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C*-ALGEBRAS OF DYNAMICAL SYSTEMS
ON THE NON-COMMUTATIVE TORUS

CARLA FARSI and NEIL WATLING

Abstract.

Here we prove that the C*-algebras of dynamical systems on ./, associated to trace two affine
automorphisms are classified by K-theoretical invariants. We also prove a partial classification result
for the crossed products associated to general affine automorphisms induced by SL(2,Z) and
compute their fixed point subalgebras.

As noted by Brenken and Watatani, SL (2, Z) has a natural representation on the
automorphism group of the rotation algebra .«7,[3], [14] with Watatani also
computing the entropy of the dynamical systems arising from this action. The
fixed point subalgebras associated to these automorphisms of .27, can also be
explicitly classified [5] with parabolic matrices giving rise to ‘trivial’ subalgebras
[6]. Here we wish to consider a slight generalization of the above automorphisms
of «7,, which we call affine transformations. These are analogues of affine
transformations on compact groups. For example, affine rotations of T" and
affine quasi rotations of T2 were considered by Riedel and Rouhani in [11] and
[12] respectively. More precisely:

DEFINITION 1. Let </, be the universal C*-algebra generated by two unitaries
U and V satisfying VU = pUV, with p = > 0 < 0 < 1. An affine transform-

b
ation of .7, is an automorphism ¢ 4 ;, ;, : ¥, = %/, where A = (a ) eSL(2,2),

. 2 c d
LeT,i=1,2 and

d(U) = 4, UV, (V) = A, UV

¢ is said to be in standard form if A; = 1, i = 1,2 and we will write ¢, instead of
ba1.1. We will also write of, > ;,;,Z instead of o, >, Z, o, %
instead of o/,%4 4142, of, > 4 Z instead of o7, >4 ,Z and .o/ ,,* instead of 7,4,
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The fixed point subalgebras .o/,**""*2 corresponding to the above automo-
rphisms are essentially the same as those derived from SL(2, Z) (Proposition 21)
and when the trace is not 2, the crossed product C*-algebra of ./, by any affine
transformation is isomorphic to the crossed product C*-algebra of &/, by the
affine transformation associated to it in standard form (Proposition 3), so that
these crossed products are isomorphic to those induced by the standard action of
SL(2,2). Itis very difficult problem to determine the isomorphism classes of these
C*-algebras, even the conjugacy classes of SL(2,2), clearly relevant to the
problem, are not easily computable. We make some remarks concerning them
and prove a partial classification result for crossed products associated to
matrices of SL(2, Z) conjugate to some basic types (Theorem 12). When the trace
is two the situation is more tractable since these algebras correspond to
C*-algebras generated by twisted cocycles on a discrete group which is a general-
ization of the discrete Heisenberg group. For 4 + I,, we compute their K-theory
and the range of any trace on Ko(.%/, >< Z) and show that these, together with the
twist [13], are complete isomorphism invariants (Theorem 20) as is true for the
Heisenberg group ([10] and [13]) which is a special case. Note that if 4 = I,,
&, >, 1,.1,Z 18 a three dimensional non-commutative torus, so that the tracial
range and the twist are not sufficient isomorphism invariants [4]. We begin by
recalling the definition of twist and describing some properties of crossed product
C*-algebras of &/, by affine transformations ¢ 4 ;, ;, with Trace (4) # 2.

DEerFINITION 2 ([13]). Let 4 be a unital C*-algebra with tracial states 7 such that
all tracial states agree on Ky(A) and [1] generates a free direct summand of
Ko(A). The twist of A4 is defined to be zero unless {x € K(A4)|t,(x)e Q} = Z%, in
which case it is the distance of 7,(e) from Z, where e is the other generator of
{x€ Ko(A)|7,(x)eQ}. The twist is an isomorphism invariant.

ProrosiTION 3. If AeSL(2,Z) with Trace(A4) + 2, then o, >4, ;,Z =
o, >,4Z, for all 4;eT.

