SOME DENSE BARRELLED SUBSPACES OF ω AND INCOMPLETE φ -SPACES

F. X. CATALAN and I. TWEDDLE

1. Introduction.

We are concerned with Hausdorff locally convex spaces of countably infinite dimension whose bounded sets are finite dimensional. Following [3] we shall call such a space a φ -space. Let φ and ω be respectively the direct sum and the product of \aleph_0 copies of the scalar field K (= R or C). Then any Hausdorff locally convex space of dimension \aleph_0 can be regarded as φ with dual space H, a $\sigma(\omega, \varphi)$ -dense subspace of ω , and some topology ξ of the dual pair (φ, H) . Clearly $\varphi(\xi)$ is a φ -space if and only if $H(\sigma(H, \varphi))$ is barrelled.

In [5] Köthe identified a large class of φ -spaces for which $H \neq \omega$ yet φ under the Mackey topology $\tau(\varphi, H)$ is complete. He also posed the question of the existence of φ -spaces $\varphi(\tau(\varphi, H))$ which are not complete. An example of such a space has been given by Gutnik ([3], [4]) and other examples are implicit in [11], [12], [13, Theorem 2] and [14]. (See Section 5.) Adapting a technique used by Valdivia in [13] we show that by extending the dual space by one dimension each space in a certain subclass of Köthe's class can be modified to produce a φ -space which is not complete in the associated Mackey topology. This subclass includes some spaces which arise naturally in the study of sequence spaces.

2. Preliminaries.

Let \mathcal{A} be a set of subsets of N having the following properties:

- (i) $\bigcup \mathscr{A} = N$;
- (ii) A is closed under the formation of finite unions and subsets;
- (iii) **N** ∉ 𝒜;
- (iv) each infinite subset of N contains an infinite element of \mathcal{A} .

By (i) and (ii) the set $\{x \in \omega : \text{supp } x \in \mathcal{A}\}\$ is a $\sigma(\omega, \varphi)$ -dense subspace of ω ; we shall

Received July 23, 1993.

denote it by $\omega_{\mathscr{A}}$. Köthe proved that φ is a complete φ -space under $\tau(\varphi, \omega_{\mathscr{A}})$ ([5, (2) and (9)]).

We shall be concerned with those families \mathscr{A} which satisfy the following additional condition:

(v) given a subset B of N which is not in \mathscr{A} and a sequence (A_m) of elements of \mathscr{A} then there exist finite sets $F_m \subseteq B \setminus A_m$ $(m \in \mathbb{N})$ such that $\bigcup_{r=1}^{\infty} F_{m(r)} \notin \mathscr{A}$ for every subsequence (m(r)) of (m).

REMARK. For (v) it is enough to consider increasing sequences (A_m) , since by (ii) we can replace an arbitrary sequence (A_m) in $\mathscr A$ by the sequence $(\bigcup_{r=1}^m A_r)$. Also by (ii) we may assume that each set F_m is non-empty.

We will make use of the following simple consequence of (v) below.

LEMMA. If \mathscr{A} satisfies property (v) then there exist pairwise disjoint non-empty finite subsets G_m of \mathbb{N} ($m \in \mathbb{N}$) such that $\bigcup_{r=1}^{\infty} G_{m(r)} \notin \mathscr{A}$ for every subsequence (m(r)) of (m).

PROOF. Apply (v) with $B = \mathbb{N}$ and $A_m = \{1, \dots, m\}$, choosing the F_m to be non-empty. Put $G_1 = F_1$ and choose m(1) such that $F_1 \subseteq A_{m(1)}$. Letting $G_2 = F_{m(1)}$ we have $G_1 \cap G_2 = \emptyset$ and we can find m(2) > m(1) such that $G_1 \cup G_2 \subseteq A_{m(2)}$. Now put $G_3 = F_{m(2)}$ and continue in this way. The G_m are then pairwise disjoint and non-empty and the result follows since any subsequence of (G_m) is a subsequence of (F_m) .

To conclude this section we look at three illustrative examples. The first and second are concerned with general classes \mathcal{A} which have found applications in other situations; our property (v) is satisfied in both.

EXAMPLE 1. Let (ρ_n) be an increasing sequence in N such that $\rho_1 = 1$, $\rho_n \to \infty$ and $\rho_n/n \to 0$. Let \mathscr{A} be the set of subsets A of N such that

$$|\{k \in A : k \le n\}| \le m_A \rho_n \ (n \in \mathbb{N})$$

for some constant $m_A \in \mathbb{N}$. It is easily seen that \mathscr{A} satisfies properties (i), (ii) and (iii).

