of unitaries \(\{(\varphi_{90}^n(U_i))_{m \in \mathbb{N}}; i = 0, 1 \) obtained by iterating the morphism \(\varphi_{90} \) defined by

\[\varphi_{90}(U_{n_1}U_{n_2} \cdots U_{n_k}) = U_{n_1-1}U_{n_1+1} \cdots U_{n_2-1}U_{n_2+1} \cdots U_{n_k-1}U_{n_k+1} \]
We will show in a moment that \(\hat{\phi}_{90} \) is well-defined as a morphism, and extends to the one-sided shift on \(\mathcal{F}_4 = \bigotimes_1^\infty M_4 \). We have
\[
\begin{align*}
\hat{\phi}_{90}^0(U_0) &= U_0, & \hat{\phi}_{90}^0(U_1) &= U_1, \\
\hat{\phi}_{90}^1(U_0) &= U_{-1} U_1, & \hat{\phi}_{90}^1(U_1) &= U_0 U_2, \\
\hat{\phi}_{90}^2(U_0) &= U_{-2} U_2, & \hat{\phi}_{90}^2(U_1) &= U_{-1} U_3, \\
\hat{\phi}_{90}^3(U_0) &= U_{-3} U_{-1} U_1 U_3, & \hat{\phi}_{90}^3(U_1) &= U_{-2} U_0 U_2 U_4, \\
\hat{\phi}_{90}^4(U_0) &= U_{-4} U_4, & \hat{\phi}_{90}^4(U_1) &= U_{-3} U_5. \\
& \vdots & & \vdots
\end{align*}
\]
Namely, each of two sequences \(\{ \hat{\phi}_{90}^m(U_i) \}_{m \in \mathbb{N}}, i = 0, 1 \) shows the cellular automaton evolution starting from a state containing a single cell with value 1.

Lemma 4.1. Each unitary \(U_n, n \in \mathbb{Z} \) belongs to the algebra \(\bigcup_{k=1}^\infty \mathcal{F}_{4^k} \). Hence the two sequences \(\{ \hat{\phi}_{90}^m(U_i) \}_{m \in \mathbb{N}}, i = 0, 1 \) belong to the UHF-algebra \(\mathcal{F}_4 \).

Proof. We already know that both unitaries \(U_0, U_1 \) belong to \(\bigcup_{k=1}^\infty \mathcal{F}_{4^k} \) as in the proof of Lemma 3.9. Under the assumption that two unitaries \(U_k, U_{k+1} \) belong to \(\bigcup_{k=1}^\infty \mathcal{F}_{4^k} \), we see that \(U_{k+2}, U_{k-1} \) also belong to it by the identity (3.4).

We now show that \(\hat{\phi}_{90} \) extends to a morphism of \(\mathcal{F}_4 \).

Proposition 4.2. For \(i = 0, 1 \), \(\hat{\phi}_{90}^m(U_i) = 1 \otimes \cdots \otimes 1 \otimes U_i \in M_4 \otimes \cdots \otimes M_4 \otimes M_4 \): \((m + 1)\)-times tensor product of \(M_4 \).

To prove Proposition 4.2, we provide notations and a lemma.

Let \(W_S \) be a unitary operator on \(S \) induced by the forward shift \((S: \{a_n\} \rightarrow \{a_{n+1}\})\) on \(R_2 \). Put \(\sigma^S = \text{Ad} W_S \). Since the shift commutes with the rule \(\varphi_{90} \), we have
\[
\sigma^S(V_{90}) = V_{90}, \quad \sigma^S(U_n) = U_{n+1}, \quad n \in \mathbb{Z}.
\]
Thus \(\sigma^S \) gives rise to an automorphism on the \(C^* \)-algebra \(C_{90} \). Since one has, by the relation (3.4),
\[
(4.1) \quad U_2 = U_0 V_{90} U_1 V_{90}^* + V_{90} U_1 V_{90}^* U_0 + U_0 U_1 V_{90} U_1 V_{90}^* U_1 + U_1 V_{90} U_1 V_{90}^* U_1 U_0
\]
\[
= S_2 U_1 S_1^* + S_1 U_1 S_2^* + S_4 U_1 S_3^* + S_3 U_1 S_4^*,
\]
on one obtains, by (3.1),
$$\sigma^2(S_1) = S_1, \quad \sigma^2(S_2) = S_3, \quad \sigma^2(S_3) = S_2 U_1, \quad \sigma^2(S_4) = S_4 U_1$$

(cf. [MT]).

