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A COMBINATORIAL PROOF OF THE EXISTENCE OF THE
GENERIC HECKE ALGEBRA AND R-POLYNOMIALS

KIMMO ERIKSSON

1. Introduction.

Hecke algebras and Kazhdan-Lusztig polynomials are studied in algebraic
combinatorics, although the mathematical foundation is pure algebra. Among
others, Deodhar (e.g. in [3]) has worked on combinatorial aspects on these
things. The aim of this paper is to help free these combinatorial concepts from
their algebraic confinement by providing a construction, the Hecke graph, that
encodes the combinatrics of Hecke algebra in such a way that an elementary
analysis proves

e that the generic Hecke algebra exists, and

e that the R-polynomials (which are needed in the definition of Kazhdan-

Lusztig polynomials) can be defined via the recurrence they satisfy, and this

definition can be extended to any generic Hecke algebra.

The crux of both these things is showing that the result of a certain computa-
tion is well-defined, although the computation can be done in many different
ways. To our guidance, we have the theory of strong convergence [4], which
basically says that the computation is well-defined if it is locally well-defined. For
the Hecke algebra, this boils down to the following: Let W denote a Coxeter
group with generator set S, where for every generator pair s, t € S their product st
has order m(s, t) in the group W. Let {T,,} (we W) be the standard basis of the
associated Hecke algebra. For any pair s,t€ S, where m(s, t) < oo, let (L T, T;--*)
denote an alternating product of m(s, t) factors. Then, to prove that multiplica-
tion T, T, is well-defined, it suffices to show that (T; T, T;--) T, = (LT, T, - )T,.
Proving this is equivalent to finding a certain pairing of alternatingly labeled
paths in the Hecke graph.

Section 2 discusses the significance of the Hecke graph to the Hecke algebra
and shows existence of the algebra, refering to section 3 for the canonical pairing
of alternating paths. Finally, the R-polynomials and their recurrence are treated
in section 4.
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2. Existence of the generic Hecke algebra.

Following Humphreys [5], we associate to the Coxeter group W the generic
Hecke algebra over a commutative ring A as follows. The algebra has basis
elements T,, (indexed by elements we W), and for a Coxeter generator s€S,
multiplication is defined by

T {nw if I(sw) > I(w),

() a, T, + by T, if l(sw) < I(w).

The parameters a,, b, € A are subject only to the condition that a, = a,and by = b,
if s and t are conjugate generators in W.

However, a prioriitis not at all clear that such an algebra exists. We must show
that multiplication of any two basis elements is well-defined, because in order to
compute T, T,, we must first choose a reduced expression s, s, - - - 5, for v and then
compute T; T, - - T;, T, according to the multiplication rule above. Thus, exist-
ence of the algebra depends on the result of this computation being independent
of the choice of reduced expression for v.

The usual existence proof [5] is very algebraic, involving the algebra of all
A-module endomorphisms of the free 4-module. This is unsatisfactory for the
combinatorialist who wants to see the Hecke algebra as an analog of the
combinatorial Coxeter group, and especially since the endomorphism algebra
has no further value after the proof. Instead, problems of this kind, where one
must show that a result of a computation is independent of a seeming degree of
freedom, have a unified theory in strong convergence [4]: A branching process has
the strong convergence property if whenever a terminal position P can be
reached in n steps, every way of going n steps will result in P. This property is
equivalent to the following local property: whenever to different steps are
possible, they are the first steps in two paths of equal length ending in the same
position.

In the case of multiplication in the Hecke algebra, this implies that it is
sufficient to prove that

(LTI )T, = (LTT-) T,

where both sides have an alternating product of m(s, t) < co generators. From
now on, (sts- - *) will be shorthand for an alternating product of length m(s, t). The
sufficiency of verifying the local property above follows in fact directly from Tits’s
Word Theorem, which says that every reduced expression for an element v can be
obtained from any reduced expression for v by repeated substitution of factors of
type (sts--*) = (tst--).

Now is the time to introduce the Hecke graph of the Coxeter group W: Begin
with the Hasse diagram of the (left) weak order of W, or, equivalently, the Cayley
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graph of Wrooted at 1, labeled in the natural way such that the edge between
w and sw is labeled s. See Bjorner [1] for details about orderings of Coxeter
groups. The partial order defines for every edge one direction downwards (to-
wards 1), and one direction upwards. To get the Hecke graph of W, for every
generator se S we add a loop labeled s to every node whose s edge leads
downwards.

