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THE HOMOLOGICAL ALGEBRA OF ARTIN GROUPS

CRAIG C. SQUIER*

Following Magnus [25] and Brieskorn-Saito [8], an Artin group is an abstract
group G defined by presentation as follows. G has as generators a set X. The
defining relations of G may be described as follows: to certain unordered pairs
{x,y} of distinct elements of X, an integer m = m,, > 2 is assigned; the corre-
sponding defining relation is (xy)? = (yx)?if m = 2q is even and (xy)?x = (yx)?y if
m = 2q + 1 is odd. An important example is Artin’s braid group B™ which is
presented as follows: X = {s;,...,s,_;} with defining relations all
5:iSi+15; = Si+15:8;+1 and all s;5; = s;5; whenever |i — j| = 2.

Associated to each Artin group G is a Coxeter group W obtained from G by
imposing, for each xe X, the additional relation x? = 1. For example, the
Coxeter group associated with B™ is the symmetric group on n symbols.

It is well-known that each Coxeter group W whose generating set X (as above)
has finite cardinality n — 1 admits a faithful linear representation in GL,(R). See,
for example, [6] or [16]. It turns out that the space of regular orbits of the
extension of this representation to GL,(C) s, if W is finite, an Eilenberg-Maclane
space for the corresponding Artin group G. (For B™, see [19]; for all but a few
special cases, see [7]; in general, see [17].) This fact has been the foundation for
the study of the homological algebra of these groups. (For a complete description
of the ordinary integral cohomology of B®, see [30], which is basedon [2] and
[20]. For certain of the other Artin groups, see [23].) We remark that the
homological algebra of B™ has also been treated by homotopy-theoretic
methods; see, for example, [26], [13] and [14].

Our purpose here is to give the foundations for a purely algebraic treatment of
the homological algebra of Artin groups. Our approach is patterned after
methods used by Garside [21] to solve the conjugacy problem in B™ and used
again by Brieskorn-Saito [8] to extend Garside’s results to any Artin group
whose associated Coxeter group is finite: instead of the Artin group G, we
consider the monoid S with the same presentation as G (the Artin monoid). Our
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main result, (7.5) below, is a free resolution of certain left modules over the
monoid ring RS of an Artin monoid S (with coefficients in an arbitrary com-
mutative ring R). These RS-modules have as underlying R-module R itself with
the action of S defined as follows: each x € X acts as multiplication by a fixed but
arbitrary element o of R. In particular, these RS-modules include R as a trivial
RS-module (x = 1) so that the ordinary homological algebra of S can be re-
covered. (We remark that, in somewhat greater generality, the special case a = 0
will play an important role in §3 below. We also remark on a slight difference in
notation between here and §7: o here will turn into —o in §7.)

The question arises as to when the RS-resolutions descrived above extend to
RG-resolutions of suitable RG-modules. It turns out that if the Coxeter group
W is locally finite, then the extension of scalars functor from the category of left
RS-modules to the category of left RG-modules is exact (see §2 and §7). The
following is an easy consequence of this remark and the actual descriptions of the
resolutions discussed in the previous paragraph:

THEOREM A. Let G be an Artin group whose associated Coxeter group is finite.
Then G is of type FL [9, p. 199].

For the proof of Theorem A, see (7.7) and the proof of (7.8). Theorem A also
follows from [17]; the Eilenberg-Maclane space for G described in [17] is clearly
homotopy-equivalent to a finite complex. A consequence of Theorem A is the fact
that G (as in Theorem A) is torsion-free (7.8). With a little bit more work (see §8),
we are able to show:

THEOREM B. Let G be as in Theorem A. Then G is a duality group [3, p. 138].

See (8.3). In this generality, Theorem B is new. For example, the fact that
Artin’s braid group B™ is a duality group follows from Proposition VIII.10.2 of
[9], using the fact that B™ is torsion-free (which follows from [19] cited above)
and the fact that B™ has a subgroup of finite index which is a duality group (the
kernel of the natural homomorphism from B® to the symmetric group on
nsymbols is an iterated semidirect product of free groups: for this fact, see Lemma
1.8.2 of [4]; for the fact that semidirect products of duality groups are duality
groups, see Theorem 9.10 of [3]; for the fact that free groups are duality groups;
see p. 233 of [9].)

An obvious question is: what happens when the associated Coxeter group is
not locally finite? Combining (2.4) with (7.6), it follows that if G is an Artin group
whose Coxeter group is not locally finite, then the extension of scalars functor
from RS-modules to RG-modules is not exact. Nonetheless, the author conjec-
tures that if « is a unit in R, then the extension of the RS-complex (C,, d,) in (7.5)
from RS to RG is exact in positive dimension.

