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SOME DENSE BARRELLED SUBSPACES OF o
AND INCOMPLETE ¢-SPACES

F. X. CATALAN and I. TWEDDLE

1. Introduction.

We are concerned with Hausdorff locally convex spaces of countably infinite
dimension whose bounded sets are finite dimensional. Following [ 3] we shall call
such a space a @-space. Let ¢ and w be respectively the direct sum and the
product of ¥, copies of the scalar field K (= R or C). Then any Hausdorff locally
convex space of dimension X, can be regarded as ¢ with dual space H, a o(w, ¢)-
dense subspace of w, and some topology & of the dual pair (¢, H). Clearly ¢(¢) is
a @-space if and only if H(a(H, @)) is barrelled.

In [5] K6the identified a large class of ¢-spaces for which H # w yet ¢ under
the Mackey topology t(¢p, H) is complete. He also posed the question of the
existence of @-spaces ¢(t(¢, H)) which are not complete. An example of such
a space has been given by Gutnik ([3],[4]) and other examples are implicit in
[11],[12],[13, Theorem 2] and [ 14]. (See Section 5.) Adapting a technique used
by Valdivia in [13] we show that by extending the dual space by one dimension
each space in a certain subclass of Kothe’s class can be modified to produce
a @-space which is not complete in the associated Mackey topology. This
subclass includes some spaces which arise naturally in the study of sequence
spaces.

2. Preliminaries.

Let of be a set of subsets of N having the following properties:
i) Us =N;
(ii) o is closed under the formation of finite unions and subsets;
(iii) N ¢
(iv) each infinite subset of N contains an infinite element of /.
By (i) and (ii) the set {x € w: supp x € &/} is a g(w, ¢)-dense subspace of w; we shall
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denote it by w . K6the proved that ¢ is a complete @-space under (¢, @) ([5,
(2) and (9)]).

We shall be concerned with those families .o/ which satisfy the following
additional condition:

(v) given a subset B of N which is not in 7 and a sequence (4,,) of elements of
o/ then there exist finite sets F,, = B\ 4,, (meN) such that | )2, F, ¢ & for
every subsequence (m(r)) of (m).

REMARK. For (v) it is enough to consider increasing sequences (4,,), since by (ii)
we can replace an arbitrary sequence (4,,) in &/ by the sequence (| 7=, 4,). Also
by (ii) we may assume that each set F,, is non-empty.

We will make use of the following simple consequence of (v) below.

LeEMMA. If of satisfies property (V) then there exist pairwise disjoint non-empty
finite subsets G,, of N (me N) such that | )2 | G & o for every subsequence (m(r))
of (m).

Proor. Apply (v) with B =N and 4,, = {1,...,m}, choosing the F, to be
non-empty. Put G; = F; and choose m(l) such that F; € A, Letting
G, = F,4) we have G;nG, =0 and we can find m(2) > m(1) such that
G, U G, € Ay Now put G3 = F,y ;) and continue in this way. The G,, are then
pairwise disjoint and non-empty and the result follows since any subsequence of
(G,,) is a subsequence of (F,,).

To conclude this section we look at three illustrative examples. The first and
second are concerned with general classes .o/ which have found applications in
other situations; our property (v) is satisfied in both.

ExaMpLE 1. Let (p,) be an increasing sequence in N such that p; = 1, p, —» o©
and p,/n — 0. Let o be the set of subsets A of N such that

{ke A:k < n}| £ myp, (neN)
for some constant m, e N. It is easily seen that o/ satisfies properties (i), (i) and
(iii).
Let M be an infinite subset of N and define n(m) inductively by

n(l) = min M,
n(m + 1) = min {ne M :n > n(m),p, = m + 1}.

Put 4 = {n(m):meN}. Thenifn < n(1) we have |{ke A:k < n}| = 0 < p,; other-
wise we can find m such that n(m) < n < n(m + 1) and then

{keAd:k <n}| =[{keA:k < n(m)}| =m = ppm < Pn-
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Thus we have found an infinite element of ./ which is contained in M, showing
that (iv) holds.

Finally to establish (v) let B be a subset of N which is not in .o/ and let (4,,) be
a sequence of elements of /. By (ii) we have that B\ 4,,¢ .o/ (meN). We can
therefore choose a strictly increasing sequence (n(m)) in N such that

(ke B\ Ak < n(m)}] > mpyq.
Then if F,, = {ke B\ 4,,: k < n(m)} we have

|{k€ U Fm(r) . k § n(m(r))}l > m(r)pn(m(r)) (VE N)
r=1

Thus | )2 | Fuei ¢ for every subsequence (m(r)) of (m) and (v) is established.