PRrOOF. Let ¢(U) = A, U°V<, ¢(V) = A, UV Define U’ = 4,°A,Uand V' =
2174,°V, with a, B,y and 6 Q. Then U’ and V' generate ./, and ¢ corresponds
to ¢'(U) =AUV, ¢'(V') = UV, where A = A31-a- v+l 00 -a=d& apnd
= Ay d-ab 3= =fb+1 1t jg straightforward to check that o, B, y and &

-1 ]
can be chosen such that A = u =1 provided det (a b p _C_ 1) + 0, that is,
Trace(A4) * 2.

LemMa 4. If Trace(A) + 2 and A is conjugate to B in SL(2,Z), then o, > 4
Z=of,>1pZ.
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PrOOF. Assume K '4K =B, K = (;il'l 21’2> in SL(2,Z) and define the
2,1 2,2

automorphism 6 of o7, by 6(U) = U*+1V*21 §(V) = U*2V*22, Then by Proposi-
tion3 6°¢,°0~" is an automorphism of ./, such that s/, >gogp08-1L =
A, >AgZ.

LemMmA 5. If AeSL(2,Z) with Trace(A4) + 2, then o, >, Z = of, ><I4rZ.

0 1
ProoF. Since A7 is conjugate to 4! in SL(2, Z) (By the matrix < | 0>) the
conclusion follows from Lemma 4 as &/, >1,Z = &/, > 4-:Z.

On the other hand it would be very interesting to determine if &/, >1,Z =
&, ><1pZ implies A is conjugate to B or BT in SL(2,2). This is probably too
strong however: if we restrict to p = 1, that is, the commutative case C(T?) >, Z,
where infact A4 is a hyperbolic (|Trace(A4)| > 2) element of GL(2,2), it is already
known that the entropy of ¢, (= log3(|Trace(4)| + /|Trace(4)> — 4)) is an
isomorphism invariant together with Trace(A) if det(4) = 1[8]. As for p % 1,
Watatani [14] has shown the entropy of ¢,, which is an outer conjugacy
invariant, has the same form as above so another possibility is o7, >1,Z =
o, >1pZ implies |Trace (4)| = |Trace (B)| or even Trace (4) = Trace (B).

ProposITION 6. Let A, BeSL(2,Z) with Trace(4), Trace(B) # 2.
Then sf, >14Z = o, >gZ implies p' = p*' and Trace(B) = Trace(4) or
Trace(B) = 4 — Trace (A).

Proor. To simplify the proof we shall denote 4 by C, and B by C,. Note that
rank (C; — I,) = 2,soker (C; — I,) = 0and K,(%/,) = Z* by Pimsner-Voiculescu
sequence, see for example [1]. Also for any tracial state t' on =/, ><, Z (a tracial
state on the crossed product &/, >, Z can be constructed by extending the one
on &/, which is Z-invariant), 7, (Ko(=, ><¢,Z)) = T, (Ko(s7,)), i = 1,2 ([1] Sec-
tion 10.10). Moreover all tracial states agree on K,. Since o, >i¢,Z =
ol ><c,Z,thenZ + 0Z = Z + §'Z, where p = &, p' = *™*,0 < 6,0’ < 1. If
p and p’ are of infinite order, this clearly implies p’ = p*!, while if p and p’ are of
finite order the same conclusion holds by using the twist.

Now, by Pimsner-Voiculescu, K;(s, >d¢,Z) = 22®Z,®Z; for some a

0y .
and B in N, since (C; — 1) is equivalent to the diagonal form D = (g ﬂ) with

a dividing B (i.e. D can be obtained from (C; — I,) by elementary row and column
operations). Therefore Det (C; — I,) = +af. But Det(C; — I,) = 2 — Trace(C))
so 2 — Trace(C,) = + (2 — Trace(C,)), that is, Trace(C,) = Trace(C,) or
Trace(C,) = 4 — Trace(C,).
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REMARK 7. (1) Note the above proposition shows that if we restrict to ma-
trices with trace greater than 2 (respectively less than 2), the trace is an isomor-
phism invariant.