Let W, be the parabolic subgroup generated by s and ¢, consisting of 2m(s, )
elements. We will be interested in the coset W, ,w. This is known to have a unique
minimal coset representative u, which means that in the Hasse diagram of W the
elements of the coset W, ,w form a circuit with u at the bottom and the other
elements lying on two paths that go upwards to join in (sts--)u = (tst---)u. It is
important to note the following feature of the Hecke graph of W: a path from
wlabeled by s and ¢ only must stay in the coset. The sketch in Fig. 1 should clarify
the situation.

The entire reason for introducing the Hecke graph is that it encodes the
combinatorics of multiplication in the Hecke algebra: every path from w labeled
by some word s,s, ‘- - 5, corresponds bijectively to a term in the expansion of the
product T; T;, - - - T;, T,,. The correspondence is easy and works as follows:

o The group element w' at the end point of the path gives an algebra element T,,..
e Every step upwards contributes a factor 1 (i.e. no contribution).

e Every step downwards, with label s, contributes a factor b,.

e Every step in a loop, with label s, contributes a factor a,.

Fig. 1. The Hecke graph of the coset W, ,w when m(s, 1) = 4.

The reader is urged to check that this precisely encodes the multiplication rule (1).
Now the property that we want to prove follows from interpreting, via this
correspondence, the properties of the Hecke graph stated in Proposition 3.2 and
3.3. We postpone the proofs to the next section in order to here pursue our
current line of thought.
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LEMMA 2.1. If s and t are conjugate in W, then

ProoF. Sincesand t are conjugate, we have a; = a,(= a)and by = b,(= b). The
terms of the expansion of the two sides correspond respectively to the sts- - --paths
and tst - - ~-paths (of length m(s, t)) from w in the Hecke graph. By Proposition 3.2
there is a bijection between these sets of paths that preserve the endpoint w', the
number [ of loops and the number d of edges traveled downwards. Hence, the
bijection preserves the corresponding term a'b?T,,.

Before treating the other case, observe that m(s, t) odd implies that s and ¢ are
conjugate, because then s(ts)™ ™12 = (sts-+*) = (tst--*) = (ts)™ V2t

LeMMA 2.2. Ifs and t are not conjugate in W, then
(LTI )T, = (LT )T,

Proor. Since s and t are not conjugate, m(s, t) must be even. A path ending in
w’ with [ loops labeled s, d, edges traveled downwards labeled s (and /, and d,
analogously) corresponds to a term

asalbb*T,,

By Proposition 3.3, there is a bijection between sts - - --paths and tst - - -paths that
preserves all these parameters.

Now recall the discussion in the beginning of this section: The two lemmas
above imply that T, T, is always well-defined, which in turn implies the existence
of the generic Hecke algebra.

ReMARK 2.3. Obviously the proof allows for one additional parameter: we
could define multiplication more generally by

¢ Ty if I(sw) > I(w),

Bt = {asrw + b, T if Isw) < L),

where of course also ¢; = ¢, must hold when s and ¢ are conjugate. This possibility
can be said to reflect the fact (which follows directly from Tits’s Word Theorem)
that all reduced expressions for a Coxeter group element w have the same
distribution of letters in conjugacy classes: If sy s, - - s, = t,t, "t are two reduc-
ed expressions, then

CsiCsy """ Csic = Ct,Cry """ Gy,



A COMBINATORIAL PROOF OF THE EXISTENCE OF THE GENERIC HECKE 173

3. Paths in the Hecke graph.

A path is alternatingly labeled if the word defined by the labels of the edges visited
is alternating, i.e. either stst:-- or tsts---. We shall now investigate what an
alternatingly labeled path in the Hecke graph can look like. Recall the sketch in
Fig. 1.

LEMMA 3.1. An alternatingly labeled path in the Hecke graph must visit the top
node between every pair of visited loops.

Proor. Follows by inspection from the fact that every loop that is not at the
top node has the same label as the incident edge that goes downwards, so after
a loop is visited an alternating path must continue upwards to the top node.