ReMARK. The spaces w, constructed in this way are precisely the scarce copies
of w. Given a sequence (p,) as above, the corresponding scarce copy of w is the
subspace of w spanned by those x such that

lsuppx) N {L,...,n}| < p, (neN)

and it is easy to show that y belongs to the linear span of such vectors if and only if
suppye «.

Various proofs have been given of the fact that each scarce copy of w is
barrelled. (See for example [1, Theorem 7] or [9, Corollary 3.2].) It is perhaps of
interest to note that the above representation of scarce copies shows that thisisin
fact implicit in Kothe’s paper.

ExaMPLE 2. Let g be a real-valued function on N such that 0 < g(n) < n,
g(n) < g(n + 1)(neN)and g(n) — co. In[12] Valdivia employs such functions to
define certain subspaces of countable products; he is concerned with elements of
support A(< N) satisfying

1

If .o/ denotes the set of all such subsets of N, it is easy to see that .« has properties
(1), (ii) and (iii).

Now let M be an infinite subset of N and for each me N let n(m) be the least
n such that g(n) > (m + 1) Let y,, equal max {ke M :k < n(m)} if this set is
non-empty and min M otherwise. Then A = {y,,: me N} is an infinite subset of
M and if n(m) < n < n(m + 1) we have
1 m+ 1 1

sy ke Ak S nlm + D}l < o = S

—lkedik <)l S
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Since (n(m)) is increasing and tends to infinity, it follows that Ae ./, thus
establishing (iv).

Finally for (v) let B be a subset of N which is not in .« and let (4,,) be any
sequence in «Z. We have

0 <o = limsup——|{keB:k < n}| = limsup——

n-rao () nsoo ()

We can therefore find a strictly increasing subsequence (n(m)) of (n) such that

|{ke B\A,:k < n}| (meN).

1 o
{ke B\A,:k £ n(m)}| > — (meN).
4(n(m) {ke B\ (m)}l > (meN)
Proceeding as in Example 1 we put F,, = {ke B\ 4,,:k < n(m)} and see that
(U2 | Foiry & o for every subsequence (m(r)) of (m) since

lim sup pre )l{ke U Fre 'tk < n}| g%

for any such (m(r)).

REMARK. The extreme case g(n) = n(neN) is of special interest. Here the
elements of .o/ are the subsets of N of density zero: |{ke A:k < n}|/n — 0; the
corresponding w,, is K6the’s space Hy in [5]. Each of the classes ./ considered in
Examples 1 and 2 consists of sets of density zero. It is well known and easily
shown that H, is the union of all the scarce copies of w .

Our final example shows that property (v) is independent of the other proper-
ties required of .«/.

ExaMpLE 3. Let u be a 0-1 measure defined on (N, 2(N)), where 2(N) is the
power set of N, such that u({n}) = 0 for each ne N. Such a measure is finitely but
not countably additive; a simple example is obtained by taking x,e€ FN\N and
putting u(X) = 1if xo eclgyX and 0 otherwise. (Note that two disjoint subsets of
N have disjoint closures in SN.) Now let &/ = {4 = N:pu(A4) = 0}. Properties (i)
and (iii) are obvious and property (ii) is a consequence of the finite additivity of p.
If M is an infinite subset of N and M ¢ .o, partition M into two disjoint infinite
subsets M,, M,. We then have 1 = u(M) = u(M,) + w(M,), from which it follows
that one of M,, M, must be in </, thus establishing (iv).

To see that property (v) does not hold in the present situation assume the
contrary and apply the above Lemma. We then have

) A5 o D)
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which is impossible by the finite additivity of p.

ReEMARK. In Ko6the’s approach the family o7 arises as the set of complements
in N of the elements of a certain type of filter & on N; in particular we may take for
& any ultrafilter on N with empty intersection ([5, pages 380-381 and (10)]).
Example 3 is of this type.

3. The results.

Throughout this section &/ will be an arbitrary set of subsets of N satisfying
properties (V). Let xoew\w, and let G be the linear span of {x,} LU w,. It
follows from the above discussion that G is a dense barrelled subspace of w and
therefore the o(¢p, G)-bounded sets are finite dimensional. However we have:

PROPOSITION 1. ¢ is not complete under (¢, G).

ProOOF. By construction w,, is a dense hyperplane in G. We show that for each
a(G, p)-compact absolutely convex set C the intersection C N w, is o(G, ¢)-
closed. The result will then follow from Grothendieck’s completeness criterion.
(See for example [7, page 107 Corollary 2]).