Let M be an infinite subset of \mathbb{N} and define n(m) inductively by

$$n(1) = \min M,$$

 $n(m+1) = \min \{n \in M : n > n(m), \rho_n \ge m+1\}.$

Put $A = \{n(m) : m \in \mathbb{N}\}$. Then if n < n(1) we have $|\{k \in A : k \le n\}| = 0 < \rho_n$; otherwise we can find m such that $n(m) \le n < n(m+1)$ and then

$$|\{k \in A : k \le n\}| = |\{k \in A : k \le n(m)\}| = m \le \rho_{n(m)} \le \rho_n$$

Thus we have found an infinite element of \mathcal{A} which is contained in M, showing that (iv) holds.

Finally to establish (v) let B be a subset of N which is not in \mathscr{A} and let (A_m) be a sequence of elements of \mathscr{A} . By (ii) we have that $B \setminus A_m \notin \mathscr{A} (m \in \mathbb{N})$. We can therefore choose a strictly increasing sequence (n(m)) in N such that

$$|\{k \in B \setminus A_m : k \leq n(m)\}| > m\rho_{n(m)}.$$

Then if $F_m = \{k \in B \setminus A_m : k \le n(m)\}$ we have

$$|\{k \in \bigcup_{r=1}^{\infty} F_{m(r)} : k \leq n(m(r))\}| > m(r)\rho_{n(m(r))} \quad (r \in \mathbb{N}).$$

Thus $\bigcup_{r=1}^{\infty} F_{m(r)} \notin \mathcal{A}$ for every subsequence (m(r)) of (m) and (v) is established.

REMARK. The spaces $\omega_{\mathscr{A}}$ constructed in this way are precisely the scarce copies of ω . Given a sequence (ρ_n) as above, the corresponding scarce copy of ω is the subspace of ω spanned by those x such that

$$|(\operatorname{supp} x) \cap \{1, \dots, n\}| \leq \rho_n \ (n \in \mathbb{N})$$

and it is easy to show that y belongs to the linear span of such vectors if and only if supp $y \in \mathcal{A}$.

Various proofs have been given of the fact that each scarce copy of ω is barrelled. (See for example [1, Theorem 7] or [9, Corollary 3.2].) It is perhaps of interest to note that the above representation of scarce copies shows that this is in fact implicit in Köthe's paper.

EXAMPLE 2. Let g be a real-valued function on N such that $0 < g(n) \le n$, $g(n) \le g(n+1)$ ($n \in \mathbb{N}$) and $g(n) \to \infty$. In [12] Valdivia employs such functions to define certain subspaces of countable products; he is concerned with elements of support $A \subseteq \mathbb{N}$) satisfying

$$\frac{1}{g(n)}|\{k\in A:k\leq n\}|\to 0.$$

If \mathscr{A} denotes the set of all such subsets of N, it is easy to see that \mathscr{A} has properties (i), (ii) and (iii).

Now let M be an infinite subset of \mathbb{N} and for each $m \in \mathbb{N}$ let n(m) be the least n such that $g(n) > (m+1)^2$. Let y_m equal max $\{k \in M : k \le n(m)\}$ if this set is non-empty and min M otherwise. Then $A = \{y_m : m \in \mathbb{N}\}$ is an infinite subset of M and if $n(m) \le n \le n(m+1)$ we have

$$\frac{1}{g(n)}|\{k \in A : k \le n\}| \le \frac{1}{g(n(m))}|\{k \in A : k \le n(m+1)\}| < \frac{m+1}{(m+1)^2} = \frac{1}{m+1}.$$

Since (n(m)) is increasing and tends to infinity, it follows that $A \in \mathcal{A}$, thus establishing (iv).

