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STABILITY IN OBSTACLE PROBLEMS

LI GONGBAO and O. MARTIO

1. Introduction.
We consider a second order degenerate elliptic partial differential equation
1.1 V- A(x, Vu(x)) =0

with /(x, h)- h = |h|?; for the assumptions on . see Section 2. A prototype for
equation (1.1) is the p-harmonic equation

1.2) V-(VulP~2Vu) = 0

which for p = 2 reduces to the usual Laplace equation 4u = 0.
Let Q be a bounded open set in R" and let 0 W ?(Q), i.e. 6 and its distribu-
tional gradient VO belong to L7(Q). For y: Q@ » R U {4+ o0} we write

Hyo={veWhP(Q)v2yae,v— 0cW; P(Q)}

and call a function v a solution to the £, 4-obstacle problem if ve £}, o and if
(1.3) J A(x,Vv)-V(p — v)dx = 0
Q

whenever pe A, 4. If 4, o + 0, then there is a unique solution to the X, o-
obstacle problem [HKM, Theorem 3.21].

The aforementioned obstacle problems include variational obstacle problems
associated with regular variational integrals

J F(x,Vu)dx
o

where F(x, h) =~ |h|?, see [HKM, Chapter 5].

We are interested in stability properties of the solutions u,, to the K, ,-obstacle
problem for varying ¥ and we prove two results which are independent of the
exponent p. However, our first result does not belong to this category and it
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depends on the (1, p)-quasiuniform converge. We introduce some notation. Let
Vi Q- Ru {+ o0} be a sequence of functions and p > 1. We say that /; > ¢
locally (1, p)-quasiuniformly if for each open set D & Q and each ¢ > 0 there is an
open set G = D such that cap; ,(G) <& and y; > in L*(D\G). Here cap, ,
refers to the variational Sobolev (1, p)-capacity, i.e.

capy, ,(G) = sup inf J (ul? + [VulP)dx
K K<G Rn
compact

where the infimum is taken over all ue CJ(R") such that u = 1 on K. The
sequence y; is called locally weakly upper bounded if for each compact set K = Q
there are M < oo and i, such that y; < M a.e. on K for i = i,.

1.4. THEOREM. Suppose that 0 W'P(Q) and that Y, : Q > R U {+ o0} are
functions such that (i) y; £ 0 for all i, (i) the sequence y; —  is locally weakly
upper bounded and (iii) y; — y locally (1, p)-quasiuniformly. If u, and u, are
solutions to the A, q-obstacle and A, g-obstacle problems, respectively, then
uy, = uy in WHP(Q).

We remark, to avoid any possible ambiguity, that in (ii), + c0 — (4 00) means
0. ‘

In Theorem 1.4 (ii) and (iii) can be replaced by y; — ¥ in L (Q), see Remark
2.23 (b), and hence Theorem 1.4 has the following version.

1.5. THEOREM. Suppose that € W'-P(Q) and that y;: Q - R U { £ 00} are such
that 0 2 y;ae. fori=1,2,....Ify; > Y in LY (), then uy, — uy in WP(Q) where
uy, and uy, are solutions to the Ay, qo-and K, g-obstacle problems, respectively.

Theorem 1.5 has been proved for example in [HKM, Theorem 3.79] under the
condition that ; = ¢ in W?(Q) and ; is a decreasing sequence.

For the next theorem assume that & is a family of solutions to obstacle
problems in , i.e. for each ue & there are y,: Q > Ru {+ o0} and 6, W P(Q)
such that u is a solution to the £}, , -obstacle problem. Write

O={y, ues}.

1.6. THEOREM. Suppose that xq € L, that there are a neighborhood U of x, and
M < oo such that

(1.7 esssup —essinfu < M
U wx

for all ue &, and that

(1.8) the family O is equicontinuous at Xx.
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Then the family & is equicontinuous at x,.

In Theorem 1.6 equicontinuity means a.e. equicontinuity. Thus, for example,
0 is equicontinuous at x, if for each ¢ > 0 there is a neighborhood V of x, such
that

esssupy —ess infyy < ¢
|4 1 4

for all Y € 0.

Continuity of the solution to an obstacle problem has been studied in [KZ]; for
Theorem 1.6 the theory of Wiener points for obstacles [KZ] is not needed.

