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SOME NOTEWORTHY PROPERTIES OF ZERO
DIVISORS IN INFINITE RINGS

ABRAHAM A. KLEIN AND HOWARD E. BELL

In a ring R with no nonzero nilpotent elements, every zero divisor is two-sided,
and its left and right annihilators coincide. If R has nonzero nilpotents, the
situation is considerably more complicated: R may have one-sided zero divisors
which are not two-sided, two-sided zero divisors with trivial two-sided annihila-
tor, or nonnilpotent elements with nontrivial two-sided annihilator. Denote by
D = D(R), T = T(R), S = S(R), and N = N(R) respectively the sets of zero div-
isors, two-sided zero divisors, zero divisors with nonzero two-sided annihilator,
and nilpotent elements; and note that

(1) D2T2S2N.

Assume throughout the paper that R is infinite and D # {0}.

Ganesan [4, 5] proved long ago that D must be infinite, and more recently
Hirano [6] showed that T must be infinite. It is clear that N may be finite; but
S must be infinite — a fact which is immediate from Theorem 4 of [1]. In Section
1 we provide additional information about the set-theoretic structure of D and S.

A recent extension of Ganesan’s result [2] asserts that if D + N, then D\N
must be infinite. This suggests investigating whether S\N, T\ S, and D\ T must be
infinite, and we carry out such an investigation in Section 2. In the final section we
construct examples probing the question of what combinations of equality and
proper inclusion may in fact occur in (1). Of the eight theoretical possibilities, all
except perhaps one really are possible.

For Y an element or subset of R, we let A,(Y), 4,(Y), and A(Y) denote the left,
right, and two-sided annihilators of Y; and we denote by D, = Dy(R) and
D, = D,(R) the sets of left and right zero divisors. We use the word “ideal” to
mean two-sided ideal. When we say that a subring of R has finite index, we mean
that it has finite index as a subgroup of (R, +).
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1. The Sets D, T, and S.

For arbitrary yeR, considering the map x+> xy from R onto Ry shows that
either Ry isinfinite, or 4,(y)is of finite index and therefore infinite. In particular, if
y is a nonzero left zero divisor, then either Ry or 4,(y) is an infinite subset of D;
hence D is infinite. This proof is essentially given in [4] and [5], and we have
repeated it for the reader’s convenience. To say something more precise, we need
the following result.

LemMa 1. (i) If Iis a finite left (right) ideal of R, then A,(I)(A,(I))is an ideal of
R of finite index.

(i) If I is a finite ideal, then A(I) is an ideal of finite index.

(iii) If y € R and Ay(y) has finite index, then A)(y) contains anideal of finite index.

(iv) If A(y) has finite index, it contains an ideal of finite index.

Proor. (i) Clearly 4,(I)is anideal. Moreover, for each y e I, Ry is finite, hence
Ay(y) has finite index. Since the intersection of finitely many subgroups of finite

index is again of finite index, we conclude that A,(I) = ) A,(y) has finite index.
yel

(ii) IfIis afinite ideal, then 4,(I) and A,(I) are both ideals of finite index, and so
is A/(I) N A,(I) = A(I).

(iii) Since Ry is finite, A,(Ry)is anideal of finite index by (i); and if y € Ry, we are
finished. Otherwise, we note that 4,(Ry) N A,(y)is of finite index, and it is an ideal
because it is the left annihilator of the left ideal generated by y.

(iv) If A(y) has finite index, so do 4,(y) and A4,(y); hence they contain ideals I,
and I, of finite index by (iii). Then I; N I, is an ideal of finite index contained in

A(y).

COROLLARY 1. The set D is a union of nonzero one-sided ideals; and if one of
these is finite, then D contains an ideal of R of finite index.

ProoF. Obviously, D is the union of the nonzero one-sided ideals A4;(x),
xeD,\{0} and 4,(y), ye D;\{0}. If one of these, say A,(u), is finite, then by Lemma
1 (i) A;(A,(w)) is an ideal of finite index which is contained in D.

REMARK. Itis natural to ask what happens if all the above A,(x) and A4,(y) are
finite. In fact, by Theorem 4 of [1], this cannot occur.