For convenience, this paper has been divided into three parts. The first part
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consists of the author’s attempt to extract from the proof of Theorem A those
ideas that do not essentially involve the fact that G is an Artin group (or,
alternately, the fact that S is an Artin monoid). The author hopes that these ideas
will prove useful in other contexts. The second part concerns Artin groups; in
particular, the theory developed in part I is applied to Artin groups in order to
give proofs of Theorems A and B. The third part treats examples. Here is an
outline:
I. Homological machinery
§1. Diagrams
§2. Monoids and homological group theory
§3. Exactness and duality
§4. Homology approximation
II. Artin groups
§5. Preliminaries
§6. Fundamental elements
§7. Proof of Theorem A
§8. Proof of Theorem B
ITI. Examples
§9. A;, Byand H,
§10. B™
Each of parts I, IT and III will include their own introduction.

Part of this paper (essentially Theorem A and its proof) was the main result in
the author’s Ph.D. dissertation [27] written under John Stallings. The author
would like to thank Professor Stallings for his continued patient support and for
amny helpful suggestions.

Part I. Homological machinery.

Part I develops some homological preliminaries that will be applied to Artin
groups in Part II. §1 introduces the notion of a diagram (1.2). (Essentially,
a diagram is a functor K — A. Here, K is a simplicial complex, with the “empty
simplex” adjoined, viewed as a category with objects the simplexes of K and
morphisms inclusion. Also, A is an associative ring with 1 viewed as a category
with one object, morphisms A and composition given by multiplication in A.)
Out of a diagram, we build a chain complex (C,,d,): see (1.3) and (1.4); and
acochain complex (C*, 0*): see (1.5) and (1.6). An important goal below will be to
study exactness properties of the complexes we have just described: see §3 and §7.
We conclude §1 with a sample exactness theorem (1.7).

§2 consists primarily of standard facts concerning the extension of scalars
functor from the category of left RS-modules to the category of left RG-modules.
Here, G is a group, S is a submonoid of G and R is a commutative ring with 1.
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In §3, we define the notion of an “exact” subset X of a monoid S (3.1), use this
notion to define a diagram in RS and show that the resulting complex (C,, d,,) of
RS-modules is exact in positive dimension (3.2). If, in addition, X is finite and
satisfies the “duality” condition (3.3), then the dual complex (C*, 6*) is exact in
positive codimension (3.5).

It turns out that the exactness theorems (3.2) and (3.5) are not very useful in
homological group theory; in particular, see (3.6). Nonetheless, the resolutions
(Cy, 9,) and (C*, 0*) in §3, when they occur in the seting of Artin groups (see §7
and §8), turn out to be “top-degree approximations” of complexes which, by (4.1),
are resolutions; these resolutions turn out to be useful in homological group
theory. The proof of (4.1) is essentially an adaption of Stallings’ notion [28] of
a “slow contracting homotopy” to the situation at hand. Our excessive concern
in §4 with the fact that certain R-modules are free R-modules, as in (4.2), (4.3b)
and (4.4b), results from the current state of knowledge about duality groups; for
further discussion, see the introduction to Part II and §8.

§1. Diagrams.

Let X be a set and let < be a strict local ordering of X (< is transitive,
irreflexive and satisfies the law of trichotomy). If A4 is a finite subset of X and
x € X, then x(A) will denote the number of ye 4 such that y < x. Let A < X and
xeX. If xe A, then A — x will denote the set difference A — {x}. If x ¢ 4, then
A + x will denote the set union 4 U {x}.

(1.1) LEMMA. Let A be a finite subset X and let x,ye X.

(@) If x,ye A and x % y, then (— 1)*D+yA4=x) 4 (_pd+xd=» =
(b) If xe Aand y¢ A, then (— 1y TyA=0) 4 (_ (pA+xd+y - g,
(©) Ifx,yEA and x % y, then (— 1WA+ 4 (_qpi+xd+) — o

ProoF. In a), we may assume, by symmetry, that x <y. Then
(A — x) = y(A) — 1 and x(4 — y) = x(A), so the exponents differ by 1, as re-
quired. The proofs of b) and c) are similar.

Given X as above, let 2 be a collection of finite subsets of X which satisfy:
P0) e 2.

P1) for each xe X, {x} e 2.

P2) if Ae# and B < A, then Be 2.

Except for P0), this is the definition of a simplicial complex. Given X and £ as
above, define #® = {(4, B)| Ae # and B = A}. Let A be an associative ring (with

1).

(1.2) DEFINITION. A diagram of (X,#) in A is a function D: 2 - A which
satisfies



THE HOMOLOGICAL ALGEBRA OF ARTIN GROUPS 9

a) if Ae?, then D(A, 4A) = 1.
b) if C = B = Ae %, then D(4,C) = D(A, B)D(B, C).