Theorems 1.4 and 1.6 are proved in Sections 3 and 4, respectively. Section
2 contains preliminary considerations. The proof for Theorem 1.4 consists of two
parts. We first show that u,, — v in W' ?(Q) and then that v = u,,. For the first
part we employ an improvement of a lemma ([L, Lemma 2.2], [Maz, Lemma 1],
[HKM, Lemma 3.73]) which has been used to prove weak and a.e. convergence
of the gradients in L”(Q2); using the Vitali convergence theorem we show that it is
possible to conclude strong convergence in L”(G). When this paper was com-
pleted, a paper of L. Boccardo and F. Murant [BM] containing a similar
observation appeared. We also present examples which show that Theorems
1.4-1.6 are best possible.

Our notation is standard. We let

1/p
lullp, = lullLog = (J‘ |ul? dx)
E

denote the usual IP-norm of a function u. In the Sobolev space W*'#(2) we use the
norm

lully,p = llull, + [Vull,.
The space W?(R2) is the closure of CF(2) in W?(Q).

2. Preliminaries.

We first introduce the assumptions for the equation (1.1). Let p > 1 and let Q be -
a bounded open set in R". We assume that «/: Q x R" > R" is a mapping
satisfying the following assumptions for some constants 0 < a < ff < oo:

.1 the mapping x — o/(x, ¢) is measurable for all {€R"
and the mapping & — /(x, &) is continuous for a.e. xe €2;

for all £e R" and a.e. xe Q
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22 H(x,6) & z all
23) lo(x, &) < BIEP~*
(2.4) ((x,81) — A(x,82)) (1 — &5) >0 whenever & + &y;

and
(2.5) A(x,AE) = AAP 2 (x, &)

for AeR, A £ 0.

For the proofs we need other classes of solutions than solutions to the obstacle
problems. Let e W P(Q). A function v is called a supersolution of (1.1) with
boundary values 0 if v — fe W;'P(Q) and if

(2.6) j (x,Vv)-Vodx =0
o

for all peCZ(Q) with ¢ = 0. It is easy to see that (2.6) holds for functions
peWP(Q), ¢ 20, as well. Every solution to the ¢, s-obstacle problem is
a supersolution with boundary values 6 and, conversely, every supersolution v is
a solution to the J, g-obstacle problem. Finally v is a solution with boundary
values 0 if v — O e W ?(Q) and if

I A (x, Vo) Vopdx =0
Q

for all ¢ e CF(Q). For the theory of these solution classes see [HKM]. Since we
mostly keep 6 fixed, we simply speak about supersolutions and solutions.

We first improve a lemma which has been used in several occasions, see e.g.
[HKM, Lemma 3.73], [Maz, Lemma 1], [L, Lemma 2.2], and [G, p. 197]. We
show that condition (2.8) below implies the strong convergence for gradients in
LP(Q).

2.7. LEMMA. Suppose that v;,,ve W' P(Q),i = 1,2,.... Then

(2.8) lim J (A (x, Vv;) — L(x, V) V(v; — v)dx =0

if and only if Vv; - Vv in LF(Q).

PrOOF. Write
I = j (A (x, Vv;) — L(x,Vv))- V(v; — v)dx.
2

Suppose that Vv, —» Vv in [/(Q). Now /(x,Vy;) is a bounded sequence in
PP~ 1(Q) and (x, Vv)e [P/*~(Q), see (2.3), and since
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I, = J A(x, V) V(v; — v)dx — J‘ A (x, Vo) V(v; — v)dx,
o

Q

we obtain from Holder’s inequality that I; - 0 asi — 0.