Finally for (v) let B be a subset of N which is not in $\mathscr A$ and let (A_m) be any sequence in $\mathscr A$. We have

$$0 < \alpha = \limsup_{n \to \infty} \frac{1}{g(n)} |\{k \in B : k \le n\}| = \limsup_{n \to \infty} \frac{1}{g(n)} |\{k \in B \setminus A_m : k \le n\}| \quad (m \in \mathbb{N}).$$

We can therefore find a strictly increasing subsequence (n(m)) of (n) such that

$$\frac{1}{g(n(m))}|\{k\in B\setminus A_m:k\leq n(m)\}|>\frac{\alpha}{2}\ (m\in\mathbb{N}).$$

Proceeding as in Example 1 we put $F_m = \{k \in B \setminus A_m : k \le n(m)\}$ and see that $\bigcup_{r=1}^{\infty} F_{m(r)} \notin \mathscr{A}$ for every subsequence (m(r)) of (m) since

$$\limsup_{n\to\infty} \frac{1}{g(n)} |\{k \in \bigcup_{r=1}^{\infty} F_{m(r)} : k \le n\}| \ge \frac{\alpha}{2}$$

for any such (m(r)).

REMARK. The extreme case $g(n) = n \, (n \in \mathbb{N})$ is of special interest. Here the elements of \mathscr{A} are the subsets of \mathbb{N} of density zero: $|\{k \in A : k \le n\}|/n \to 0$; the corresponding $\omega_{\mathscr{A}}$ is Köthe's space H_0 in [5]. Each of the classes \mathscr{A} considered in Examples 1 and 2 consists of sets of density zero. It is well known and easily shown that H_0 is the union of all the scarce copies of $\omega_{\mathscr{A}}$.

Our final example shows that property (v) is independent of the other properties required of \mathcal{A} .

EXAMPLE 3. Let μ be a 0-1 measure defined on $(N, \mathcal{P}(N))$, where $\mathcal{P}(N)$ is the power set of N, such that $\mu(\{n\}) = 0$ for each $n \in N$. Such a measure is finitely but not countably additive; a simple example is obtained by taking $x_0 \in \beta N \setminus N$ and putting $\mu(X) = 1$ if $x_0 \in \operatorname{cl}_{\beta N} X$ and 0 otherwise. (Note that two disjoint subsets of N have disjoint closures in βN .) Now let $\mathscr{A} = \{A \subseteq N : \mu(A) = 0\}$. Properties (i) and (iii) are obvious and property (ii) is a consequence of the finite additivity of μ . If M is an infinite subset of N and $M \notin \mathscr{A}$, partition M into two disjoint infinite subsets M_1, M_2 . We then have $1 = \mu(M) = \mu(M_1) + \mu(M_2)$, from which it follows that one of M_1, M_2 must be in \mathscr{A} , thus establishing (iv).

To see that property (v) does not hold in the present situation assume the contrary and apply the above Lemma. We then have

$$1 = \mu \left(\bigcup_{m=1}^{\infty} G_m \right) = \mu \left(\bigcup_{r=1}^{\infty} G_{2r} \right) = \mu \left(\bigcup_{r=1}^{\infty} G_{2r-1} \right),$$

which is impossible by the finite additivity of μ .

REMARK. In Köthe's approach the family \mathscr{A} arises as the set of complements in N of the elements of a certain type of filter \mathscr{F} on N; in particular we may take for \mathscr{F} any ultrafilter on N with empty intersection ([5, pages 380–381 and (10)]). Example 3 is of this type.

3. The results.

Throughout this section \mathscr{A} will be an arbitrary set of subsets of N satisfying properties (i)–(v). Let $x_0 \in \omega \setminus \omega_{\mathscr{A}}$ and let G be the linear span of $\{x_0\} \cup \omega_{\mathscr{A}}$. It follows from the above discussion that G is a dense barrelled subspace of ω and therefore the $\sigma(\varphi, G)$ -bounded sets are finite dimensional. However we have:

PROPOSITION 1. φ is not complete under $\tau(\varphi, G)$.

PROOF. By construction $\omega_{\mathscr{A}}$ is a dense hyperplane in G. We show that for each $\sigma(G, \varphi)$ -compact absolutely convex set G the intersection $G \cap \omega_{\mathscr{A}}$ is $\sigma(G, \varphi)$ -closed. The result will then follow from Grothendieck's completeness criterion. (See for example [7, page 107 Corollary 2]).

Suppose there is a non-empty $\sigma(G, \varphi)$ -compact absolutely convex set C such that $C \cap \omega_{\mathscr{A}}$ is not $\sigma(G, \varphi)$ -closed. Then we can find $x = (\xi_n) \in C \setminus \omega_{\mathscr{A}}$ and $x_m = (\xi_n^{(m)}) \in C \cap \omega_{\mathscr{A}}$ such that $x_m \to x$. Apply property (v) (and its accompanying Remark) with B = supp x and $A_m = \bigcup_{r=1}^m \text{supp } x_r$ to get non-empty finite sets $F_m \subseteq B \setminus A_m$ such that $\bigcup_{r=1}^\infty F_{m(r)} \notin \mathscr{A}$ for every subsequence (m(r)) of (m).