What we would like is a matching of the alternatingly labeled paths of length
m(s, t), such that every such stst...-path is matched with a unique tsts...-path
with the same endpoint and the same number of visited loops. Further, if m(s, t) is
even, then in every pair the tsts...-path shall have as many loops labeled s and
t respectively as the stst. . .-path.

Fig. 2. Complementing path P: 4 »* B —'B —* A —' C,to theleft, gives P': A »'C »°D »'D -*C,
to the right.

The fundamental operation in this construction will be complementing a path
segment P that contains precisely one loop. The complement of P is defined as the
path P’ (from the same point) that starts with the complementary label, and then
goes as many edges before looping as P does after looping, and vice versa. Thus P’
will have the same length and end point as P, and both paths contain exactly one
loop. See Fig. 2. Complementing is legal if at least one of P and P’ visits the top
point, because then and only then will the new path P’ also be alternatingly
labeled (by reasoning similar to the lemma above). This will always be the case for
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the path segments that we consider. (Observe that any alternatingly labeled path
of length m(s, t) in the Hecke graph must visit the top point.)

PROPOSITION 3.2. In the set of alternatingly labeled paths of length m(s, t) with
given starting point in the Hecke graph, there is a bijection between stst .. .-paths
and tsts...-paths that preserves the end point and the number of loops of the path
(and hence also the number of edges traveled downwards).

ProoF. Given an alternatingly labeled path P, from u to v, starting with an
edge labeled s, we shall construct a path P, with the same starting point u and end
point v and number of loops, but beginning with t. It will be clear that the
construction is an involution, and hence a bijection.

First, in the case without loops, the path Py, being an alternating path of length
m(s, t), ends in the opposite node of the 2m(s, t)-circuit; we take P, to be the other
half of the circuit.

If there is exactly one loop in Py, let P, be the complement.

Otherwise, we shall construct P, piecewise. By the lemma above, we can cut the
path P at the top point between any two loops. Complement each of the path
segments to obtain P,.

When the parameter m(s,t) is even, we want to say even more. Here the
construction is slightly more delicate, but relying on the simple fact that the loop
of the complement of a path segment P has the same label as the loop of P if and
only if the length of P is even.

PROPOSITION 3.3. If m(s, t) is even, then there is a bijection as in Proposition 3.2
that also leaves the number of loops labeled s and t respectively invariant (and hence
also the number of edges traveled downwards with respective labels).

Proor. We follow the proof of Proposition 3.2 up to the definition of the path
segments. Note that, with possible exception for the first and the last segment,
every path segment has odd length. If the first or last path segment has even
length, we immediately complement it (or both) to get the corresponding piece of
P,. Thus, all remaining segments are of odd length, and since the length of the
entire path is even (and remains even after removing segments of even length),
there must be an even number of segments. Number the segments in order
1,2,...,2k. When constructing the segment pair of P, corresponding to segments
2i — 1 and 2i, we must distinguish between two cases:

a) The two loops of this segment pair have different labels (i.e. one labeled s,
the other t). Then complement both segments to get the piece of P,. Since both
segments complemented are of odd length, this complemented piece will also
have one loop labeled s and one labeled ¢.

b) The two loops of this segment pair have the same label, say s. The edge
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labeled t incident to the intermediate top point leads to a node w. Connect the
segments again and cut them at w instead. Complement the two even segments
obtained in this way to get the corresponding piece of P,. But how do we know
that it is legal to complement the segment that do not contain the intermediate
top point? For legality, it is enough that this segment has at least one edge on the
other side of the loop, because then the complement will reach the top point. And
indeed, the segment must have an odd number of edges (and hence at least one) on
that side, since the total length of the segment is even, and the rest of it has edges
labeled s in both ends and is therefore of odd length.

4. The recurrence of the R-polynomials.

For a moment, let # denote the Hecke algebra over the ring Z[g, ¢~ 1], with all
a; = q — 1 and all b, = g. This is the world where Kazhdan-Lusztig theory (see
[5] or [6]) lives. Very briefly, one can define an involution 1 on # by i(q) = g !
and (T,)) = (T,,-1)~ . One can then find a new basis {C,,} of # that is invariant
under 1. Basically, the Kazhdan-Lusztig polynomials are polynomials in g that
appear as coefficients when the new basis elements C,, are expressed in the old
basis {T,, }. The concept of Kazhdan-Lusztig polynomials seems to be very deep
and important in several mathematical disciplines, and combinatorics is one of
them; e.g. a combinatorial explanation is wanted to resolve the conjecture of
Kazhdan-Lusztig that these polynomials have nonnegative coefficients.

