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C*-BOUNDING SETS AND COMPACTNESS

PETER BISTROM and JESUS A. JARAMILLO!

Abstract.

In this article it is proved that any set in a real Banach space on which the C*-functions are bounded,
is relatively compact. In particular, for any real Banach space E, a sequence (x,) convergences to x in
E if and only if f(x,) = f(x) for all fe C*(E).

In the literature, bounding sets have been studied mainly with respect to two
function classes: the class of real continuous functions and the class of holomor-
phic functions. In the first case, bounding sets are for instance related to the
Nachbin-Shirota theorem (see [6]). In the second case, bounding sets arise
naturally in problems of analytic continuation, envelopes of holomorphy and
topologies on spaces of holomorphic mappings [4]. It was proved by Dineen [3]
that the non-compact closed set of all unit vectors in [ is bounding with respect
to all holomorphic functions on [®. This article proves that, contrary to the
complex case, all bounding sets in a real Banach space with respect to the
C>-functions are nothing but relatively compact.

Given a subset 4 of a Banach space E, we say that A is C*-bounding if
SUPyc4 |f (%) < oo for all f € C*(E). Contributions to the theory of C*-bounding
sets have recently been made by the authors of [1] and [2] and by Kriegl-Nel in
[7]. In [1] it is proved that the C*-bounding sets are relatively compact in the
general class of Banach spaces embeddable into C(K), where K is compact and
sequentially compact. This class contains all WCG spaces and many others.

Since E' = C*(E) =« C(E) for any Banach space E, the class of C*-bounding
sets is a priori placed between the classes of bounded and relatively compact ones.
If 4 and B are C*-bounding sets, also — A4 and 4 U B are C*-bounding. It is
therefore of interest to study symmetric sets, where A4 is symmetricif A = — 4. We
start by a result for certain symmetric sequences in the real Banach space [ *:

LemMA 1. For every bounded sequence (a,) in the real Banach space 1™, with
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law — amll 23 if n 4 mand ay,4 = —a,, for all n, there is a subsequence (a,, )
such that

an—lzay,, foral kp=12..,

Nk +p
where a, = (al,a?,...,d.,...) and (i) is an increasing sequence in N.
Proor. Let S, be the set of positive even integers and let i; be the smallest
index for which
sup |ai! — aj| > 2.
v, ueSo

Such i, exists since ||a, — a,| = 3 if n + m. Take some n, € S, such that for all
ve S, either

Opal —12d' or @pd+1<dl,

1

where S, is an infinite subset of So N {ne N: n 2 n,}. Assume that the statement
#(p) below holds for p = 1.

P(p). For all k with 1 £k < p there are integers n,eS,-; and i, with
O=iy<...<ip-1<ppand 0=ng <...<n_,; <n and infinite sets S, with
S © Si—1 n{n:n > n,} such that either ©, or @, below hold for all ve S,

Ouak —12d¥% or @padk+1=ak
Since (a,) is a bounded sequence, there is for each index j with 1 <j <i, at
most a finite number of elements u, ve S, such that |a/ — aj;l > 2 whenever v F u.
Therefore as |a, — a,| 2 3 for all v, ue S, with v % p, there exists an i, 4, > i,
with

i i
sup layr*! —ap*t| > 2.
v,neSp

Obviously there is some n,, , €S, such that for all ve S, ., either

Oprpiati —12zalP*t or @,4pdirt! + 1< drty,

np+ 1 Rp+1

where S, ; < S, is an infinite subset of {n: n = n,,}.
Since Z(p + 1) holds, it follows by induction that two increasing sequences (n;)
and (i) exist, so that either of the conditions ©, or @, below hold for all k

O ax —12=a* forall p=12,...,

ny Rk +p
@uax+1Za), forall p=12,...

Now, if ©, occurs infinitely many times, we pass, if necessary, to a subsequence
of (af,’;) and obtain the statement. If not, then @, occurs infinitely often, by which
we again, if necessary, restrict to subsequences. We change the sign and use that
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i i -
—ay,  =ar, ., forall p=0,1,...

to obtain the same statement thus proving the lemma.
THEOREM 2. Inreal Banach spaces the C*-bounding sets are relatively compact.

ProoF. Suppose, contrary to the statement, that there exist a real Banach
space E and a symmetric C*-bounding set B = E which is not precompact. Then
there is an ¢ > 0 and a C*-bounding sequence (z,) in B such that z,,,; = —z,,
for all n and |z, — z,,|| = ¢ if n & m. According to the Hahn-Banach theorem,
there exists I, € E' with ||1,,,| = 1 such that|l,.,.(z, — z,,)] = ¢for m & n. Now the
set T:= {(m,n)e N2 n % m} is countable. Hence we get a well defined continuous

. 3 .

linear operator L: E —[%; zv—»(; lk(z)) . Thus (a,), where a, = L(z,), is
keT

a C*-bounding sequence in [* with a,, , ; = —a,, for all n. Since ||a, — a,,|| = 3

ifn & m, there is, by Lemma 1, a subsequence (a,, ) and an increasing sequence (i)

in N such that
alk — 12 a forall k,p=12,....