Lemma 4.3. \(U_{n-1} U_{n+1} = \sum_{i=1}^{4} S_i U_n S_i^*, \quad n \in \mathbb{Z}. \)

Proof. By (4.1), one sees,

\[
U_0 U_2 \\
= (S_2 S_1^* + S_1 S_2^* + S_4 S_3^* + S_3 S_4^*) (S_2 U_1 S_1^* + S_1 U_1 S_2^* + S_4 U_1 S_3^* + S_3 U_1 S_4^*) \\
= \sum_{i=1}^{4} S_i U_1 S_i^*.
\]

Since \(\sigma^2(U_n) = U_{n+1}, \) one can show the identity \(U_{n-1} U_{n+1} = \sum_{i=1}^{4} S_i U_n S_i^* \) for all \(n \in \mathbb{Z} \) by applying the map \(\sigma^2 (n - 1) \)-times to the identity \(U_0 U_2 = \sum_{i=1}^{4} S_i U_1 S_i^*. \)

It is clear that Lemma 4.3 implies Proposition 4.2, and, moreover:

Corollary 4.4. \(\phi_{90} \) is realized as the canonical endomorphism \(\Phi_4 \) on \(\mathcal{O}_4 \) defined by \(\Phi_4(X) = \sum_{i=1}^{4} S_i X S_i^*, \) \(X \in \mathcal{O}_4 ([C_4]), \) that is

\[
\phi_{90}(U_n) = U_{n-1} U_{n+1} = \Phi_4(U_n), \quad n \in \mathbb{Z}.
\]

Note that the commutative \(C^* \)-algebra \(C(\mathbb{A}_2) \) coincides with the \(C^* \)-algebra \(C^*(U_i, 1 \otimes U_i, 1 \otimes 1 \otimes U_i, \ldots, i = 0, 1) \) generated by the following two sequences of unitaries in \(\mathcal{F}_4 \)

\[
U_0, \quad 1 \otimes U_0, \quad 1 \otimes 1 \otimes U_0, \quad 1 \otimes 1 \otimes 1 \otimes U_0, \ldots \\
U_1, \quad 1 \otimes U_1, \quad 1 \otimes 1 \otimes U_1, \quad 1 \otimes 1 \otimes 1 \otimes U_1, \ldots
\]

Hence \(C(\mathbb{A}_2) \) is a maximal abelian \(C^* \)-subalgebra of \(\mathcal{F}_4 \). This is because the algebra generated by \(U_0, U_1 \) is unitarily equivalent to the algebra consisting of all diagonal elements of \(M_4 \), see also [Cu1, CuK].

We will next express the fractal (Hausdorff) dimension (see [Fa]) of the Sierpinski gasket in \(C^* \)-algebra language by using the above discussion. In [Wi1], [Wi2], Willson has showed that the fractal dimension of the limit set of the cellular automaton evolution starting from a state containing a single cell with value 1 is equal to its growth rate dimension \(D_g \), defined by

\[
D_g = \lim_{t \to \infty} \log N(t)/\log t
\]
where \(N(t) \) is the number of cells with value 1 until time \(t \).

We express the number \(N(t) \) in terms of the \(C^* \)-algebra.

Let \(F_0 \) be the conditional expectation from \(\mathcal{O}_4 \) to the UHF-subalgebra \(\mathcal{F}_4 \) defined by

\[
F_0(X) = \int_{\mathbb{T}} \rho_z(X) \, dz, \quad X \in \mathcal{O}_4
\]

where \(\rho \) is the action of the circle \(\mathbb{T} \) defined by \(\rho_z : S_1 \to z S_1, z \in \mathbb{C}, |z| = 1 \). We next construct a conditional expectation from \(\mathcal{F}_4 \) to \(C(\mathbb{R}_2) \) in regarding \(C(\mathbb{R}_2) \) as a maximal abelian \(C^* \)-subalgebra of \(\mathcal{F}_4 \). One easily sees that the map \(e \) below gives rise to an expectation from \(M_4 \) to the subalgebra \(C^*(U_0, U_1) \) of \(M_4 \):

\[
e(A) = \frac{1}{4} (A + U_0 A U_0 + U_1 A U_1 + U_0 U_1 A U_0 U_1), \quad A \in M_4.
\]

The map \(e^{90} = \prod_1^{\infty} \otimes e \) yields an expectation from \(F_4 (= \prod_1^{\infty} \otimes M_4) \) to \(C(\mathbb{R}_2) \)

\((\prod_1^{\infty} \otimes C^*(U_0, U_1)) \), under the identification between \(C(\mathbb{R}_2) \) and \(\prod_1^{\infty} \otimes C^*(U_0, U_1) \). Let us consider the faithful tracial state \(\psi_\lambda \) for \(0 < \lambda < 1 \) on \(C(\mathbb{R}_2) \) defined by the integral induced by the measure \(\prod_{-\infty}^{\infty} \otimes \mu_\lambda \), where

\[
\mu_\lambda(\{0\}) = \frac{1}{1 + \lambda}, \quad \mu_\lambda(\{1\}) = \frac{\lambda}{1 + \lambda}.
\]

By composing these maps, one has a faithful state \(\tau^{90}_\lambda \) on \(C_{90} \) for each \(0 < \lambda < 1 \), namely,

\[
\tau^{90}_\lambda = \psi_\lambda \circ e^{90} \circ F_0 : C^{90} \xrightarrow{F_0} \mathcal{F}_4 \xrightarrow{e^{90}} C(\mathbb{R}_2) \xrightarrow{\psi_\lambda} C.
\]

One now easily proves:

Lemma 4.5.