Now choose a subsequence (m(r)) of (m) such that m(1) = 1 and

$$|\xi_n^{(m(r+1))} - \xi_n| < \frac{1}{2} |\xi_n| \ (n \in F_{m(r)}, r \in \mathbb{N}).$$

This is possible since $x_m \to x$ componentwise and $F_{m(r)} \subseteq \text{supp } x$. We then have

(1)
$$\frac{1}{2}|\xi_n| < |\xi_n^{(m(r+1))}| < \frac{3}{2}|\xi_n| \quad (n \in F_{m(r)}, r \in \mathbb{N}).$$

Since the set $\{\xi_n^{(m(r+1))}: r \in \mathbb{N}\}$ is bounded for each n, we can choose $\alpha_r \in (0, 1]$ such that

(2)
$$\alpha_r \sum_{s=r+1}^{\infty} \frac{1}{2^{3(s-r)}} |\xi_n^{(m(s+1))}| < \frac{1}{4} |\xi_n| \ (n \in F_{m(r)}, r \in \mathbb{N}).$$

Put $\alpha_0 = 1$ and consider

$$z = (\zeta_n) = \sum_{s=1}^{\infty} \left(\prod_{t=0}^{s-1} \alpha_t \right) \frac{1}{2^{3s-2}} x_{m(s+1)}.$$

The coefficients are positive and

$$0 < \sum_{s=1}^{\infty} \left(\prod_{t=0}^{s-1} \alpha_t \right) \frac{1}{2^{3s-2}} \le \sum_{s=1}^{\infty} \frac{1}{2^{3s-2}} < 1.$$

Thus since C is absolutely convex and $\sigma(G, \varphi)$ -compact, we deduce that $z \in C$. Further if $n \in F_{m(r)}$ we have

$$\begin{aligned} |\zeta_{n}| &= |\sum_{s=1}^{\infty} \left(\prod_{t=0}^{s-1} \alpha_{t} \right) \frac{1}{2^{3s-2}} \, \xi_{n}^{(m(s+1))}| \\ &\leq \sum_{s=r}^{\infty} \left(\prod_{t=0}^{s-1} \alpha_{t} \right) \frac{1}{2^{3s-2}} |\xi_{n}^{(m(s+1))}| \, \left(\text{since } F_{m(r)} \cap \text{supp } x_{m} = \emptyset \text{ if } m \leq m(r) \right) \\ &\leq \frac{\prod_{t=0}^{r-1} \alpha_{t}}{2^{3r-2}} \left(|\xi_{n}^{(m(r+1))}| + \alpha_{r} \sum_{s=r+1}^{\infty} \frac{1}{2^{3(s-r)}} |\xi_{n}^{(m(s+1))}| \right) \\ &< \frac{\prod_{t=0}^{r-1} \alpha_{t}}{2^{3r-2}} \left(\frac{3}{2} |\xi_{n}| + \frac{1}{4} |\xi_{n}| \right) \, \left(\text{by (1) and (2)} \right) \\ &< \frac{\prod_{t=0}^{r-1} \alpha_{t}}{2^{3r-3}} |\xi_{n}| \end{aligned}$$

and

$$\begin{split} |\zeta_n| & \geq \frac{\prod_{t=0}^{r-1} \alpha_t}{2^{3r-2}} \bigg(|\xi_n^{(m(r+1))}| - \alpha_r \sum_{s=r+1}^{\infty} \frac{1}{2^{3(s-r)}} |\xi_n^{(m(s+1))}| \bigg) \\ & > \frac{\prod_{t=0}^{r-1} \alpha_t}{2^{3r-2}} \bigg(\frac{1}{2} \, |\xi_n| - \frac{1}{4} \, |\xi_n| \bigg) = \frac{\prod_{t=0}^{r-1} \alpha_t}{2^{3r}} |\xi_n| > 0. \end{split}$$

Thus we have

$$\frac{|\zeta_n|}{|\xi_n|} \in \left(\frac{\prod_{t=0}^{r-1} \alpha_t}{2^{3r}}, \frac{\prod_{t=0}^{r-1} \alpha_t}{2^{3r-3}}\right) = I_r \ (n \in F_{m(r)}, r \in \mathbb{N})$$

and $I_r \cap I_s = \emptyset$ if $r \neq s$. Also $z \notin \omega_{\mathscr{A}}$ since supp $z \supseteq \bigcup_{r=1}^{\infty} F_{m(r)} \notin \mathscr{A}$.