Next assume that I; — 0. It follows from Young’s inequality, see also the proof
of Lemma 3.73 in [HKM, p. 80], that Vv, is a bounded sequence in LF(Q2) and,
passing to a subsequence if necessary, we may assume that

(2.9) Vv, - Vo

a.e. in Q. For each ¢ > 0 there is iy such that
J (A (x, Vo) — A (x,Vv))- V(v; — v)dx < ¢
2

fori = iy. Since the integrand is non-negative, for each measurable set E = Q we
have

J (A(x,Vv;) — A(x,V0))-V(v; — v)dx < ¢
E
for i = iy. Then

on Vo |Pdx £ J o (x, Vv;): Vo dx

E E

<e+ J A(x,Vv)- V(v — v;)dx + J A (x,Vv;)- Vodx
E E

<e+ ﬂj Vo~ 1 Vy — V| dx + BJ Vo]~ Vo dx
E E

S e+ BIVollag Vo — Voill Lo + BIVUllEz@ V0] Lo

where we have used Holder’s inequality. Since the sequence Vu; is bounded in
IP(Q), we see that for each ¢ > 0 there is 6 > 0 such that for all i

j [Vu|Pdx < ¢
E

whenever m(E) < 8. This means that |Vy;|? is uniformly integrable and this
together with (2.9) yields that Vv; —» Vo in [7(Q), see [HS, p. 203] for the Vitali
convergence theorem. Finally, observe that this holds for the original sequence
Vu;, and not for its subsequence only, since if || Vo;, — Vo] Loy 2 & > 0in L7(£2) for
some subsequence of Vu;, then the above proof gives a contradiction. The lemma
follows.
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For the next lemma assume that u;e W'?(Q),i = 1,2,...,and ue W' ?(Q) are
such that

(2.10) Vu;ll, £C <

and

(2.11) f A (x, Vi) V(p; + u — u;)dx = 0,
o

J o (x, Vu)-V(®; + u; —u)dx = 0
Q2

for some functions ¢;, ®;e W!P(Q) with

(2.12) Vp; -0 in [/(Q),
(2.13) V&; -0 weakly in [(Q),
2.14. LeMMA. Vu; - Vu in LP(Q).

Proor. We show that
I = f ((x, Vi) — s (x, V) Vot — ) dx — 0
Q

as i — oo. Then Lemma 2.7 implies that Vu; —» Vu in [P(Q).
To this end, inequalities (2.11) yield

(2.15) I §J‘ (x, Vu) Vo, dx + J.M(x, Vu) -V, dx.
2 Q

Since o/(x, Vu) € LP/?~(Q) and V®; — 0 weakly in [P(Q), the last integral in (2.15)
tends to zero as i — 0. Since I; = 0, it remains to show that

(2.16) f A (x,Vu;)- Ve, dx — 0
Q

as i —» oo. Since Vu; is a bounded sequence in [P(Q2), we obtain from Holder’s
inequality that

S BIVulE Ve,

J‘ 2 (x,Vu;)- Vo, dx
Q2

s clVoill,

where c is independent of i. Since Vo; — 0 in L*(Q), (2.16) follows and the proofis
complete.
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Lemma 2.18 gives strong convergence of the gradients for solutions to obstacle
problems with zero boundary values. Here a result of L.-I. Hedberg is needed.

2.17. Lemma ([H]). Let ¢ € Wy -?(Q). Then for each compact set K < Q and for
each & > 0 there is a function ne C3(Q) such that 0 <n<1,n=1 on K, and
IV —ne)ll, < e

2.18. LEMMA. Suppose that ¢ € Wy P(Q) and that 0;: Q - R U {+ o) is a lo-
cally weakly upper bounded sequence of functions such that fori = 1.2,...,0 2 6,
a.e. and 0; — 0 locally (1, p)-quasiuniformly. Then the solutions ug, to the X'y, o-0b-
stacle problem satisfy Vuy, — 0 in LP(Q).

PrOOF. Since ¢ € £y, o, the family £, o is non-empty. Hence the solutions ug,
exist. Since up = 0 ((HKM, Lemma 3.18]), we may assume that 6; = 0.

Let D « Q be an open set and ¢t > 0. Since 6; — 0 locally (1, p)-quasiuniformly,
there is an open set G = D and a function ue Wy '?(Q) such that (i) 0 < u < 1, (ii)
u = 1 (1, p)-quasieverywhere on G, (iii) ; —» 0 uniformly in D\G, and
(iv) IVull, <t

for this construction see [HKM, Corollary 4.13] and [HKM, p. 49]. Note that
a capacity function can be cut off from W ?(R") = W P(R") to Wy ?() because
D = Q. That u = 1 (1, p)-quasieverywhere on G means that u = 1 on G except of
a set of (1, p)-capacity zero. This implies thatu = 1 a.e. on G, see [HKM, Lemma
2.10].