\[
\psi_\lambda(U_{i_1} U_{i_2} \ldots U_{i_k}) = \left(\frac{1 - \lambda}{1 + \lambda} \right)^k \text{ for distinct numbers } i_1, i_2, \ldots, i_k.
\]

Let \(l^{90}(k) \) be the number of cells with value 1 at time \(k \) starting from a state containing a single cell with value 1. The sequence \(\{l^{90}(k)\}_{k=0}^{\infty} \) is inductively determined by the following relations:

\[
l^{90}(0) = 1, \quad l^{90}(1) = 2, \quad l^{90}(2^n + k) = 2 l^{90}(k) \quad 0 \leq k \leq 2^n.
\]

Put \(c_\lambda = \frac{1 - \lambda}{1 + \lambda} \). By Corollary 4.4, one sees

\[
\tau^{90}_\lambda(\Phi^k_4(U_n)) = c^{90}(k), \quad n \in \mathbb{Z}, \quad k = 0, 1, 2, \ldots
\]
Since \(N(m) = \sum_{k=0}^{m} l^{90}(k) \) and the fractal dimension of the associated limit set is \(\log_2 3 \), we reach

\[
\lim_{m \to \infty} \log \left[\sum_{k=0}^{m} \log \tau^{90}_\lambda(U_0) \right] / \log m = \log_2 3.
\]

We may analogously construct a state \(\tau^{150}_\lambda \) for the rule 150 which has similar properties. As a result, we have

\[
\lim_{m \to \infty} \log \left[\sum_{k=0}^{m} \log \tau^{150}_\lambda(U_0) \right] / \log m = \log_2 (1 + \sqrt{5}).
\]

5. Automorphisms induced by operations on cellular automata.

In this section, we study automorphisms on cellular automaton \(C^* \)-algebras induced by some basic homeomorphisms on cellular space. Our main purpose to study these automorphisms is to make clear the differences between cellular automaton \(C^* \)-algebras associated with different cellular automaton rules. For instance, as we have seen in Section 3, the \(C^* \)-algebras \(C_{90} \), \(C_{150} \) are mutually isomorphic to \(\mathcal{O}_\lambda \) as \(C^* \)-algebra. Hence there are no difference between them as \(C^* \)-algebras. However, the two rules \(\varphi_{90}, \varphi_{150} \) are different. We look at some operations on cellular space \(\mathcal{R}_2 \) and consider automorphisms on \(C_{90}, C_{150} \) induced by them. We see that their behavior on \(C_{90} \) are different from those on \(C_{150} \). Namely, we show that the difference between \(\varphi_{90} \) and \(\varphi_{150} \) appears as a difference of a property of certain automorphisms on the two \(C^* \)-algebras \(C_{90} \) and \(C_{150} \). These automorphisms seem to belong a new class of automorphisms on the Cuntz algebra, which has not been treated in [Ar], [ETW], [Vo], \ldots, etc.

The following lemma proved in [MT] is used in the sequel.

Lemma 5.1. ([MT; Corollary B]). Let \(\alpha \) be an automorphism on the Cuntz algebra \(\mathcal{O}_n \) with \(\alpha(S_1) = S_1 \), where \(S_1 \) is a generator of isometries satisfying

\[
\sum_{i=1}^{n} S_i S_i^* = 1.
\]

If \(\alpha \) is not trivial, it is outer.

Let \(\gamma \) be a homeomorphism on \(\mathcal{R}_2 \) satisfying the condition

\[
\gamma \circ \varphi = \varphi \circ \gamma, \quad * = 90 \text{ or } 150.
\]

Let \(W_\gamma \) be the unitary on \(\mathcal{S} = L^2(\mathcal{R}_2, \mu) \) induced by \(\gamma \). Put \(\sigma = \text{Ad } W_\gamma \). Lemma 5.1 is used in our situation as:

Lemma 5.2. If \(\gamma \) is not trivial, \(\sigma \) gives rise to an outer automorphism on \(C_{90} \) and \(C_{150} \).
PROOF. Under the usual correspondence

\((5.1) \quad S_1 = V_*, \quad S_2 = U_0 V_*, \quad S_3 = U_1 V_*, \quad S_4 = U_0 U_1 V_*, \quad * = 90, 150, \)

the condition \(\gamma \circ \varphi_* = \varphi_* \circ \gamma \) implies \(\sigma(S_1) = S_1. \)

Let us consider some automorphisms of the \(C^* \)-algebras \(C_* \) induced by basic homeomorphisms on \(\Omega_2. \) We first deal with automorphisms induced by shift on \(\Omega_2. \) Let \(w_0 \) be the unitary on \(S_4 \) induced by the forward shift: \(S \) on \(\Omega_2 = \prod \mathbb{Z}_2. \) Put \(\sigma^S = \text{Ad } w_0. \) Since one has \(S \circ \varphi_* = \varphi_* \circ S, * = 90, 150, \) \(\sigma^S \) yields an outer automorphism on \(C_{90} \) and on \(C_{150} \) by Lemma 5.2. We write these outer automorphisms as \(\sigma^S_{90} \) and \(\sigma^S_{150} \) respectively. Under the correspondence \((5.1), \) one can easily write automorphisms \(\sigma^S_* \) by using the generators \(S_i, 1 \leq i \leq 4, \) in the following way (cf. [MT])

