MATH. SCAND. 75 (1994), 178-184

ON THE ZEROS OF A CLASS OF GENERALISED
DIRICHLET SERIES-XVI

K. RAMACHANDRA and A. SANKARANARAYANAN

Dedicated to Professor K. Chandrasekharan on his seventy-fourth birthday.

§1. Introduction.

In this paper we continue the investigations made in paper XV ([1]) of this series.
We prove a general theorem of which we first state two special cases. We write
s = o + it as usual.

THEOREM 1. Let k(= 1) be an integer constant and let di(n) be defined by the

identity ({(s))* = i (di(mn~%) valid in ¢ > 1. Put

n=1

(1) F) = Q6 + 3, de)(n + @)~ — n~), (@ > O),

n=1

where {a,} is any sequence of real numbers with |a,| < %. Denote the number of zeros
of F(s)in(c 2 a, T £t £2T) by N(a, T). Then for every 6 > 0, we have,

NG+ 6, T)<<;T

THEOREM 2. Let K be an algebraic number field which is abelian over the
rationals or over any quadratic field and let {(s) denote its zeta-function. Let f(n)
be the number of integral ideals of K of norm n. Put

el FO = &)+ 3, S0+ )™ =179, (0 > 0)

where {a,} is as before. Denote the number of zeros of F(s)in(c = o, T < t < 2T) by
N(a, T). Then for eery é > 0, we have,
NG +6,T)<<;T

ReMARK 1. In (1) and (2) RHS denotes the analytic continuation from ¢ > 1.
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REMARK 2. The restriction on {«,} may be relaxed considerably (see the
general theorem in §2 and the remark at the end of §3).

REMARK 3. For comparison note the result N3 — 8, T) >>; T'log T (valid for
0 < § < 4)for the functions (1) and (2), established in XV ([1]). (In that paper the
stronger condition |a,| < 10~ ° was assumed when k = 1, i.e. when K is the field
of rationals to prove the lower bound).

REMARK 4. The upper bounds in Theorems 1 and 2 are valid for the zeros of
F®(s) — B where B is any complex constant and F"(s), [ = 0 are derivatives of
F(s). The lower bound mentioned in Remark 3 is valid for F¥(s) — B.

NotaTioN. We follow the same notation regarding <<, >> and O(...), as we
did in XV ([1]).

§2. Definitions and the general theorem.

We begin with two definitions. We will fix two positive constants a, b witha < b
throughout.

GENERALISED DIRICHLET SERIES (GDS). Let {,} be any sequence of real
numbers witha < i, <A, <...,Al;<banda=<i,yy— 4, <bfornz=1. Let
{a,} be any sequence of complex numbers such that a, # 0 and

e o}

3 Z(6) = ¥ ady”

n=1
is convergent for some complex number s = so. Then Z(s) is called a generalised
Dirichlet series (GDS). We remark that if Z(s) is convergent at s = s, it is
absolutely convergent at s = s, + 2. Note that a GDS is different from zero if the
real part of s exceeds a certain constant.

DIRICHLET SERIES. A generalised Dirichlet series Z(s) is said to be a Dirichlet
seriesif 1,, A5, is a subsequence of the sequence of natural numbers. It is said to
be normalised if Y |a,|* << ,x'**for every ¢ > 0 and all x = 1.

n<x

GENERAL THEOREM. Let r =1 be any integer constant and let @(s),
©3(5), ..., 9,(s) be r Dirichlet series each continuable analytically in (6 Z 3,t = to)
and there max | (s)| < t* where t, and A are some positive constants. Suppose that

J
for T = t,, we have,

2T
) max <LJ lp;3 + i0)? dt) <<, T¢
i \TJr

for every € > 0, and further Z(s) defined by
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®) Z©e) = [T o) = Y, buin™%(no 2 1, b,, +0),

j=1 n=no
is a normalised Dirichlet series. Suppose that {a,} is any sequence of real numbers
with |a,| << ,n® for every ¢ > 0 and that

() FE)=Z@) + 3 bl(n+0) ™ —=n7) (0 2 3, t 2 to),
is a GDS. Define N(a, T) to be the number of zeros of F(s)in(c 2o, T <t < 2T).
Then for every 6 > 0, we have

) NG +6,T) <<;sT
REMARK 1. Note that in t > t, we have |F(s)| < 4 +2),

REMARK 2. We can state a suitable analogue in case ¢4(5), . . ., ¢,(s) are Dirich-
let polynomials i.e. when the coefficients of the Dirichlet series are allowed to
depend on T and a, = 0 for all large n depending on T. But we do not do it here.