After these preliminaries we prove the lemma. Let ¢ > 0 and choose a function
neCg(Q) as in Lemma 2.17 such that

(2.19) V@ = no)ll, =

Next let D be an open set with spty = D = Q. Since 6; is a locally weakly upper
bounded sequence, there are i, and M €(0, o) such that

(2.20) ;<M aeon D
for i = iy. Choose ¢; > 0 such that
(2.21) e IVnll, <e

and G = D and ue W' ?(Q) as in (i)~(iv) for ¢ = ¢/M. Then pick i = i, so large
that for i = i

(2.22) 0; <e on D\G.
Consider the function

v=>1—ne + en + Mu.
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Now ve Wy #(©2) and from (2.20) and (2.22) it follows that ve X, o for i = if.
Indeed, v=¢ =6, in Q\D, v=(1 —n); + 0;n =0, in D\G for i =iy and
v 2 Mu = 6;in G for i = iy,. Hence

J A(x,Vup) V(v — tp)dx 2 0
o

and this yields for i = i

IVitg I, < (ﬁ) 1ol
o

< (5—) IV = molll, + &0 IVall, + M |Vull,)

where the last inequality follows from (2.19), (2.21), and from (iv) with ¢t = ¢/M.
Thus Vu, — 0 in L7(©2) as required.

2.23. REMARKS. (a) Lemmas 2.14 and 2.18 and their proofs remain as stated
in any open set Q = R The proof of Lemma 2.7 needs a slight adjustment for an
unbounded open set Q < R”; sets E = Q outside a large ball require a separate
treatment in the uniform integrability.

(b) If in Lemma 2.18 it is assumed that §; — 0 in L (), then the conclusion
holds. Infact,fori = iy, §; < ¢a.e.in D and the function v = (1 — )@ + ey will do.
After this observation the proof for Theorem 1.5 is the same as for Theorem 1.4.

3. Proof for Theorem 1.4.

First we make some preliminary observations. Let u be a solution of (1.1) in
Q with boundary values 6. Then u is a solution to the /#_ , g-obstacle problem
and hence u,, u, = u a.e., see [HKM, Lemma 3.22]. This means that u,, and u,
are also solutions to the K naxwy, u),6-aNd H naxy, w), o-Obstacle problems, respect-
ively. Thus we can replace y; and y by max(y;, u) and max(y, u). Observe that
after this replacement we still have that y; —  locally (1, p)-quasiuniformly and
that y; — y is a locally weakly upper bounded sequence; note that ; < 6 a.e.
implies ; < oo a.e. As a boundary function we can use, instead of 6, the function
up which is a solution to the X7 g-obstacle problem. Then ug = uy, and ug = uy
and replacing 0 by u, we may assume that

(3.1) uSYiSu, <0, usysSu, <0

a.c. in . Observe that § — ue W, ?(Q).
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Choosing v = u,,_ and ¢ = 0 in (1.3) we see that
IVuy, I, = C

where C < oo is independent of i. By the Poincaré inequality the sequence u,, is
bounded in IP(Q) as well. Thus we may assume, passing to a subsequence if
necessary, that uy, — v weakly in L?(®) for some ve W'?(Q) and Vu, — Vv
weakly in L7(Q). Since Wy P(Q) is weakly closed, v — 0 e W, (). By the Sobolev
imbedding theorem [A, Theorem 6.2, Part IV] we may also assume that

(3.2) uy, —v in IXQ)
and that
(3.3) Uy, —>v ae. in Q.

Since u, = ;a.e. and since y; — Y locally (1, p)-quasiuniformly and hence a.e. in
Q, we have v = a.e.
Next we will prove that

(3.4) Vu, = Vo in [X(Q).

From (3.2) it then follows that u, — v in W' 7(Q). Finally we will show that
v = uy and this completes the proof because now the original sequence, and not
only its subsequence, must converge to u, in W' ?(Q).