\[
\begin{align*}
\sigma^S_{90}(S_1) &= S_1, & \sigma^S_{90}(S_3) &= S_2(S_1 S_3^* + S_3 S_1^* + S_2 S_4^* + S_4 S_2^*), \\
\sigma^S_{90}(S_2) &= S_3, & \sigma^S_{90}(S_4) &= S_4(S_1 S_3^* + S_3 S_1^* + S_2 S_4^* + S_4 S_2^*), \\
\sigma^S_{150}(S_1) &= S_1, & \sigma^S_{150}(S_3) &= S_4(S_1 S_3^* + S_3 S_1^* + S_2 S_4^* + S_4 S_2^*), \\
\sigma^S_{150}(S_2) &= S_3, & \sigma^S_{150}(S_4) &= S_2(S_1 S_3^* + S_3 S_1^* + S_2 S_4^* + S_4 S_2^*).
\end{align*}
\]

Since each automorphism \(\sigma^S_*, * = 90, 150, \) shifts \(U_i \) to \(U_{i+1}, i \in \mathbb{Z}, (\sigma^S_*)^n, n(\neq 0) \in \mathbb{Z} \) is not trivial and satisfies \((\sigma^S_*)^n(S_1) = S_1, n \in \mathbb{Z}. \) Therefore we have:

PROPOSITION 5.3. Both the automorphisms \(\sigma^S_{90}, \sigma^S_{150} \) on \(\mathcal{O}_4 \) induced by the shift on \(\Omega_2 \) give rise to outer automorphisms. Moreover each of them yields an outer action of the infinite cyclic group \(\mathbb{Z} \) on \(\mathcal{O}_4. \)

REMARK 5.4. Let \(\rho_{(24)}, \rho_{(34)} \) be the automorphisms on \(\mathcal{O}_4 \) induced by the permutations \((24), (34) \) on the generators \(S_1, S_2, S_3, S_4 \) respectively. Then we have the relations:

\[
\sigma^S_{150} = \sigma^S_{90} \circ \rho_{(34)} = \rho_{(24)} \circ \sigma^S_{90}.
\]

Now we refer a compatibility the automorphisms \(\sigma_*^S \) with the states \(\tau_*^S, * = 90, 150. \)

PROPOSITION 5.5. \(\tau_*^{90} \) (resp. \(\tau_*^{150} \)) is invariant under \(\sigma^S_{90} \) (resp. \(\sigma^S_{150} \)). However, it is not invariant under \(\sigma^S_{150} \) (resp. \(\sigma^S_{90} \)).

PROOF. The invariance of \(\tau_*^{90} \) (resp. \(\tau_*^{150} \)) under \(\sigma^S_{90} \) (resp. \(\sigma^S_{150} \)) is easy from their definition. We show \(\tau_*^{90} \circ \sigma^S_{150} \neq \tau_*^{90} \). As we have \(\rho_{(34)}(U_1) = U_0 U_1, \) we get

\[
\tau_*^{90} \circ \rho_{(34)}(U_1) = \left(\frac{1 - \lambda}{1 + \lambda} \right)^2 \text{ and hence } \tau_*^{90} \circ \rho_{(34)}(U_1) \neq \tau_*^{90}(U_1).
\]

Since \(\sigma^S_{150} = \sigma^S_{90} \circ \rho_{(34)}, \) we conclude \(\tau_*^{90} \circ \sigma^S_{150}(U_1) \neq \tau_*^{90}(U_1) \) so that \(\tau_*^{90} \circ \sigma^S_{150} \neq \tau_*^{90}. \) Similarly, we have \(\tau_*^{150} \circ \sigma^S_{90} \neq \tau_*^{150}. \)
We do not know whether or not the two automorphisms σ_{90}^5, σ_{150}^5 are conjugate on \mathcal{C}_4. However the following automorphisms on \mathcal{C}_4 make a clear distinction between the two rules φ_{90} and φ_{150}. They are induced by a homeomorphism J on \mathcal{R}_2 called the conjugation, defined by

$$J(\{a_n\}) = \{a_n + 1\} \pmod{2}, \quad \{a_n\} \in \mathcal{R}_2.$$

Let W_J be the unitary on \mathcal{S} induced by J. Hence we have $W_J = W_e W_o$ where W_e, W_o are unitaries defined in Section 3. Put $\sigma^c = \text{Ad } W_J$ so that one has $\sigma^c(U_n) = -U_n$. We first notice:

$$\varphi_{90} \circ J = \varphi_{90}, \quad \varphi_{150} \circ J = J \circ \varphi_{150}.$$

By lemma 5.2, we have

Lemma 5.6. σ^c gives rise to an automorphism of period 2 on C_{150}, which is outer.

We denote by σ_{150}^c the above automorphism on C_{150}.

On the other hand, we obtain

Lemma 5.7. σ^c gives rise to an automorphism of period 2 on C_{90}, which is inner.