REMARK 3. An assertion similar to (7) holds good for the derivatives FY(s) (or
even for F(s) — B where 1 = 0, and B is a complex constant) provided these
derivatives (or F¥(s) — B) are GDS.

§3. Proof of the general theorem.

The constants ¢, J, (0 < & < 135, 0 < § < 155) Will be chosen at the end of the
proof. All the constants implied by >> and << depend on ¢ and 6. We begin with
a lemma which is well-known (see for example the proof of Theorem 9.2 on page
211 of [2]).

LEMMA 1. Let n = ny(d) and I, denote the interval n <t < n+ 1. Then the
number of zeros of F(s)in (o = 4 + 26, tely) is << logn.

ProoOF. We first prove an auxiliary result. Let t be fixedinn< 1 <n+ 1,
So = 09 + it, where g, is a constant large enough so as to ensure that G(s) defined
by

G(s) = u~'F(s), where u = b, (no + )"

is such that G(s) — 1 has absolute value <4; for all ¢ = 6,. Put R = 6, — 1,

R, = 6o — % — 4. Note that the circle |[s — 50| = R touches ¢ = } and the circle
|s — so| = R, touches ¢ = 1 + 4. By Jensen’s theorem, we have,

R d
(8) j .n_(rldr —_ -—1—‘J~' ) ]_RloglG(S)I—S—S - log IG(SO)I’

o T 2mi
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where n(r) is the number of zeros of F(s) in |s — s¢] < r < R. In(8) we can replace
G(s) by F(s) on RHS, and LHS is

R n(r) R
g \[Rl'r—dr g n(Ri)]OgR—l

We now remark that |s — so| < R, includes the rectangle (; + 26 < ¢ < 0y,
|t — 1] £ (R} — (R; — 6)*)?) and that F(s) has no zeros in ¢ = g,. But the RHS of
(8) does not exceed a constant times logn. This proves the following auxiliary
result:

Number of zeros of F(s)in the rectangle (¢ = 5 + 25, |t — 1| < (R? — (R, — 8)?)*
is <<slogn, provided R, = 65 — 1 — 6.

The lemma follows from this in an obvious way.

LEMMA 2. Divide the interval [ T,2T] into abutting equal intervals I of length
H = T* ignoring a bit at one end. Then we have the following results.

(@) The number of zeros of F(s)in(c = 3 + 25,tel)or (¢ = } + 26, t€ ignored
interval) is <<Hlog T.

(b) Let M(I)denote the maximum over j of the maximum of |@;(s)lin(c = % + 39,
tel). Then

9) Y (M) < T*** for all T 2 Ty(e,9).
I
ProoF. The part(a)follows from Lemma 1. W now sketch the proof of part (b).
Note that if 0 = B where B is a large positive constant the maximum over j of
|@;(s)| is bounded above by a constant M,. Hence by standard convexity argu-
ments

2T
(10) max(J‘ lpjlo + it)? dt) << T'*e
j T

uniformly in ¢ for ¢ = } + 6. Next if M(I) is attained at s = z (z depending on I)
and the maximum comes from ¢,(z), we have,

1
(11) lpi2)* < _52‘J‘J lp;(s)|* do dt,
T ls—z| <o

where the integral is over the disc |s — z| < 0. (This is a well-known consequence
of Cauchy’s Theorem). Hence by integrating over a suitable rectangle (bigger
than the disc) and summing up over all intervals I for which M(I) exceeds 2M,, we
have,

Z(M()* < 2x8%) 7 3 ”wg«ém o)1 do dt

T-15ts2T+1
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and the result (b) follows in view of (10) of course using the fact that in LHS of the
last inequality the sum over I for which M(I) << 1 contributes a small quantity.

DerINITION. Consider an interval I contained in [T + H, 2T — H] for which
M(I) > T*:. Let us augment such an interval I by (log T)? on both sides. Denote
such an augmented interval by J. Such intervals will be called bad intervals. The
complement of these bad intervals in [T + H, 2T — H] will be called good
intervals. These will be portions of the interval I introduced in Lemma 2. The
good interals will be denoted by G.

LEMMA 3. We have the following results.