Suppose there is a non-empty o(G, @)-compact absolutely convex set C such
that C n w is not (G, ¢)-closed. Then we can find x = (£,)e C\w, and x,, =
(E™e C nw,, such that x, — x. Apply property (v) (and its accompanying
Remark) with B = supp x and 4,, = | )/, supp x, to get non-empty finite sets

< B\ A4,, such that U,‘"; 1 Fngn § o for every subsequence (m(r)) of (m).

Now choose a subsequence (m(r)) of (m) such that m(1) = 1 and

1
g — & | < Elénl (n€ Fpg),reN).
This is possible since x,, — x componentwise and F,,,, < supp x. We then have
1 (m(r+ 1)) 3
M '2—|é‘nl <<y | < Elénl (n€ Fugy,r€N).

Since the set {E™* ;e N} is bounded for each n, we can choose a, € (0, 1] such
that

d 1 1
(2) oy Z 23(5_,-) |€$.m(s+ 1»l < Zlénl (nEFm(r)a re N)
s=r+1

Put a, = 1 and consider

Z— Cn)" Z (l:[ )233 2xm(s+1)

s=1
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The coefficients are positive and

o /s—1 1 0 1
0< 3 (Ta)pres 5 prr<t

s=1 \t=0

Thus since C is absolutely convex and o(G, ¢)-compact, we deduce that ze C.
Further if ne F,,, we have

s—1 1
=15, (T o) s
s=1

t

o [/s—1 1
Z (H cx,) 733 |EGm ) (since Fryy O SUPP X = 0 if m < m(r))

o0

.
—od 1
§ 1—2[;—2‘ <'€§'m(r+1))| + o, E: 23(s 5 |§(m(s+1))|>

ria, (3 1
< [L,Bf‘ (3@.! +Z'¢"'> (by (1) and (2))
r—1
o,

23r—3

<

and

> [I2d (m(r + 1)) - 1 (m(s+1))
Cal 2 S3r-2 1 [—o ) 53_(5———,-T|§n |

s=r+1

r;la 1 1 r;la
> L (e - o) = Tt > o

23r—2 23r

Thus we have

16l (ﬂz oo [Ii= 0“’):1, (n€Fpg), reN)

'énl 23r 4 23r 3

and I, n I, =@ if r + 5. Also z¢ w, since suppz 2 | J;2; Fup ¢ .

We can now write x = A;x, + u and z = 4,x, + v for some non-zero scalars
A1, Ayand u,vewy. Then z — A,A] ' xew,,. However |A,A; | can lie in at most
one interval I, and so {, — 4,A; 1&, = 0 for only finitely many ne U,“°=1 Fry-
Thus supp(z — 4,4, ' x) ¢ o/, which is a contradiction.

REMARKS. (i) The above proof was inspired by ideas used by Valdivia in [13],
especially Part 4 of the proof of Theorem 2.

(i) Since the dual E’ of an ultrabornological space E is necessarily t(E’, E)-
complete ([6, Corollary 6.1.25]), it follows from the Proposition that G is not
ultrabornological under t(G, ¢)(=0(G, ¢)). However w 4(t(w,, @) is ultrabor-
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nological. This does not depend on property (v) and may be established by
showing as in [5,(9)] that any linear functional on w_ which is bounded on the
o(w, p)-compact absolutely convex sets is continuous ([6, Proposition 6.1.9
and Lemma 6.1.22]).

The topology (¢, G) in Proposition 1 is in fact sup (t(@, wy), (@, G)). To see
this note that by [ 10, Lemma and Corollary 1] ¢ is not complete under the latter
topology, 1 say, and it is topologically isomorphic to a one-codimensional dense
subspace of the complete space p(t(p, wy)) x K. Thus ¢ has codimension 1 in its
n-completion and the extended topology # on the completion is a Mackey
topology. Now the (¢, G)-completion of ¢ must be contained in the #-comple-
tion since (¢, G) and 5 are topologies of the same dual pair with # coarser than
(e, G) ([7, page 105 Proposition 3]). The two completions must therefore
coincide algebraically and topologically and consequently n = (¢, G) The fol-
lowing result is now immediate.

COROLLARY. If C is a t(¢p, G)-equicontinuous set then there is a o(w, Q)
compact absolutely convex set D and r > 0 such that C = D + {Axq:|4| £ r}.

ReMARK. The Corollary may also be extracted from [2, Proposition 3.2].

To complete the description of the sets identified in the Corollary we note the
following result, which is not unexpected.

PROPOSITION 2. Let C be a (w4, ¢)-compact convex set. Then supp C € .

ProoOF. Suppose supp C¢.«/. Since C is separable we can choose x, =
(£i)e C such that | )57 ; supp x,, = supp C. Now apply property (v) with B =
suppC, A; =0 and A4,, = | )" 'suppx, (m = 2) to get non-empty finite sets
F,, = B\ A,, such that ( J;2, F,, ¢ o for every subsequence (m(r)) of (m).