Proof. It suffices to show that W_J belongs to C_{90}. We notice that $W_J = W_e W_o$, $W_e = 2Q_e - 1$, $*, = e, o$. As in Section 3, we know that

$$Q_e Q_o = V_{90} V_{90}^*, \quad Q_e (1 - Q_o) = U_1 V_{90} V_{90} U_1^*, \quad (1 - Q_e) Q_o = U_0 V_{90} V_{90} U_0^*$$

so that Q_* and hence W_*, $* = e, o$ belong to C_{90}.

We denote by σ_{90}^c the above automorphism on C_{90}.

Thus we conclude the following:

Theorem 5.8. The two pairs (C_{90}, σ_{90}^c) and $(C_{150}, \sigma_{150}^c)$ of cellular automaton C^*-algebras with automorphisms induced by the conjugation on \mathcal{R}_2 are not conjugate each other. In fact, σ_{90}^c is inner but σ_{150}^c is outer.

We can explicitly write the implementing unitary W_J of the inner automorphism σ_{90}^c on \mathcal{C}_4 as

$$W_J = (2Q_e - 1)(2Q_o - 1)$$

$$= 4Q_e Q_o - 2Q_e - 2Q_o + 1$$

$$= 4S_1 S_1^* - 2(S_1 S_1^* + S_3 S_3^*) - 2(S_1 S_1^* + S_2 S_2^*) + 1$$

$$= S_1 S_1^* - S_2 S_2^* - S_3 S_3^* + S_4 S_4^*.$$
Hence it follows that
\[\sigma_{90}(S_1) = S_1 W_f, \quad \sigma_{90}(S_2) = -S_2 W_f, \quad \sigma_{90}(S_3) = -S_3 W_f, \quad \sigma_{90}(S_4) = S_4 W_f. \]

On the other hand, as we have \(\sigma_{150}(V_{150}) = V_{150}, \sigma_{150}(U_n) = -U_n \), it follows that
\[\sigma_{150}(S_1) = S_1, \quad \sigma_{150}(S_2) = -S_2, \quad \sigma_{150}(S_3) = -S_3, \quad \sigma_{150}(S_4) = S_4. \]

6. Generalization to \(k \)-state cellular automata.

There is no essential obstruction to generalizing our preceding discussions for 2-state to \(k \)-state \((k \geq 3) \). We consider the 3-state version of \(\varphi_{90} \). It is the Pascal’s triangle of modulo 3. Let \(\mathcal{S}_3 \) be the infinite product \(\prod_{z} \mathbb{Z}_3 \) of \(\mathbb{Z}_3 = \{0, 1, 2\} \).

Consider the cellular automaton rule
\[\psi(\{a_n\}) = \{a_{n-1} + a_{n+1}\} \pmod{3} \quad \{a_n\} \in \mathcal{S}_3. \]

Take a probability measure \(\mu \) on \(\mathcal{S}_3 \) which is the infinite product of the measure \(\mu_{1/3} \) on \(\mathbb{Z}_3 \) defined by
\[\mu_{1/3}(\{0\}) = \mu_{1/3}(\{1\}) = \mu_{1/3}(\{2\}) = \frac{1}{3}. \]

It is easy to see that \(\psi \) is a 9-to-1 onto map on \(\mathcal{S}_3 \) and \(\mu \) is \(\psi \)-invariant. Let \(V_\psi \) be the linear operator on the Hilbert space \(\mathfrak{H}_3 = L^2(\mathcal{S}_3, \mu) \) induced by the map \(\psi \).

We define two unitaries \(W_e, W_o \) on \(\mathfrak{H}_3 \) induced by similar homeomorphisms \(h_e, h_o \) on \(\mathcal{S}_3 \) to the previous ones respectively. Let \(\omega \) be the principal 3-rd root of unity. Put
\[Q^0_\ast = \frac{1}{2}(1 + W_\ast + W_\ast^2), \quad Q^1_\ast = \frac{1}{2}(1 + \omega^2 W_\ast + \omega W_\ast^2), \]
\[Q^2_\ast = \frac{1}{2}(1 + \omega W_\ast + \omega^2 W_\ast^2) \ast = e, o. \]

Hence we have
\[W_\ast = Q^0_\ast + \omega Q^1_\ast + \omega^2 Q^2_\ast \ast = e, o. \]

Corresponding to Lemma 3.5, one has

Lemma 6.1. \(V_\psi^* V_\psi = 1, \quad V_\psi^* V_\psi^* = Q^0_\psi Q^0_\psi. \)

Let \(E^i \in C(\mathcal{S}_3) = C\{0\} \oplus C\{1\} \oplus C\{2\} \) \(i = 0, 1, 2 \) be projections defined by
\[E^i(x) = \begin{cases} 1 & (x = i) \\ 0 & (x \neq i) \end{cases} \quad i, x = 0, 1, 2. \]

Three sequences \(\{E^i_n\}_{n \in \mathbb{Z}}, \quad i = 0, 1, 2 \) of projections in \(C(\mathcal{S}_3) \) are defined by
\[E^i_n(\{a_k\}) = E^i(a_n), \quad i = 0, 1, 2, \quad \{a_n\} \in \mathcal{S}_3. \]
Put unitary \(U_n = E_n^0 + \omega E_n^1 + \omega^2 E_n^2, n \in \mathbb{Z} \). Similarly to Lemma 3.6 and Corollary 3.7, one has

Lemma 6.2. For \(i = 0, 1, 2 \) (mod 3),

(i) For an even integer \(n \), \(E_n^i W_e = W_e E_n^{i+1} \), \(E_n^i W_o = W_o E_n^i \).