With respect to the set T, note that it is the union of the subrings 4,(y) N A4,(z)
with y,ze R\{0}. If R is prime, then for xe T we have {0} % A,(x)RA;(x) =
Ai(x) N A,(x) = A(x); and therefore T = S. There are, however, prime rings for
which T # D - for instance, the ring of linear transformations of an infi-
nite-dimensional vector space over a division ring, which has left invertible
elements which are not invertible.
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In a ring with no nonzero nilpotent elements, we have D = T = S; and for each
x€R, A)(x) = A,(x) = A(x) is an ideal. Thus, in view of Lemma 1, we get

COROLLARY 2. If N = {0}, then D = S is a union of nonzero ideals; and if one of
these ideals is finite, then D contains an ideal of finite index.

We proceed now to the case where N is finite and nonzero.

THEOREM 1. If N is finite and nonzero, then for each ye N, A(y) contains an ideal
of R of finite index; and so does A(N).

Proor. Clearly R has no infinite zero subrings, hence by a result of [8], A(y)is
of finite index for each y € N. The theorem now follows from Lemma 1 (iv) and the
finiteness of N.

An immediate consequence is a result which we have recently established in
another context.

COROLLARY 3 ([3, Theorem 3]). If R is an infinite prime ring with only finitely
many nilpotent elements, then R is a domain.

We are now ready to state our structure theorem for S, which obviously
contains the previously-mentioned result that S must be infinite.

THEOREM 2. The set S is either a union of infinite ideals of R, or contains an ideal
of R of finite index, or contains an infinite zero ring. Moreover, if A(x) has finite
index for all x € S\{0}, then S is an ideal of R of finite index.

Proor. If S is neither a union of infinite ideals nor contains an ideal of finite
index, then by Corollary 2 and Theorem 1. S must contain infinitely many
nilpotent elements. But by a recent result of ours [7, Theorem 6], any ring with
N infinite contains an infinite zero ring, necessarily in S. The final assertion of our
theorem is easily established, using Lemma 1 (iv).

REMARK. In[8]itisshown thatfor any ring R, the set H(R) = {x € R| A(x) has
finite index} is an ideal of R. In the final sentence of Theorem 2, § is of course
equal to H(R).

2. The Sets S\, T\S, and D\T.

A subset of a ring is said to be power closed if it contains all positive powers of its
elements; and it is said to be root closed if whenever it contains a positive power of
an element, it also contains the element itself. It is clear that if U 2 V are two
power closed and root closed subsets of a ring, then U\ V is also power closed and
root closed.
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LEMMA 2. The sets S\N, T\S, and D\T are power closed and root closed.

Proor. Itsuffices to prove that each of N, S, T, and D is power closed and root
closed. All the parts of the proof are completely straightforward except showing
that S is root closed. Suppose, then, that x"e S and 0 + ye A(x"). We aim to show
that A(x" ') + {0}, so that root closure follows by backward induction. We may
assume that yé¢ A(x) and, without loss, that xy 0. If xyx £ 0, then
xyx e A(x"~1)\{0}; otherwise x*y e A(x"~')\{0}, where k is the largest integer for
which x*y & 0.

LeMMA 3 ([9] or [3, Theorem 1]). If R is an infinite ring with R £ N, then R\N
is infinite.

THEOREM 3. If S £ N, the S\N is infinite.

ProoF. If S\N contains an element a with infinitely many distinct powers,
then Lemma 2 gives the result at once. Thus, we assume that for ae S\N we have
distinct positive integers m, n for which 4" = a™; and it follows by a standard
argument that S\N contains a nonzero idempotent e. Consider the Pierce
decomposition

R=eRe+eR(1 —e) + (1 — e)Re + (1 — e)R(1 — e),

the 1 being purely formal; and observe that each summand is contained in S.
Since R is infinite, at least one summand must be infinite.

Suppose first that eRe is infinite. Since eeeRe, eRe F N(eRe), thus
eRe\N(eRe) is infinite by Lemma 3, and S\N is infinite.