We can now write $x = \lambda_1 x_0 + u$ and $z = \lambda_2 x_0 + v$ for some non-zero scalars λ_1 , λ_2 and $u, v \in \omega_{\mathscr{A}}$. Then $z - \lambda_2 \lambda_1^{-1} x \in \omega_{\mathscr{A}}$. However $|\lambda_2 \lambda_1^{-1}|$ can lie in at most one interval I_r and so $\zeta_n - \lambda_2 \lambda_1^{-1} \zeta_n = 0$ for only finitely many $n \in \bigcup_{r=1}^{\infty} F_{m(r)}$. Thus supp $(z - \lambda_2 \lambda_1^{-1} x) \notin \mathscr{A}$, which is a contradiction.

REMARKS. (i) The above proof was inspired by ideas used by Valdivia in [13], especially Part 4 of the proof of Theorem 2.

(ii) Since the dual E' of an ultrabornological space E is necessarily $\tau(E', E)$ complete ([6, Corollary 6.1.25]), it follows from the Proposition that G is not
ultrabornological under $\tau(G, \varphi) (= \sigma(G, \varphi))$. However $\omega_{\mathscr{A}}(\tau(\omega_{\mathscr{A}}, \varphi))$ is ultrabor-

nological. This does not depend on property (v) and may be established by showing as in [5,(9)] that any linear functional on $\omega_{\mathscr{A}}$ which is bounded on the $\sigma(\omega_{\mathscr{A}}, \varphi)$ -compact absolutely convex sets is continuous ([6, Proposition 6.1.9 and Lemma 6.1.22]).

The topology $\tau(\varphi, G)$ in Proposition 1 is in fact $\sup(\tau(\varphi, \omega_{\mathscr{A}}), \sigma(\varphi, G))$. To see this note that by [10, Lemma and Corollary 1] φ is not complete under the latter topology, η say, and it is topologically isomorphic to a one-codimensional dense subspace of the complete space $\varphi(\tau(\varphi, \omega_{\mathscr{A}})) \times K$. Thus φ has codimension 1 in its η -completion and the extended topology $\hat{\eta}$ on the completion is a Mackey topology. Now the $\tau(\varphi, G)$ -completion of φ must be contained in the η -completion since $\tau(\varphi, G)$ and η are topologies of the same dual pair with η coarser than $\tau(\varphi, G)$ ([7, page 105 Proposition 3]). The two completions must therefore coincide algebraically and topologically and consequently $\eta = \tau(\varphi, G)$ The following result is now immediate.

COROLLARY. If C is a $\tau(\varphi, G)$ -equicontinuous set then there is a $\sigma(\omega_{\mathscr{A}}, \varphi)$ -compact absolutely convex set D and r > 0 such that $C \subseteq D + \{\lambda x_0 : |\lambda| \le r\}$.

REMARK. The Corollary may also be extracted from [2, Proposition 3.2].

To complete the description of the sets identified in the Corollary we note the following result, which is not unexpected.

PROPOSITION 2. Let C be a $\sigma(\omega_{\mathscr{A}}, \varphi)$ -compact convex set. Then supp $C \in \mathscr{A}$.

PROOF. Suppose supp $C \notin \mathcal{A}$. Since C is separable we can choose $x_m = (\xi_n^{(m)}) \in C$ such that $\bigcup_{m=1}^{\infty} \operatorname{supp} x_m = \operatorname{supp} C$. Now apply property (v) with $B = \operatorname{supp} C$, $A_1 = \emptyset$ and $A_m = \bigcup_{r=1}^{m-1} \operatorname{supp} x_r$ ($m \ge 2$) to get non-empty finite sets $F_m \subseteq B \setminus A_m$ such that $\bigcup_{r=1}^{\infty} F_{m(r)} \notin \mathcal{A}$ for every subsequence (m(r)) of (m).