(2) If Trace(A) = Trace(B) and (Trace (4) — 2) is prime then &/, > ,Z and
&, >1pZ have the same K-theory.

REMARK 8. It can also be shown thatif p and p’ are of infinite order and A" = 1,
then o/, >1,2Z, =~ o, >14Z, if and only if p’ = p*! [2], [7]. I p and p’ are of
finite order &/, >1,Z, = o, >1,Z,if and only if p and p’ have the same order,
see for example [5].

It would also be interesting to determine complete isomorphism invariants for
s, >1,Z. For Trace (A) + 2 we only have a partial result while we have
a complete classification for Trace (4) = 2, 4 % L,. If we consider the conjugacy
classes of elements A of SL (2, Z) we have the following.

PROPOSITION 9 ([9] PG. 44-47). Let X =( 0 | (1)) Y =( 01 i) W=

XYy L Z=(Xxy Yy
Then: (1) Every AeSL (2,Z) with |Trace (A4)| < 2 is conjugate in SL(2,Z) to + X,
+Y, +Y L +W*or +Z* witha, feN.

(2) Every AeSL(2,Z) with |Trace(A)| = 3 is conjugate in SL(2,Z) to

+ W ZP W Z65 with a;, B;e N\ {O}.

Moreover two such elements are conjugate in SL (2,Z) if and only if they are cyclic
permutations of one another. Note we shall use the notation ~ for conjugacy.

This describes the conjugacy classes in principle. Unfortunately as [Trace (A4))
grows so do the possibilities for the «;, ;s and it becomes increasingly more
complicated to concretely describe the conjugacy classes of SL(2,Z) using
|Trace (A4)| as a parameter. However it is possible to make some comments for
small values of the trace.

ReMARK 10. By using the isomorphism U — V, V - U from </, onto -1,

Proposition 3 and Lemma 5 we can see that o, >1,Z > o/,-1 ><1,Zif A=
b . . . d b

(j d)eSL (2,Z2) with Trace(A) #+ 2 is conjugate in SL(2,Z) to B = (c a)
or BT. For small values of |Trace(4)| this can be shown to be true, while if
|Trace (4)| = 3 we can assume, from Proposition 9, A ~ + W*1ZF W ZFs
then, B ~ +ZfW? ... ZP*W* and BT ~ +Z**WF' .. Z* WP, so we require
one of the latter two to be a cyclic permutation of the first. The first examples
of A not having this property arise for Trace (4) = 15. In particular 4 =
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3 =5\ _ e (2 =5\, 5
<_7 12>—WZWZorA_<_5 13)—WZWZ are such examples.

RemARK 11. If we restrict to |Trace(4)| < 2 it is easy to check that the
K-theory, the tracial range and the twist are complete isomorphism invariants.
As for |Trace(A)| = 3, a description of the conjugacy classes for elements of
SL(2,Z) with 3 < |Trace(4)| < 6isgivenby(e = +1, T =3,...,6)

1 —k
T A)=¢T:
race(4) = ¢ 8<—(T——2)/k T_ 1),
where k runs over the positive divisors of T — 2. By applying Lemmas 4 and
5 together with Proposition 6 we see that the K-theory (specifically K, (o7, >4
Z)), the tracial range and | Trace (A)| (or the entropy of ¢ 4) are complete invariants
for 3 < |Trace(A4)| £ 6. However this already breaks down for Trace (4) = 7, for

example, if A = <_23 _53> and B = (_15 —61>

The following theorem characterizes the isomorphism classes of crossed prod-
ucts &/, >4 Z when A is conjugate to some special types of matrices in SL(2,2).