If (1 — e)R(1 — e) is infinite and different from N((1 — e)R(1 — e)), the same
argument works; so suppose (1 — e)R(1 —e) is infinite and is equal to
N({(1 — e)R(1 — e)). For ye(1 —e)R(1 —¢), e(e + y) =e, so e + y& N; and if
y' =04 y"" !, then y" '€ A(e + y)\{0}. Therefore {e + y|ye(l — e)R(1 — e)}
is an infinite subset of S\N.

We complete the proof by discussing the case where eR(1 — e) is infinite, the
fourth case being similar to it. Choose v # 0in A(e) = (1 — ¢)R(1 — e). For each
yeeR(1 —e), we have (e + y)> =e+ y + 0 and yv — ve A(e + y); moreover,
yv % v, since otherwise 0 = y?v = yv = v. Therefore, e + eR(1 — ¢) is an infinite
subset of S\N.

We now proceed to construct two rings with N finite, one showing that T\S
may be finite and non-empty, the other showing that D\T may be finite and
non-empty.

ExaMPLE 1. Let V be an infinite Boolean ring without unit, so that all its
elements are zero divisors; adjoin to V a unit e of additive order 2, and denote the



SOME NOTEWORTHY PROPERTIES OF ZERO DIVISORS IN INFINITE RINGS 63

extended ring by W. Let U = {0,1} be the 2-element group, and make it into
a (W, W)-bimodule by defining le = el =1and V1 =0 = 1V. Let

w U
R =
v ol
with the usual matrix multiplication and UU = {0}.

. 0 U .
It is readily seen that N = [U 0], hence |N| = 4. All other elements with

(1, 1)-entry different from e are in S, for if ve V\{0} and v’ € V\{0} such that

o0’ = 0, then ['(’) g] €A ([:2 %])\{0} and [g g] €A ([e :2 v ’3])\{0}.

has left annihilator 0 g] and

Each of the remaining four elements (ej g
right annihilator [ 3 g] , so these four are the elements of T'\S. Note that in this
example, D = T.
ExaMPLE 2. With W and U as in the previous example, take
w U
R= [o 0 ]
Then |N| = |U| = 2; and as above, all elements with (1, 1)-entry different from

e 0 .
] ; and these are left units

. . le 1
earein S. Only two elements remain, [ 0 O] and [ 0 0

U C
with left annihilator [g 0] ,hence arein D\ T. Of course, T = S in this example.

THEOREM 4. If T % S and N is infinite, then T\S is infinite.

PROOF. As in the proof of Theorem 3, we use Lemma 2 to reduce to the case
where there exists a nonzero idempotent ee T\S. In this case,

A(e) = (1 — e)R(1 — ¢) = {0},
but A,(e) = R(1 — e) + {0} and A4,(¢) = (1 — ¢)R + {0}. It follows that

2 (A1(e))* = (4,(e)) = A,(e)Ai(e) = {0},
and that
3) ey=y forall yeAle)

We show first that e + A,(e) = T\S.
It is easy to verify that for be A,(e), A;(e + b) = Aj(e); and for xe Ay(e + b) N
A,(e + b), it now follows from (2) and (3) that (e + b)x = x =0, so that
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Afe + b) = {0}. Now for 0 % ce(1 — e)R, (2) and (3) yield (e + b)(bc — c) = 0;
and the fact that b> = 0 makes it clear that bc — ¢ + 0. We have now shown that
A.(e + b) + {0}, so that e + be T\S as claimed.

Of course a similar argument shows that e + A4,(e) < T\S, so we may proceed
under the assumption that A4,(¢) and A,(e) are both finite. Since
R = eRe + Aj(e) + A,(e), it follows easily from (2) that I = A,(e) + A,(e) +
Ai(e)A,(e) is a finite ideal of R with I* = {0}. Since N is infinite, we must have

RY. . . R .
N (T) infinite; and since 4,(e) + A4,(e) < I, every element of T is of form x + I

with x € eRe. It follows that N(eRe) is infinite. We complete the proof by showing
that e + N(eRe) = T\S.

Clearly, e + N(eRe) = T, since ee T. Moreover, for ye N(eRe), e + y is invert-
ible in eRe; consequently, A4,(e + y) = A,(e) and A.(e + y) = A,(e), so that
A(e+y)=0and e + ye T\S.