To prove (3.4) we reduce the problem to zero boundary values. Let ¢; be
asolution to the £, _, o-obstacle problem; note that § — ue ¥, o and hence
asolution exists. Now y; — < 0 — ue W3 P(Q)a.e. in Qand y; — ¥ — 0locally
(1, p)-quasiuniformly. Morever, the sequence ; —  is locally weakly upper
bounded in ; observe that ; and  are a.e. finite by (3.1). Lemma 2.18 yields

(3.5) Vp;—»0 in L/(Q).
We let @; = v — u,,. Then

(3.6) J A (x,Vv)-V(P; + uy —v)dx = 0.
(2]
On the other hand,
(3.7) ity —y+ovzdi—y+y=y,;

a.e. in Q and hence
(3.8) J A (x,Vuy ) Vip; + v —uy)dx 20
Q2

because u, is the solution to the ¢, o-obstacle problem and
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@i + v — 0e WP(Q). From (3.5), (3.6), and (3.8) together with Lemma 2.14 it
now follows that Vu, — Vv in [F(Q).

It remains to show that v = u,,. Since a solution to the J;, y-obstacle problem
is unique, it suffices to show that

(3.9) J A(x,Vv)-V(n — v)dx =2 0
o

for all ne Ay . Fix ne A, o and write u; = n + ¢@; where ¢;, as above, is the
solution to the ¢, _, o-obstacle problem. From (3.5) we obtain
(3.10) Vu,—»Vy in I[P(Q)

and this implies (3.9). Indeed, passing to a subsequence if necessary, we may
assume that

(3.11) A(x,Vuy, )V, — uy) = A (x,Vv)-V(n — v)

a.e. in Q and for all measurable sets E < 2 we obtain

j l/(x, Vuy,) V(u; — uy, ) dx
E

= ﬁf [V, 1271 [V(; — uy,)| dx
E

< BIVuy 1o (IVuill oy + 1V0y, 1o

< BIVuy e (VA Loy + IVOill oy + [ Vity, o)
< CAIV(uy ) Er,

<é&

whenever we choose m(E) < d = d(¢). This means that the functions
s (x,Vuy ) V(u; — uy,, ) are uniformly integrable over Q and together with (3.11)
this implies

t— o

(3.12) lim J o (x,Vuy ) V(u; — uy,)dx
ol

= J & (x,Vv): V(n — v)dx.
Q2
Since u; — e Wy 'P(Q) and u; 2 0 + ¥; — ¥ = ¥, ; belongs to A, and thus

(3.13) f A(x,Vuy ) V(u; — uy)dx 2 0.
2
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From (3.12) and (3.13) we thus conclude that (3.9) holds. The proof is complete.

3.14. REMARKS. (a) The local (1, p)-quasiuniform convergence is the weakest
possible in Theorem 1.4. This can be seen by choosing a compact set K = Q with
positive (1,p)-capacity and m(K)=0. Then choose compact sets
K, = K + B(1/i) (the 1/i-inflations of K;). Now K; > K, o ... and nK; = K.
Let ¢;=yx, and = xx. Then y; does not converge to y locally
(1, p)-quasiuniformly and Uy, + u, = 0 in W'P(Q) where u,, is a solution of the
Ay, o-obstacle problem. This example, with suitably chosen K, also shows that
no local (1, g)-quasiuniform convergence, g < p, suffices in Theorem 1.4.

(b) In general, Theorem 1.5 is also the best possible. No L’-convergence,
1 £ s < oo, for the obstacles ; is enough in Theorem 1.5. To see this choose
p > nand let @ = B(0, 1). Choose a sequence y; € Cg(B(0, 1)) such that y;(0) = 1
and y; | 0 in I’(B(0, 1)). Then each solution u; of the £, o-obstacle problem in
B(0, 1) satisfies u;(0) = 1 and u;| B(0, 1/2) = ¢ > 0 where c is independent of i. On
the other hand, the solution to the ¢ o-obstacle problem is u = 0 and hence
u; - uin W*P(B(0, 1)).

(c) The condition y; £ 6 in Theorem 1.4 is also necessary since otherwise it is
easy to construct a sequence y; such that y; — O uniformly in Q but the solutions
u; to the £, o-obstacle problem satisfy

Vi ||, = o0
asi — oo. Hence again the sequence u; cannot converge in W*-?(Q) to the solution
u = 0 of the A o-obstacle problem.
4. Proof for Theorem 1.6.