THEOREM 12. Let A,BeSL(2,Z). If A and B are conjugate in SL(2,2) to
matrices of the form W*ZP, for some a, f€ N\ {0} with a|B or Blo, then o, ><1,
Z = o, >1gZif and only if they have the same K-theory, tracial range and twist.

Proor. We only prove sufficiency since necessity is obvious, as the K-theory,
tracial range and twist are isomorphism invariants [1], [13]. Conversely, since
Ki(od, ><1,42) = K(oAy ><1p2) = Z* ® Z, ® Zp, for some o, fe N\ {0} with a| B,

1 —
then A, B ~ B or its transpose. By Lemma 5 we can assume 4, B ~
—a 1+af
1 _
b . Also, by Proposition 6, we must have p’ = p*!. If p’ = p we are
—o 1+ap
1 —B l+af —P -
'=p L. N ~ by Z7#),
done, so assume p’ = p ow (_a 1+ocﬂ> ( —oc q )( y )

hence by Remark 10 o/, ><1,Z = o/, _; >14Z = o/, >13Z and the theorem
follows.

We will now consider matrices with trace two, the only case not mentioned so
far, for which it is possible to give complete isomorphism invariants. As a conse-
quence of Proposition 9 we have:

LemMA13 ([9]). Every AeSL(2,Z) with Trace (A) = 2 is conjugate in SL(2,2)

1 m
to <0 1),some mel.
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1
LEMMA 14. Let ¢ 4 ;, ,, be an affine transformation of o, with A ~ (0 T) in

SL(2,2), m % 0. Then Ko(, ><14;,3,2) = 2 Ky(od, >y, , D=2 DZ,.
Moreover K (4, >< 4,3, .1, Z) is generated by K o(o4,) and any x such that { 9(x)) =
Ker (1 — (¢ 4)1), where 0 is the connecting homomorphism 0: K o(, >< 43,2, Z) =
K, (s#,) in the Pimsner-Voiculescu exact sequence associated to ¢ 4 ;, ;,.

Proor. Straightforward using the Pimsner-Voicelescu exact sequence.

REMARK 15. A simple consequence of Lemma 14 (see also the proof of Prop-
osition 6) is that if A€ SL (2,Z) with Trace (4) = 2 then &/, >i4Z and &/,, >IpZ
can be isomorphic only if Trace (B) =

b
b d

K=(ki;) in SL(2,Z) such that K”‘AK:(

LEMMA 16. Let A = ( >e SL(2,Z), A;€T,i = 1,2, and suppose there exists

1

m
0 1)=M,m=l=0. Then

Ay >y 2,.3,L = Ay >y 51 L, with

k k
it kyg — )+ —=— bdkz.. (kp,y — 1) + k1.1k2.1bc}ez

h= e e gk = {

PrOOF. Define the automorphism 6 of .«7,,

ki,2 k2,2
(U) = §, Ukt ykas §(V) = Uk 2V*22 where 8, = A" A" p,
Y _Z{‘wk” (k2 = 1) + bd 22 (ky,, — 1) + ky 2k22bc}
ki, k
{Aii(m -1+ kz,lkl,z}.

By using the equality VU = pUV it is simple to check that ¢y, °0 =
0°Pa 1,4,

The following lemma is essentially contained in [10].

1
LEMMA 17. Let G=<Z §>eGL(2,Z), g = det(G) and M=(O r;'>,
1

meZ\{0}, M’ = (0 n;g) Then,

(1) dp ><M.l,l Z g ud(pa[y)g ><M,(pﬂld)9.l Z.

(2) pr ><M.l.1 Z :_"- Ji(pa“) ><M',(pﬁ)."),1 Z.
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ProoF. The crossed product .o, > ; ; Z can be characterized as the univer-
sal C*-algebra generated by three unitaries U, Vand Q satisfying,
VU = pUV, Q*UQ = U, Q*VQ = U™V.
Now use the transformations:
u=56,U% v=VQ7", w=QV¥# forcase(l),
u=06,U, v=V'Q7" w=8V"# forcase(2),
where 0, and §, are chosen such that w*vow = u™v and w*vw = u?™v respectively.
For 1 = p = m =1 the relations above characterize the discrete Heisenberg

group [10], [13].