Essential to this theory are the R-polynomials, which arise when basis el-
ements such as T,, are inverted in 5#. They are polynomials in g indexed by two
elements of W:R, ,,(q). From the proof where the R-polynomials originate, it
follows that they can be computed recursively by choosing any generator s such
that sw < w in Bruhat order, and then set

) Roxsw if sx < x,
e (q — I)Rx.sw + qux,sw if sx > x,

with initial conditions R, ; = 1 and R, ; = 0 for all x % 1. (In fact, it is more
efficient to use that R,,,, = 1 and R, ,, = O for all x > w, and this is the version
stated in Humphreys. However, it is not hard to show that these initial conditions
are equivalent to those above, which we prefer here.)

As in the case of the existence of the Hecke algebra, it is not clear by itself that
this computation is well-defined, since it seemingly depends on the choice of the
generator s. In other words, if one would like to use the recurrence as the
definition (as suggested by Brenti [2]), one must have a proof of the fact that the
particular choices do not really matter.

Let us now return to the general setting of the generic Hecke algebras of section
2. Using the Hecke graph again, we shall prove the fact that in a generic Hecke
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algebra over 4, the following general recurrence gives a proper definition of
“R-polynomials” R,
For se S such that sw < w we define

Ry 5w if sx < x,
AR, s + biRy g if X > X

(2) Rx,w = {

with initial conditions R; ; = 1 and R, ; = Ofor all x & 1. Here the a; and b are
new parameters in A, as usual with the restriction that parameters corresponding
to conjugate generators be equal. Clearly, this recurrence specialises to the one of
ordinary R-polynomials when we take 4 = Z[q,q" 1],and set g, =a;, =q — 1
and b; = b, = g for all seS.

As a matter of fact, to prove this we will need a slightly different version of the
Hecke graph. Begin with the Hasse diagram of the weak order of W as before, but
this time for every generator se S add a loop labeled s to every node whose s-edge
leads upwards instead of downwards. It should be immediate that Proposition
3.2 and 3.3 remain valid for this dual Hecke graph.

THEOREM 4.1. In a generic Hecke algebra over A, the R, ,, are unambiguously
defined by the recurrence (2).

ProOF. We shall prove the theorem by induction on I(w); we know that R, ,, is
unambiguously defined when w = 1, i.e. when I(w) = 0. Suppose the theorem is
proved for all R, , with I(w). Define

Rorsw if sx < x,
R, 5w + DR s If X > X

as(Rx.w) = {

It is sufficient to prove that if there are two different choices s and ¢ of generators
such that sw < wand tw < w (so w is the maximal coset representative of ¥, ,w),
then oy(R,.,) = 6,(R,,,). Let u be the minimal coset representative, so u =
(sts---)w = (tst---)w, and we have both w > sw > tsw > ... >u and w > tw >
stw > tstw > ... > u. Thus, by the induction hypothesis we have

as(Rx,w) = atos(Rx,w) = asatas(Rx,w) == ( o asatos)(Rx,w)

where the last operator is an alternating composition of length m(s, t). Analog-
ously, we have

Ux(Rx,w) =...=(" otasat)(Rx.w)

Consequently, it suffices to prove that (--- o,0,0)(R,.,,) = (- 0,0,6,)(R,,,). But
the terms in this expansion correspond to alternating paths of length m(s, t) from
x in the dual Hecke graph essentially as before:

e The group element x' at the end point of the path gives an element R, ,,.
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e Every step downward contributes a factor 1.

o Every step upwards, labeled s, contributes a factor b;.

e Every step in a loop, labeled s, contributes a factor a.

We can now use Proposition 3.2 and 3.3 as in section 3, to deduce the desired
equality.

REMARK 4.2. Also in this section there is the possibility of an additional
parameter c, € A4, in analogy with the remark of section 3.
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