(ii) For an odd integer \(n \), \(E_n^i W_o = W_o E_n^{i+1} \), \(E_n^i W_e = W_e E_n^i \).

Corollary 6.3. For \(j = 0, 1, 2 \) (mod 3),

(i) For an even integer \(n \), \(U_n Q_e^j = Q_e^{j+1} U_n \), \(U_n Q_o^j = Q_o^j U_n \).

(ii) For an odd integer \(n \), \(U_n Q_o^j = Q_o^{j+1} U_n \), \(U_n Q_e^j = Q_e^j U_n \).

Put \(S_1 = V_\psi, S_2 = U_0 V_\psi, S_3 = U_1 V_\psi, S_4 = U_0^2 V_\psi, S_5 = U_1^2 V_\psi, S_6 = U_0 U_1 V_\psi, S_7 = U_0 U_1 V_\psi, S_8 = U_0^2 U_1 V_\psi, S_9 = U_0^2 U_1^2 V_\psi \).

It is obvious that \(S_i^* S_i = 1, 1 \leq i \leq 9 \). By the decomposition of the Hilbert space below

\[
1 = (Q_e^0 + Q_e^1 + Q_e^2)(Q_o^0 + Q_o^1 + Q_o^2) = \sum_{i,j = 0, 1, 2} Q_e^i Q_o^j,
\]

one has \(\sum_{i=1}^9 S_i S_i^* = 1 \). As we see the identity \(V_\psi U_n = U_{n-1} U_{n+1} V_\psi, n \in \mathbb{Z} \), we consequently have the next theorem by a similar argument to the previous one.

Theorem 6.4. The C*-algebra \(C^*(C(\mathcal{R}_3), V_\psi) \) generated by the commutative C*-algebra \(C(\mathcal{R}_3) \) and the isometry \(V_\psi \) coincides with the Cuntz algebra \(\mathcal{O}_9 (= C^*(S_i, 1 \leq i \leq 9)) \) generated by 9 isometries.

More generally, for a \(k \)-state cellular automaton \(\Psi \) defined by

\[
\Psi(\{a_i\}) = \{a_{i-1} + a_{i+1}\}, \quad \{a_i\} \in \mathcal{R}_k = \prod_{i} \mathbb{Z},
\]

we can summarize our discussion as the following theorem:

Theorem 6.5. Let \(C^*(C(\mathcal{R}_k), V_\psi) \) be the C*-algebra generated by the commutative C*-algebra \(C(\mathcal{R}_k) \) and the isometry \(V_\psi \) induced by the cellular automaton rule \(\Psi \). Then \(C^*(C(\mathcal{R}_k), V_\psi) \) is isomorphic to the Cuntz algebra \(\mathcal{O}_{k^2} (= C^*(S_i, 1 \leq i \leq k^2)) \) generated by \(k^2 \) mutually orthogonal isometries \(U_0^i U_1^j V_\psi \), \(i, j = 0, 1, \ldots, k - 1 \) satisfying

\[
\sum_{i,j = 0, 1, \ldots, k - 1} (U_0^i U_1^j V_\psi)(U_0^i U_1^j V_\psi)^* = 1
\]

where \(U_0 = \sum_{i=0}^{k-1} \omega^i E_0^i, U_1 = \sum_{i=0}^{k-1} \omega^i E_1^i \) and \(\omega \) is the principal \(k \)-th root of unity and \(\{E_n^i\} \) are projections defined in a similar way to the previous ones.
7. C*-algebras associated with illegal cellular automata.

Finally, we treat an example of a non-symmetric and hence illegal cellular automaton. It is the 1-dimension 2-state 3-neighborhood cellular automaton numbered as 60 which is defined by

\[\varphi_{60}(\{a_n\}) = \{a_{n-1} + a_n\} \pmod{2}, \quad \{a_n\} \in \mathcal{A}_2. \]

It is easy to see that the map \(\varphi_{60} \) is surjective and 2-to-1. As the measure \(\mu \) cited in Section 3 is also \(\varphi_{60} \)-invariant, our previous discussions basically work for \(\varphi_{60} \). We denote by \(V_{60} \) the operator on the Hilbert space \(\mathcal{H} = L^2(\mathcal{A}_2, \mu) \) induced by \(\varphi_{60} \) as usual. Let \(s_i, i = 0, 1 \) be the two cross sections for \(\varphi_{60} \) satisfying \(P_0(s_i(\{a_n\})) = i, \quad i = 0, 1, \quad \{a_n\} \in \mathcal{A}_2 \). Since the Radon-Nikodým derivative \((d\mu \circ s_i)/d\mu = 1/2 \), \(i = 0, 1 \), one has

Lemma 7.1.