1
COROLLARY 18. Let AeSL(2,Z)withA ~ M,M = ( "

0 1), meZ\{0}. Then,

1) o, =<, 2=, ><1yZ

Q) A, >y L= Ay >y 3-11 L = Ay >y L
(3) A, >y 31 Z = oy >y ;1 L

4) A, >y 5,2, L= A1 >y 5,2, 2

ProoF. (1) By Lemma 16 &, >4 Z = &/, >y, ,x,1 Z. Now use Lemma 17(1)

) 1 —x
with G = (0 | >
1
(2) Use Lemma 17(2) with G = (0
-1 0
0o 1)

1 0
(3) Use Lemma 17(1) with G = (0 _ 1>.

01> and then Lemma 17(1) with G =

(4) By Lemma 16 o, ><,4; 1,Z = o, >Iy11Z and of;-s >y 2,1, L =

sl,-1 ><pg 1 Z Where A = p*i'. Now by (3) o, >py11Z = -1 >y a1 L
1 2

then use Lemma 17(1) with G = <O 1K>

So the isomorphism classes of crossed products of affine transformations of .</,
with Trace (4) = 2, A # I,, are the isomorphism classes of crossed products of .«7,
by the automorphisms @(U) = AU, o(V) = U™V, Ae T,me N\ {0}. We shall now
show these crossed products can be classified by K-theoretical invariants. Note
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that the tracial state on </, is invariant under all affine transformations, and
therefore induces a tracial state on the associated crossed products.

1 .
PROPOSITION 19. Let M = (0 T), meN\{0} and A = e*™eT,0<e< 1.

Then all tracial states t on o, >y ; 1 Z agree on Ko(f, ><1p 3.1 Z) and,
T*(Ko(dp ><M.l,l Z)) = Z + 02 + 82.

ProOF. This is an adaption of the proof in [12] pages 142-143. If A=p =1
the result is clear [1]. If 1 = e*™*e T\ {1}, define the homomorphism j: C(T) -
A, by p(g) = g U, for all ge C(T). Then it is straightforward to show that jis an
equivariant homomorphism between (C(T), 4, Z) and (7, ¢, 1,1, Z) and that the
image of the Rieffel projection in A4, generates a subgroup of Ko (o, > 1,1 2)
isomorphic to Ker (1 — (¢,),). Itis also easy to prove the result when pe T\ {1},
by exchanging the roles of 1 and p.

THEOREM 20. Let ¢4 ;, 1, and ¢p,, ., be two affine transformations of oZ, with
A,B # I, Trace(A) = Trace(B) = 2. Then o, >4 ;, 1, L= Ay >g; 5,2 if
and only if they have the same K-theory, tracial range and twist.

ProoF. This proof is similar to those in [10] and [13]. We need only show
sufficiency since necessity is obvious [1], [13]. By Lemma 16 and Corollary 18
weknow that o/, >, ;, ;,Z = o, >y ; 1 Z,forsome AeT,and o, >, ,,Z =

1
Ay >y 31 Z, for some A'eT where M = (0 T), m >0 and K, (o, > 43,1,

2)= K (o, ><py, 1, 2) = 2> @ Z,,. Moreover o, > ; ; Zand o, >, .. Z
have the same tracial range, which we shall denote by R.

First assume R has rank one. This implies that both p and A (respectively p’ and
/') have finite order and therefore there exists a Ge SL(2,Z) such that (p, ) G =
(1,0, where { = ¢+ and q = lem {ord (4),ord (p)} (respectively a G'eSL(2,2)
such that (o', )G’ = (1,{’), where { = ¢+ and ¢ = lem {ord (%), ord (p")}). This
implies by Lemma 17, o/, ><p 31 Z = C(T?) ><p 1 Z and o, ><Vp 31 Z =

1 1 .
C(T*) >y 12 Thus R=2Z + ;Z =Z+ ?Z which implies g = ¢’ and the

two algebras are isomorphic.