It is easily seen that if F is any non-empty finite subset of \mathbb{N} and $F \subseteq \bigcup_{r=1}^{s} \operatorname{supp} z_r$ where $z_r \in \omega$ $(r=1,\ldots,s)$ then there is a convex combination of z_1,\ldots,z_s which contains F in its support. Thus we can determine a strictly increasing sequence (m(r)) of positive integers and elements $y_r = (\eta_n^{(r)}) \in C$ such that m(1) = 1, $F_{m(r)} \subseteq \operatorname{supp} y_r$ and y_r is a convex combination of $x_{m(r)},\ldots,x_{m(r+1)-1}$ $(r \in \mathbb{N})$. We note that $\eta_n^{(r)} = 0$ if $n \in F_{m(t)}$ and r < t.

Now put

$$M_{1} = 0, M_{r} = \max \{ |\eta_{n}^{(r)}| : n \in \bigcup_{s=1}^{r} F_{m(s)} \} \ (r \ge 2),$$

$$\mu_{0} = 1, \mu_{r} = \min (1, \min \{ |\eta_{n}^{(r)}| : n \in F_{m(r)} \}) \ (r \ge 1)$$

$$S = \sum_{r=1}^{\infty} \frac{\prod_{s=0}^{r-1} \mu_{s}}{2^{r} \prod_{s=1}^{r} (1 + M_{s})}$$

and let

$$y = (\eta_n) = \frac{1}{S} \sum_{r=1}^{\infty} \frac{\prod_{s=0}^{r-1} \mu_s}{2^r \prod_{s=1}^r (1 + M_s)} y_r.$$

Then $y \in C$ and if $n \in F_{m(t)}$ we have

$$\begin{split} |\eta_n| &= \left| \frac{1}{S} \sum_{r=t}^{\infty} \frac{\prod_{s=0}^{r-1} \mu_s}{2^r \prod_{s=1}^{r-1} (1+M_s)} \eta_n^{(r)} \right|. \\ &\geq \frac{\prod_{s=0}^{t-1} \mu_s}{2^t S \prod_{s=1}^{t} (1+M_s)} \left(|\eta_n^{(t)}| - \sum_{r=t+1}^{\infty} \frac{\mu_t}{2^{r-t} (1+M_r)} |\eta_n^{(r)}| \right) \\ &> \frac{\prod_{s=0}^{t-1} \mu_s}{2^t S \prod_{s=1}^{t} (1+M_s)} (|\eta_n^{(t)}| - \mu_t) \geq 0. \end{split}$$

Thus supp $y \supseteq \bigcup_{r=1}^{\infty} F_{m(r)}$, which is not in \mathscr{A} . This is a contradiction.

COROLLARY. A subset X of $\omega_{\mathscr{A}}$ is $\tau(\varphi, \omega_{\mathscr{A}})$ -equicontinuous if and only if $\operatorname{supp} X \in \mathscr{A}$ and for each $m \in \mathbb{N}$ the set $\{\xi_m : x = (\xi_n) \in X\}$ is a bounded set of scalars.

PROOF. An equicontinuous set must have its weakly closed convex envelope weakly compact. The Proposition therefore shows that the conditions are necessary.

If X satisfies the given conditions then its $\sigma(\omega, \varphi)$ -closed convex envelope C is $\sigma(\omega, \varphi)$ -compact and since supp C = supp X we have that $C \subseteq \omega_{\mathscr{A}}$. Thus C and therefore also X are $\tau(\varphi, \omega_{\mathscr{A}})$ -equicontinuous.

4. Incomplete quotients.

In [5,(15) and top of page 384] Köthe discusses the existence of incomplete quotients and shows in particular that $\varphi(\tau(\varphi, H_0))$ has such a quotient. Köthe's proof applies to all the spaces $\varphi(\tau(\varphi, \omega_{\mathscr{A}}))$ where \mathscr{A} satisfies property (v) or, more generally, the assertion of the Lemma (for example, if \mathscr{A} has no element of density 1 ([5, top of page 384])). Let (G_m) be a sequence of non-empty pairwise disjoint finite subsets of N such that $\bigcup_{r=1}^{\infty} G_{m(r)} \notin \mathscr{A}$ for every subsequence (m(r)) of (m) and put $a_m = (\alpha_n^{(m)})$ where $\alpha_n^{(m)}$ is 1 if $n \in G_m$ and 0 otherwise. Let G be the linear span of the a_m . It is easily seen that the $\sigma(\omega, \varphi)$ -closure of G consists of all elements of the form $\sum_{m=1}^{\infty} \lambda_m a_m$, that is, those elements (ξ_n) such that $\xi_n = \lambda_m$ if $n \in G_m$ $(m \in \mathbb{N})$ and $\xi_n = 0$ if $n \notin \bigcup_{m=1}^{\infty} G_m$, where (λ_m) is an arbitrary scalar sequence. The support of such an element is $\bigcup \{G_m : \lambda_m \neq 0\}$ and so the element is in $\omega_{\mathscr{A}}$ if and only if $\lambda_m = 0$ for all but finitely many m. It now follows that G is $\sigma(\omega_{\mathscr{A}}, \varphi)$ -closed and that any $\sigma(\omega_{\mathscr{A}}, \varphi)$ -compact absolutely convex set which is contained in G must be finite dimensional. (If the latter assertion were false we could adapt the method of Proposition 2 to construct an element in the set with non-zero