It is easily seen that if F is any non-empty finite subset of N and F <
Uﬁ -1 supp z, where z,ew (r = 1,...,s) then there is a convex combination of
zy,...,2 Which contains F in its support. Thus we can determine a strictly
increasing sequence (m(r)) of positive integers and elements y, = (y")e C such
that m(l)=1, F,, Ssuppy, and y, is a convex combination of
Xmiey+ « « s Xmee+ 1)1 (r€N). We note that n) = 0if ne F, and r < t.

Now put

Ml = 0, Mr = max {l”lmine U FM(S)} (r g 2),
s=1

po = 1, b, = min(L,min{|n,’|:n€ Fiy}) (r 2 1)

© r—1
S__ Z HS‘:O”S

- § A 7A)
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and let

PN - [I526
y '_("n) - S rgl 2,1’1;:1(1 + Ms) yr-

Then ye C and if ne F,,, we have

- |y o)
Il =15 LT+ ) ™|

t—1 ©
b i I ,
> [I:=o (Inf,"l— Y, ——‘—Inh’l)

- 2tSH;=l(1 + Ms) r=t+1 2r—t(1 + Mr)
[Ti=6 a4
2ST-: (1L + M)

Thus supp y 2 (J;2 | Fuy> Which is not in <. This is a contradiction.

>

(] — p) 2 0.

COROLLARY. A subset X of w. is t©(@,w)-equicontinuous if and only if
supp X € o and for eachme N theset {£,,: x = (£,) € X} is abounded set of scalars.

PrOOF. An equicontinuous set must have its weakly closed convex envelope
weakly compact. The Proposition therefore shows that the conditions are necess-
ary.

If X satisfies the given conditions then its o(w, ¢)-closed convex envelope C is
a(w, p)-compact and since supp C = supp X we have that C < w,,. Thus C and
therefore also X are 7(¢, w4)-equicontinuous.

4. Incomplete quotients.

In [5,(15) and top of page 384] Kothe discusses the existence of incomplete
quotients and shows in particular that ¢(z(@, Hy)) has such a quotient. K&the’s
proof applies to all the spaces ¢(7(¢, w)) where o satisfies property (v) or, more
generally, the assertion of the Lemma (for example, if .7 has no element of density
1 ([5, top of page 384])). Let (G,,) be a sequence of non-empty pairwise disjoint
finite subsets of N such that Uf‘; 1 G € o for every subsequence (m(r)) of (m)
and put a,, = (™) where o™ is 1 if ne G,, and 0 otherwise. Let G be the linear
span of the a,,. [t is easily seen that the o(w, ¢)-closure of G consists of all elements
of the form Y %_, A,a,, that is, those elements (,) such that ¢, = 4, if neG,,
(meN)and ¢, = 0ifné ()2 | G, where (4,,) is an arbitrary scalar sequence. The
support of such an element is { J{G,,: 4, + 0} and so the element is in v if and
only if 4,, = Ofor all but finitely many m. It now follows that G is o(w 4, ¢)-closed
and that any o(w,, @)-compact absolutely convex set which is contained in
G must be finite dimensional. (If the latter assertion were false we could adapt the
method of Proposition 2 to construct an element in the set with non-zero
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components on infinitely many G,,.) The quotient topology on ¢/G° defined by
1(p, ) is therefore a weak topology and since the dual space is G, which is
infinite dimensional, this quotient cannot be complete.

5. Concluding remarks.

The completion of each of the ¢-spaces ¢(t(¢, G)) considered in Section 3 is again
a @-space but @-spaces whose Mackey completions are not ¢-spaces do exist. An
example of such a space was announced by Gutnik in [3].

A simpler example may be deduced from [11] or [14], either of which implies
that w has a dense hyperplane H containing no infinite dimensional Banach disk.
Since 1(¢p, H) and o(¢p, H) must then coincide, we have that ¢(z(¢p, H))is a ¢-space
whose completion, namely the algebraic dual H* under o(H*, H), is not
a @-space. A further example is provided by the space ¢(z(¢, {/)), where  is the
dense barrelled subspace of w constructed in [12]; the bounded subsets of iy have
dimension at most N, and therefore any Banach disk in {y must be finite
dimensional. Versions of iy which do not depend upon the Continuum Hypoth-
esis (applied in [12]) have recently been given by Saxon and Sanchez Ruiz ([8]).

ACKNOWLEDGEMENT. The second author is most grateful to L. A. Gutnik for
providing him with a copy of [4], which contains the details of his elegant
construction and a wealth of other material on @-spaces.
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