(a) The number of bad intervals is << T'~%¢

(b) The total number of zeros of F(s)in(c = 3 + 20, te U) where U is the union
of bad intervals, is << T'*,

Proor. The part (a) follows from the second part of Lemma 2. The part (b)
follows from the fact that for each bad interval J the number of zeros of F(s) in
(6 =23+ 25, tel)is <<Hlog T and so the total contribution from all the bad
intervalsis << HT! ®log T << T' =

LEMMA 4. Let M(a, G) denote the number of zeros of F(s)in(o = o, t€ G) and let
Y(t) = 1if t belongs to a good interval and O otherwise. Then

© 2T
(12) J <Z M(a, G)> da £ J (log|F& + 49 + in))y(r)dt + O(T).
++45 \ 1 T

Proor. The proof is similar to the proof due to J. E. Littlewood ([2]) of
Theorem 9.15 (A) on page 230. Here use is made of §9.4 on page 213 of [2]. We
can apply this method to obtain an upper bound for M(a, G) for each G. We have
only to remark that g << v where v is the number of zeros of

9(2) = 3{f(z +iT) + f(z — iT)}

and Jensen’s theorem does the rest. In these statements in our indication of the
proof we have followed the notation of Titchmarsh’s book [2]. Each interval
G gives rise to an error term <<log T and so the total of the error terms is
<< T' *log T. However to get the lower bound for the real part of F(s) for large
o we replace F(s) by u~ ! F(s) where u is as in the proof of Lemma 1. This gives
Lemma 4 since we have the error term O(T) when we come back to F(s).

LEMMA 5. We have the following results.
(a) LHS of (12) is
4++56

13) 2 Y M + 56,6) dot
G

$+45
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(14) =SNG + 55, T) + O(T 7).

(b) RHS of (12) is

(15) < Tlog <%J2T IFG + 48 + if)*© dt) + O(T).
T

Proor. The part (a) follows from the second part of Lemma 3. The part (b)
follows from a limiting form of the arithmetico-geometric inequality (see for
example the proof of Theorem 9.15(A) on page 230 of [2]. There the integrand is
required to be continuous; but plainly Riemann integrability is enough).

From now on till the end of this section we write s = 1 + 45 + it.

LEMMA 6. We have,
2T
(16) J [F(s)*© dt < ZJ (F(s) — Z(s)| + |1Z(s))dt + T.
T G JG
Proor. Trivial since Y(t) = 0 on intervals which are not good.

LEMMA 7. We have,

17) % J :TIF(s) — Z(s)? << L.

PrOOF. Same as the proof of equation (15) of XV ([1]).

LeEMMA 8. We have,

1 2T
(18) 7‘[ |Z(s)Py(t)dt << 1
T

ProOF. Let t belong to a good interval G and let X = T*. We start with

o0 2+i
(19) ";0 ann‘sexp(— ~5n(—> = z—ilfL_m Z(s + w)X"T(w) dw,
where w = u + iv is a complex variable. We cut off || = (log T)* with a small
error and in the rest move the line of integration to u = —dJ and choose ¢ very
small. Thus it is not hard to see that LHS of (19) is an approximation to Z(s) and
so Lemma 8 follows by a simple application of the Montgomery-Vaughan
Theorem (see Theorem 3 of XV ([1])).

The result N(3 + 56, T) << T for every ¢ > 0 follows in a simple way from
Lemmas 5 to 8. Now the assertion N(3 + 6, T) << T of the general theorem,

. 0
follows from this since we can replace 6 by 5

REMARK. The proliferation in §6 of XV ([1]) has relevence to our general
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theorem also. Thus in place of |a,| <<, n® we can manage with the simultaneous
conditions

Z Ib,,(l,,lz <<8x1+£ and lanl é (1 - r])n

nsx
(where ¢ > 0 is arbitrary and # is a fixed positive constant less than 1), the
requirement of the first condition being for all real x = 1 and that of the second
being for all integers n = 1.

§4. Examples.

Theorem 1 follows by taking r = k, ¢;(s) = {(s) for j = 1 to k. Theorem 2 can be
deduced as follows. If K is an abelian extension of rationals, {g(s)is the product of
d L-functions L, ('s),..., Ly(s) where d is the degree of K. We can take r = d and
@i(s) = Li(s)(j = 1,2,...,d). If K is abelian over a quadratic field, then {x(s) is the
product of d abelian L-functions L(s),. .., Ls(s) of the quadratic field where 2d is
the degree of K. We can take r = d and ¢;(s) = L(s) (j = 1,2,...,d). We have
only to check the validity of condition (4) for ¢(s). For this purpose we apply
equation (8) of paper XV ([1]) with Z(s) = ¢(s) for any fixed j. (The Z(s) of that
paper should not be confused with Z(s) of the present paper. Also k of that paper
should not be confused with k of Theorem 1 of the present paper). In the notation
of that paper ¢ (s) satisfy FE with k = 1 (for Theorem 1 and also the first case of
Theorem 2) and PFE with k = 2 (for the second case of Theorem 2). Hence
equation (8) of that paper is valid and hence condition (4) of the present paper is
satisfied. This completes the proof of Theorems 1 and 2.
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