(i) \((V_{60}^* \xi)(\{a_n\}) = \frac{1}{2} \sum_{i=0,1} \xi(s_i(\{a_n\})), \quad \xi \in \mathcal{H}, \quad \{a_n\} \in \mathcal{A}_2. \)

(ii) \(V_{60}^* V_{60} = 1. \)

Let \(h \) be the homeomorphism on \(\mathcal{A}_2 \) defined by \(h(\{a_n\}) = \{a_n + 1\} \) and \(W \) the unitary on \(\mathcal{H} \) induced by \(h \). Put \(Q = (W + 1)/2. \)

Lemma 7.2. \(V_{60} V_{60}^* = Q. \)

Let \(U_n, n \in \mathbb{Z} \) be the self-adjoint unitaries defined in Section 3.

Lemma 7.3. \(U_n Q = (1 - Q) U_n, \quad n \in \mathbb{Z}. \)

Lemma 7.4.

\[
(7.1) \quad V_{60} U_n = U_{n-1} U_n V_{60}, \quad n \in \mathbb{Z}.
\]

We fix an arbitrary integer \(N \) henceforth. Put

\[
S_1^N = V_{60}, \quad S_2^N = U_N V_{60}.
\]

By Lemma 7.3, we have the following relations

\[
S_i^N S_i^N = 1 \quad (i = 1, 2), \quad \sum_{i=1}^{2} S_i^N S_i^N = 1.
\]

As we have the identity

\[
U_N = S_2^N S_1^N + S_1^N S_2^N,
\]

we know the following lemmas.
LEMMA 7.5. Under fixing an integer \(N \), the C*-algebra \(C^*(U_N, V_{60}) \) generated by the operators \(U_N \) and \(V_{60} \) coincides with the C*-algebra \(C^*(S_1^N, S_2^N) \) generated by \(S_1^N \), \(S_2^N \), which is the Cuntz algebra \(\mathcal{O}_2 \) of order 2.

LEMMA 7.6. The C*-algebra \(C^*(U_k; k \leq N, V_{60}) \) generated by the sequence \(U_k \), \(k \leq N \) and \(V_{60} \) coincides with \(C^*(U_N, V_{60}) \) and hence with \(C^*(S_1^N, S_2^N) \) (\(\cong \mathcal{O}_2 \)).

PROOF OF LEMMA 7.6. It suffices to show that the unitary \(U_{N-1} \) belongs to \(C^*(U_N, V_{60}) \) by induction. As we have

\[
1 = V_{60} V_{60}^* + U_N V_{60} V_{60}^* U_N,
\]

it follows that, by (7.1),

\[
U_{N-1} = U_N V_{60} U_N V_{60}^* + V_{60} U_N V_{60}^* U_N.
\]

Hence one sees that \(U_{N-1} \) belongs to \(C^*(U_N, V_{60}) \).

We denote by \(C_{60}^N \) the C*-algebra \(C^*(U_k; k \leq N, V_{60}) \). Thus we have a sequence of natural inclusions of C*-algebras \(\{C_{60}^N\}_{N \in \mathbb{Z}} \).

\[
\cdots \subset C_{60}^{N-2} \subset C_{60}^{N-1} \subset C_{60}^N \subset C_{60}^{N+1} \subset C_{60}^{N+2} \subset \cdots
\]

Each of C*-algebras \(\{C_{60}^k\}_{k \in \mathbb{Z}} \) is isomorphic to \(\mathcal{O}_2 \). We study the inclusion \(C_{60}^N \subset C_{60}^{N+1} \) by a C*-algebra technique.

Put \(\alpha_N = \text{Ad } U_{N+1} \). By the relation (7.1), we have

\[
\alpha_N(S_1^N) = S_2^N, \quad \alpha_N(S_2^N) = S_1^N.
\]

Namely, \(\alpha_N \) yields the "flip-flop" automorphism on \(\mathcal{O}_2 \) \((\cong C_{60}^N)\) studied by R. Archbold. His result in [Ar] says \(\alpha_N \) is outer on \(\mathcal{O}_2 \). Let \(C^*(U_{N+1}, C_{60}^N) \) be the C*-algebra generated by the unitary \(U_{N+1} \) and the algebra \(C_{60}^N \). It is nothing but \(C_{60}^{N+1} \). Obviously, there is a canonical surjective homomorphism \(\pi_{N+1} \) from the crossed product \(C_{60}^N \rtimes \mathbb{Z}_2 \) (\(= \mathcal{O}_2 \rtimes \mathbb{Z}_2 \)) of \(C_{60}^N \) by the action \(\alpha_N \) of the group \(\mathbb{Z}_2 \) (\(= \{0, 1\}\)) to the algebra \(C^*(U_{N+1}, C_{60}^N) \). By [Ki], \(C_{60}^N \rtimes \mathbb{Z}_2 \) is simple so that \(\pi_{N+1} \) is injective. Thus we have