Recalling that § is always infinite, we now get from Theorems 3 and 4 the
following result.

COROLLARY 4. If T & N, then T\N is infinite.

THEOREM 5. Let D\T be nonempty.
(i) If N is infinite, then D\T is infinite.
(@ii) If N is finite, then |D\T| 2 |N]|.

Proor. As before, we proceed at once to the case where D\ T contains an
idempotent e; and assume without loss that 4,(e) = {0}, so that e is a right unitin
R and {0} + A4,(e) = A,(R). We need only show thate + N = D\T.

If be N with b?* = 0, then 4,(e + b) 2 A,(R) + {0}; moreover, if x € A(e + b),
then xe= —xb= —xeb=xb*>=...=xb*=0, so Afe+b)={0} and
e + be D\T as required.

COROLLARY 5 [2, Theorem 1]. If D % N, then D\N is infinite.

Proor. If N is finite, we are finished, by Ganesan’s original result. If N is
infinite, we apply Corollary 4 if T+ N and Theorem 5if T = N.

COROLLARY 6. Let R have 1. If T + S, then T\S is infinite; and if D + T, then
D\T is infinite.

Proor. If R has 1, then for any idempotent eeD, e(1 —e) =(1 — e)e =0;
hence e S and e is in neither of D\T and T\S. Therefore, the first step of the
proofs of Theorems 4 and 5 applies, without the hypothesis that N is infinite.

COROLLARY 7. If R is prime (and infinite with D % {0}) and D # T, then D\T is
infinite.
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Proor. This follows immediately from Corollary 3 and Theorem 5.

3. Examples.

There are eight formal conditions obtainable by choosing sequences of equalities
and proper inclusions in (1). In this section we give examples showing that each of
them except

(@) D+T+S=N

can in fact be satisfied. Whether there exists a ring satisfying (a) we have been
unable to determine.

All our examples have the property that whenever two adjacent sets in (1) are
unequal, the corresponding difference set is infinite. That need not be the case, as
Examples 1 and 2 show.

ExaMPLE 3. D = T = § = N. Any infinite nil ring will do.

EXAMPLE 4. D = T =S % N. The ring of k x k matrices over an infinite
division ring, k = 2, is in this class. In fact, so are all infinite semisimple artinian
rings except division rings.

ExXaMPLE 5. D =T % S = N. Let V be the zero ring on the infinite cyclic
group, regarded in the natural way as a (Z, Z)-bimodule, where Z denotes the ring

of integers; and let
R z Vv
“lvoo)f
0

14 .
with the obvious multiplication. Clearly N = 0:| ;andforx = [z g] with

0oV 00 .
= = h T S.
meZ\{0}, 4,(x) [0 0] and A4,(x) ‘:V 0], ence x €
F F . s
ExAMPLE6. D+ T =S = N.TakeR = [ 0 O:I,where F is any infinite field.
ExaMpLE 7. D = T % S + N. Let F be an infinite field, and let
F F 0 F
e=[g olefo 7]

If xe R has both components nilpotent, then x € N; and if x has exactly one

. . a b0 ¢ .
component nilpotent, then xeS\N. Finally, let x = o ollo 4 with
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@40+ d. Then 4,09 = ([g o) [g o ]) and 400 = ([g a0

hence x e T\S.

ExaMpLE 8. D &+ T = § £ N. As previously noted, the ring of linear trans-
formations on an infinite-dimensional vector space is in this class.

ExaMPLE 9. D+ T+ S+ N. Let R, and R, be infinite rings such that
Dy(R,) # T(Ry), D,(R;) + T(R,) and R, has 1. (See Examples 6 and 8.) Take
R =R; ®R,. Clearly S(R)#+ N(R). If u;eD(R\)\D,(R;) and u,eD,(R,)\
Dy(R,), then (uy,u;)€ T(R)\S(R), for A,((uy,u2)) = A,(uy) @ 0 and A,((uy,u,)) =
0 @® A,(uy). Finally, if u, € D,(R,)\D,(R,), then (uy, 1) € D,(R)\D,(R).
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