Let xo€Q be as in Theorem 1.6 and let ¢ > 0. Fix a ball B = B(x,r) such that
B(x,,4r) cc Q,

4.1) esssupu — essinfu < M
B B
and
4.2) esssupy, —essinfy, < ¢
B(xo, 4r) B(xo, 4r)
forall ue &.
Fix ue.%. We consider two cases. First assume that
4.3) essinfu = esssup iy, + &.
B B

Now u is a solution of (1.1) in B. Indeed, let 9 € C3 and let t > 0 be so small that
[to| < e Thenu + tpe Xy o, by (4.3) and hence
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4.4 tj (x,Vu) Vo dx = 0.

B
Changing the sign of t we obtain (4.4) with the reverse inequality. Thus
4.5) f A (x,Vu)-Vodx =0

B

for all ¢ e CF(B) and this means that u is a solution of (1.1) in B. Now [HKM,
Theorem 6.6] implies

. s\* )
esssupu — essinfu < 2¢ (——) <ess sup u — essinf u)
r

B(xo,s) B(xo,5) B B

where we have also used (4.1) and « = «(p,p/a,n) >0. Choosing
s = s(p, B/o,n, M,r, )€ (0,r]

we see that

esssupu —essinfu < e.

B(xo,5s) B(xo,s)
Next assume that
4.7 essinfu < esssup iy, + &
B B
Let m = esssupgy,. We may assume that m = 0; note that m = — oo is not

possible in case (4.7) and m = oo is always impossible. This renormalization does
not affect condition (4.1). Now u — ¢ is a solution to the %, _, ,.-obstacle
problem in B and by (4.2), ¥ — ¢ < 0 a.e. in B. Thus [HKM, Theorem 3.34]
implies

4.8) esssup(u — &) < esssup(u —¢)*
B(xo,r/2) B(xo,r/2)

1/q
=< c(f lu — el“dx>
B

whereq = n(p — 1)/2(n — p)ifp < nandq = pifp = n. Here ¢ = ¢(p, B/a, n) < o
and { denotes the mean value integral, i.e.

J, =i |
B— m(B)
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Next from [HKM, Theorem 3.59] we obtain

(4.9) <]( (u+ ¢ dx)llq < cessinf(u + ¢)
B B

where c is as above; note that by (4.2)
u+ez2y,+¢e=0 ae in B(xg,4r)

and hence u +¢ is a non-negative supersolution in B(xy,4r). Since
—2e<y—e<u—e<u+e we obtain |u— g? < max((2e)L|u + €9 <
(2¢)* + |u + €|. Now (4.8), (4.9), and (4.7) yield

4.10) esssupu < cessinfu + ce
B(xo,r/2) B

< cesssupy, + ce
B

<ce

because ess supg ¥, = m = 0. Since u =y, a.e., we see that

essinf u = essinfyy, = —e

B(xo,r/2) B
and now (4.10) yields
4.11) esssupu — essinfu Zce+e=(c+ 1)
B(xo,r/2) B(xo0,r/2)

where ¢ = ¢(p, n, /o) < 0. Since u € & was arbitrary, inequalities (4.6) and (4.11)
show that & is equicontinuous at x,. The theorem follows.

4.12. ReMARKks. (a) Condition (1.7)in Theorem 1.6 is satisfied in many cases.
In particular, it holds when the families ¢ and {0,: u€ &} are uniformly bounded.
Simple examples show that condition (1.7) is necessary for Theorem 1.6.

(b) It follows from (1.7) and from [HKM, Lemma 3.47] that for each ue &

j |VulPdx < ¢
B(x0,r/2)

where ¢ = c(p, f/o,n,r, M) < co and B(x,,r) = Q is such that (1.6) holds for
% = B(xq,r). By Sobolev’s imbedding theorem for p > n each function ue & is
uniformly Hélder continuous in B(x, 7'2) and hence condition (1.8) is not needed
in Theorem 1.6. Thus for p > ncondition (1.7) alone implies the equicontinuity of
the family &. If p < n, then there exist non-continuous supersolutions of (1.1) and
hence some control for obstacles is needed in order to obtain equicontinuity for
solutions.

(c) Michael and Ziemer proved in [MZ], see also [HKM, Theorem 3.67], that
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asolution to the ¢}, ,-obstacle problem is continuous provided that y is continu-
ous. Theorem 1.6 has a somewhat different character.
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