components on infinitely many G_m .) The quotient topology on φ/G° defined by $\tau(\varphi, \omega_{\mathscr{A}})$ is therefore a weak topology and since the dual space is G, which is infinite dimensional, this quotient cannot be complete.

5. Concluding remarks.

The completion of each of the φ -spaces $\varphi(\tau(\varphi, G))$ considered in Section 3 is again a φ -space but φ -spaces whose Mackey completions are not φ -spaces do exist. An example of such a space was announced by Gutnik in [3].

A simpler example may be deduced from [11] or [14], either of which implies that ω has a dense hyperplane H containing no infinite dimensional Banach disk. Since $\tau(\varphi, H)$ and $\sigma(\varphi, H)$ must then coincide, we have that $\varphi(\tau(\varphi, H))$ is a φ -space whose completion, namely the algebraic dual H^* under $\sigma(H^*, H)$, is not a φ -space. A further example is provided by the space $\varphi(\tau(\varphi, \psi))$, where ψ is the dense barrelled subspace of ω constructed in [12]; the bounded subsets of ψ have dimension at most \aleph_0 and therefore any Banach disk in ψ must be finite dimensional. Versions of ψ which do not depend upon the Continuum Hypothesis (applied in [12]) have recently been given by Saxon and Sánchez Ruiz ([8]).

ACKNOWLEDGEMENT. The second author is most grateful to L. A. Gutnik for providing him with a copy of [4], which contains the details of his elegant construction and a wealth of other material on φ -spaces.

REFERENCES

- 1. G. Bennett, Some inclusion theorems for sequence spaces, Pacific J. Math. 46(1973), 17-30.
- M. De Wilde and B. Tsirulnikov, Barrelledness and the supremum of two locally convex topologies, Math. Ann. 246(1979/80), 241–248.
- 3. L. A. Gutnik, On locally convex spaces that do not have infinite dimensional bounded sets (Russian), Uspekhi Mat. Nauk 32(1977), 251-252.
- L. A. Gutnik, On locally convex spaces that do not have infinite dimensional bounded sets (Russian), Moscow, 1989.
- G. Köthe, Vollständige lokalkonvexe Räume abzählbarer Dimension, Arch. Math. 13(1962), 377–384.
- P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, Math. Studies 131, North Holland, 1987.
- A. P. Robertson and W. J. Robertson, Topological Vector Spaces (Second Edition), Cambridge, 1973.
- 8. S. A. Saxon and L. M. Sánchez Ruiz, Optimal cardinals for metrizable barrelled spaces, to appear in J. London Math. Soc.
- 9. J. Swetits, A characterization of a class of barrelled sequence spaces, Glasgow Math. J. 19(1978), 27-31.
- B. Tsirulnikov, On the locally convex noncomplete quasi-distinguished spaces, Bull. Soc. Roy. Sci. Liège 47(1978), 147–152.

- 11. B. Tsirulnikov, Remarkable hyperplanes in locally convex spaces of dimension at most c, Canad. Math. Bull. 24(1981), 369-371.
- 12. I. Tweddle, Barrelled spaces whose bounded sets have at most countable dimension, J. London Math. Soc. (2)29(1984), 276–282.
- 13. M. Valdivia, A class of bornological barrelled spaces which are not ultrabornological, Math. Ann. 194(1971), 43–51.
- 14. M. Valdivia, Sur certains hyperplans qui ne sont pas ultra-bornologiques dans les espaces ultra-bornologiques, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), 935-937.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF STRATHCLYDE LIVINGSTONE TOWER 26 RICHMOND STREET GLASGOW GI IXH SCOTLAND, U.K.