Let f: I — R be the function that assigns a vector x = (x*, x?,...) in [® the value
() = hy(x™) + 295 (x")hy(x"2) + 3g1(x")g2(xh3(x") + ...
o4 kg (X)g,(x'2). . gh— 1 Y (x™) + ...,
where (h,) and (g,) are sequences of non-negative C*-functions on R such that
hio) = {cl) o 2d 4
1, for t<ak —1
90) = {0, for t > af,’;t -3

Take an arbitrary x, = (x!,x2,...)el®. If there exists some k with x* >
al — %, then for every y = (y',%,...) with sup, |y’| < %

fxo + y) = hy(x™* + y'') + 2g,(x" + y)hy(x + ¥ + ...
oot kg (X YY) g (X YR (X 4y,

by which f is a C*-function on [ at the point x. On the other hand, if for all k we
have that x* <alx —3, then f(xo+y)=0 for all y=(y',)%..) with
sup, |y’| < % Thus also now f is a C*-function on [® at the point x,, and
therefore a C*-function on [ since x, is arbitrary. By construction, f(a,,) = k
for each k. This is however a contradiction since L(B) is C*-bounding and
therefore the theorem is proved.
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The reader observes that the function f constructed in the proof above is a very
special C*-function on [ since f locally depends on a finite number of coordi-
nates. Using this we can extend our result in the following way.

Given a real separated locally convex space (Ics) E, let CF(E) denote the set of
finitely smooth functions on E, i.e. f e C{(E) if, for each x € E there are an open
Usx, a finite set {l;,...,],} @ E' and a smooth function g: R" - R with
f(x) = g(ly(x),..., L,(x)) for all xe U. Then CF(R") = C*(R"), but CP(E) § C*(E)
if E is an infinite-dimensional Banach space. Obviously the set C(E) is an
algebra that is closed under composition with continuous linear maps from the
left and with smooth functions on the reals from the right. It is then readily
checked that we in Theorem 2 actually have proved that each C?-bounding set in
a real Banach space is relatively compact.

The result of Theorem 2 extends easily to locally convex spaces: Let 4 be
a C7-bounding set in a Ics E. Since E is a subspace of a topological product
[ .1 E: of Banach spaces E,, the sets pr,(A) are C7-bounding in E, for each 1€ 1.
By Theorem 2, these projected sets are relatively compact in E,, hence precom-
pact as these two concepts agree in quasi-complete spaces. Precompactness is
preserved by formation of arbitrary products and subspaces [6, p. 65] and
therefore Theorem 2 implies the more general

COROLLARY 3. Any C{-bounding set in a Ics E is precompact and therefore
relatively compact if E, in addition, is quasi-complete.

By considering an example in [5, p. 22], we see that there is a locally convex
space with a C7-bounding set that is not relatively compact. Nevertheless there
are a number of situations where the C7-bounding sets are characterized as
relatively compact without use of quasi-completeness. For instance, when E is
paracompact and the functions in CF(E) induce the topology of the space (e.g. if
E admits C¥-smooth partition of unity). Indeed, in this case we obtain using the
Tietze extension theorem that every closed C7-bounding set is countably com-
pact and hence compact by paracompactness of E. We have also the following:

PROPOSITION 4. Let E be a quasi-complete Ics. Then the CF-bounding sets in
(E,o(E, E") are relatively weakly compact.

ProOF. Take a C7-bounding set A < (E, o(E, E)) and assume that A is not
relatively weakly compact. Then, by [8], there is a feC(E,a(E,E") that is
unbounded on A4. Pick a sequence (x,) in A such that f(x,+) > f(x,) + 1 for
every n. Obviously there is for each n a function g,e C{(E) vanishing on
{xeE:|f(x) — f(x,)| = 1} and with g,(x,) = n. Thus g = ) =, g, is a C{-func-
tion on E which is unbounded on 4, a contradiction.

Another example of spaces in which the C7-bounding sets are characterized
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without quasi-completeness is found in the paper [1] (although stated for C*-
functions it works for CP-functions):

PROPOSITION 5. Each Cf-bounding set in a Lindeldf Ics is relatively compact.

Let E,, denote the space E endowed with the weakest topology making all
Cy-functions on E continuous. Take a sequence (x,) which converges to x in E,,
and let 4 be the compact set {x} U {x,: ne N} in E . Assume that 4 is compact in
E as well. Thus the identity

id: (4,E) - (4,E,)

is not only a continuous bijection, but also - since E, is Hausdorff — a homeo-
morphism, by which the sequence (x,) converges to x in E. We therefore arrive at:

COROLLARY 6. Let E be a lcs that either is quasi-complete or Lindelof. Then
E and E, have the same compact sets. Furthermore x, — x in E if and only if

J(xa) = f(x) for all f € CF(E).
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