LEMMA 7.7. The C*-algebra \(C_{60}^{N+1} \) is isomorphic to the crossed product \(C_{60}^N \rtimes \mathbb{Z}_2 \) through the map \(\pi_{N+1} \). The isomorphism is compatible with two natural inclusions \(i_N^*: C_{60}^N \to C_{60}^{N+1} \) and \(j_N^*: C_{60}^N \to C_{60}^N \rtimes \mathbb{Z}_2 \). Namely the following sequence of diagrams is commutative.

\[
\begin{array}{ccc}
\cdots & \rightarrow & C_{60}^N \\
\text{ } & \| & \text{ } \\
\cdots & \rightarrow & C_{60}^N \rtimes \mathbb{Z}_2
\end{array}
\]

Although the following corollary is a special case of the theorem in [CuE], our approach to the result is completely different from Cuntz-Evans's one.
Corollary 7.8 ([CuE; Theorem]). The crossed product $\mathcal{O}_2 \times_{\alpha} \mathbb{Z}_2$ of \mathcal{O}_2 by the flip-flop automorphism is isomorphic to the original Cuntz algebra \mathcal{O}_2.

We identify C^{N+1}_{60} with $C_N^{60} \times_{\alpha} \mathbb{Z}_2$ in the previous way. Therefore we conclude

Theorem 7.9. The C^*-algebra C_{60} (\(= C^*(\mathcal{R}_2, V_{60})\)) generated by the commutative C^*-algebra $C(\mathcal{R}_2)$ and the isometry V_{60} is isomorphic to the inductive limit C^*-algebra $\lim_{i\to\infty} C^{N}_{60}$. Hence C_{60} is also simple.

Proof. Since $C(\mathcal{R}_2)$ is an inductive limit C^*-algebra of the sequence of the C^*-algebras \(\{C^*(U_k; k \leq N)\}_{N \in \mathbb{N}}\), C_{60} is also an inductive limit of the sequence of the C^*-algebras \(\{C^N_{60}\}_{N \in \mathbb{N}}\). It is well known that an inductive limit of simple C^*-algebras is also simple.

By a recent result of Rørdam, [Rø], it follows that C_{60} is isomorphic to \mathcal{O}_2.

Remark 7.10. The morphism ϕ_{60} given by $\phi_{60}(U_n) = U_{n-1}U_n$ is also represented as the canonical endomorphism Φ_2 on \mathcal{O}_2 defined by $\Phi_2(X) = \sum_{i=1}^{2} S_iXS_i^*$, because we have

\[
\sum_{i=1}^{2} S_iU_nS_i^* = U_{n-1}U_n \quad (= \phi_{60}(U_n)).
\]

We easily see that the sequence \(\{\Phi_2^n\}\) of the endomorphism at each C^*-algebra C^N_{60} is compatible with the inclusions $i_N: C^N_{60} \to C^{N+1}_{60}$ so that $\{\Phi_2^n\}$ define an endomorphism on $\lim_{i\to\infty} C^{N}_{60}$. Hence we can continue to discuss on the C^*-algebra C_{60} in a similar fashion to the previous ones C_{90} and C_{150} as in Section 4.

Remark 7.11. It is easy to generalize our discussions to a general k-state cellular automaton rule corresponding to the rule φ_{60}. Consequently, we have an inductive limit C^*-algebra $\lim_{i\to\infty} \mathcal{O}_k$ of the sequence of the Cuntz algebra \mathcal{O}_k of order k under the inclusion $i_N: \mathcal{O}_k \to \mathcal{O}_k \times_{\sigma_k} \mathbb{Z}_k \cong \mathcal{O}_k$ where σ_k is the action induced by the cyclic permutation of generators of isometries S_1, S_2, \ldots, S_k.

As a generalization of the above fact $\mathcal{O}_k \times_{\sigma_k} \mathbb{Z}_k \cong \mathcal{O}_k$, M. Izumi privately informed the author about the following fact:

For a finite group G of order n, consider the action α of it on \mathcal{O}_n by $\alpha_g(S_h) = S_{gh}$, $g, h \in G$, where $\{S_g\}_{g \in G}$ are generators of isometries of \mathcal{O}_n with $\sum_{g \in G} S_gS_g^* = 1$. Then the crossed product $\mathcal{O}_n \times_{\alpha} G$ is isomorphic to \mathcal{O}_n.

We notice that this fact may be similarly proved if we start with the cellular space $\prod G$ in place of $\prod \mathbb{Z}_k$ and consider the corresponding map φ_{60}^G on $\prod G$, z.
defined by \(\varphi_{60}^G(\{g_i\}) = \{g_{i-1}g_i\} \), \(\{g_i\} \in \prod \mathbb{Z} G \). In fact, the resulting C*-algebra is an inductive limit C*-algebra \(\varprojlim \mathcal{O}_n \) of \(\mathcal{O}_n \) under the inclusion \(i_N : \mathcal{O}_n \to \mathcal{O}_n \times \mathbb{Z} G \cong \mathcal{O}_n \).

REFERENCES

DEPARTMENT OF MATHEMATICS
FACULTY OF ENGINEERING
GUNMA UNIVERSITY
KIRRYU 376
JAPAN