Now suppose that R has rank two. If p has finite order and A has infinite
0
1
oy >y ,-14Z If p and 4 both have infinite order and p* = A, for some
k,1eZ\ {0} minimal thenif welet ¢ = (k,]) > 0so k = gk, | = ql',(k’,I') = 1 there

-1
order by applying Lemma 17 with G =( 0 ) we have of, >y ;1 Z =
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[
2rip

that o/, > 11 Z = o5 >y 1 Z, wWith p of infinite orderand { = e 7, p,qeN.
Therefore we may assume p = ef"f", 0 <0 <1 (respectively p’ = 2™ 0 <
0" < 1)is of infinite orderand A = e, p,qeN,p < q,(p,q) = 1 (respectively ' =

2mip’

e ,p,qdeN,p’ <q,(p,q)=1). Now the twist of o/, >y ; 1 Zis p/qor 1 —
p/q while that of o/, >y 3.1 Zis p'/q or 1 — p'/q’ so p'/q' = p/qor 1 — p/q (i.e.

X = 2*Y). This implies R = Z + 0Z + %z =2+0Z+27 hence ¢ =6 or
q

exista,yeZsuch that G = (: , ) €SL (2,Z). Thus by using Lemma 17 we see

1 — 0so p’ = p*! and thus the two algebras are isomorphic by Corollary 18(3),
and Corollary 18(2) if necessary.

Finally assume that R has rank three. In this case both p and 4 (respectively p’
and A') have to be of infinite order with p* + A’ for all k,leZ\ {0} (respectively
p™* % 2" for all k, leZ\ {0}). Hence there exists a matrix G € GL (2, Z) such that
(p, )G = (p', /') so an application of Lemma 17(2), and Corollary 18(2) if necess-
ary, completes the proof in this case.

Although it is a very difficult problem to determine the isomorphism classes of
the crossed products, it is relatively easy to classify the fixed point subalgebras of
affine transformations of .«7,.

b
PROPOSITION 21. Let A = (Z d) €SL(2,2). Then:

(1) If Trace(A) # 2, then s/ A4142 = of 27" (studied in [2], [5], [6] and
L[7D).

(2) If Trace(4) =2, A # I, then L }**2 = o M-*! (cf. Lemma 16) which is
isomorphic to C(SY) if A is of finite order and C if 1 is of infinite order.

() If A = I, then o 2** is isomorphic to C, if Ay, A, are both of infinite order
with % & A, for all k,1€ Z\ {0}, isisomorphic to s,a, if A1, A, are both of finite order
with ¢ = lem (ord (4,), ord (4,)) and isomorphic to C(S*) otherwise.

ProoF. (1) Straightforward using the transformation ¢ defined in the proof of
Proposition 3.

(2) Straightforward by applying the techniques in [6] to o/5"*1.

(3) By using the techniques in [6] it is easy to show the result if 2 2% for all
k,1eZ\{0}. If 2% = A} for some k,1e Z\ {0} and 1, 4, both have finite order then,
as in the proof of Theorem 20, there exists G € SL (2, Z) such that (4, 4,)G = (1,(),
where { = e%, q = lem (ord (4,), ord (4,)). Therefore if we apply the automo-
rphism ¢ of o/, we see that ¢, ;, ,, corresponds to ¢y, ;  which obviously has

of,q as its fixed point algebra. Finally if 1;, 4, both have infinite order then, as in
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2nip

the proof of Theorem 20, there exists G € SL (2, Z) such that (4;,4,)G = (4,,¢ 77 ),
where g = (k,]) and 1, is of infinite order. Therefore if we apply the automo-

rphism ¢ of &7, we note that ¢, ; , corresponds to ¢, 3, >¥% which has C(S?)
as its fixed point algebra.
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