If 2 consists of all finite subsets of X, then D will be called a full diagram. Note
that if D is a diagram of (X,#) in A and ¢: A4 — A’ is a ring homomorphism
(preserving 1), then the formula D, (A4, B) = ¢(D(A, B)) defines a diagram of (X, 2)
in A'.

With X, 2, A and D as above, let C, denote the free left A-module with
a generator denoted [ A] corresponding to each k-element A€ 2.

(1.3) DerNITION. For k > 0, define d,: C, - C,,—; on generators by

o[AD) = X (=1"D(4, A — x)[A4 — x]

xeA

and extend to C, by A-linearity.
(1.4) LeMMA. If k = 2, then 0,_ 10, = 0.

PRrROOF. Let A €2 have cardinality = 2, let x, ye 4 and suppose that x + y. In
the expansion of 9, -, 0,([A]), [A — x — y] appears twice; the coefficients are the
same by (1.2b) and the signs are opposite by (1.1a).

In particular, the pair (Cy,0,) is a A-complex. We call 0, the differential
associated to D. We shall be interested in sufficient conditions for (C,, 0,) to be
exact in positive dimension: if k > 0, then ker 0, = im J; . In this situation, we
call D exact and call Cy/im 0, the module of D.

With the same notation as above, assume further that X is finite. The cardinal-
ity of X will be denoted n — 1. In this situation, let C* denote the free right
A-module with a generator denoted {A4) corresponding to each k-element 4 € 2.

(1.5) DEFINITION. For 0 £ k < n — 1, define é*: C* — C**! on generators by

FKAY) = Y, (— 1A + x)D(A + x, A)

x¢A

and extend to C* by A-linearity. (Here, we will be most interested in the situation
when D is a full diagram; otherwise, we adopt the convention that (4 + x> =0
whenever 4 + x ¢ 2.)

(1.6) LEMMA. If 0 <k <n— 2, then 3**'o* = 0.
PrROOF. Mimic the proof of (1.4), using (1.1c) in place of (1.1a).

The cochain complex (C*, 0*) may be naturally identified with the A-dual of
(Cy»04): C* = Hom 4(C,, A) with its natural right A-module structure. Under this
identification, {A4) is given by
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1 f B=A
0 otherwise.

<AX([B]) = {

We shall be interested in sufficient conditions for (C*, 0*) to be exact in positive
codimension: if 0 < k < n — 1, then ker & = im ¢* . In this situation, we call
D co-exact and call C*~!/im 0"~ 2 the co-module of D.

We conclude this section by giving a sufficient condition for a diagram D to be
exact in all dimensions. (In other words, D is exact in positive dimension, as
above, and the module of D is the zero-module.) With X, 2, A4 and D as above,
ze X iscalled a cone-point for D provided for each A€ 2, eitherze Aor A + ze #
and, in the second case, D(4 + z, A) is a unit of A.

(1.7) THEOREM. Ifthe diagram D has a cone-point z, then (C,,0,.) is exact in all
dimensions.

Proor. For each k = 0, define s;: C, » Ci+, by

0 if zeA

s([A]) = {(_1)Z(A)D(A +2,A)7 ' [A+z] if z¢A

and extend to C, by A-linearity. Defining C _; = 0,0, = 0and s_; = 0, we show
thatifk = 0and We C,,then(s,_ 10 + 0O+ 15 )(W) = W from which (1.7) follows
easily. Since each s, and J; is A-linear, it suffices to check that for each k-element
A€P,(sk_ 10k + Ok +15¢)([A]) = [A]. There are two cases: z€ A and z ¢ 4. For the
remainder of the proof, we will omit subscripts from 0 and s.

If ze A4, then s([A]) = 0 so that

(50 + 0s)([4]) = sa([4])

- s( Y (—1)*D(4, 4 — x)[A4 — x])

xeA

= s((—=1/'D(4, 4 — 2)[A — z])
=[4]

where the third equality follows from the fact that s([4 — x]) = 0 if x & z.
If z ¢ A (in particular, if 4 = [@]), then

Os([A]) = 0((—1)*“PD(A + z,A)"'[A4 + z])
= Y (=1 *A4*ID(4 + 2, 4)7'D(A + 2,A+z — x)[4 + z — X]

x€eA+z

[4] = Y (=14 9+ *AD(A4 + 2,4) " 'D(4 + z,A + z — X)

xeA

x [A+2z—x]
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where the third inequality follows from (1.1b). Also,

so([A]) = s< Y (—1"D(4,4 — x)[A — x])

xeA

= Y (— 1+ =4-9D(4 4 — )D(A — x + 2,4 — x)"[A — x + z].
xeA
Since D(A + z,A) " 'D(A+z,A+z—x)=D(A,A—x)D(A —x+ 2, A —x)"!
follows from (1.2b), we have (ds + s0)([A]) = [A] here as well.

§2. Monoids and homological group theory.

Let G be a group and let S be a submonoid of G. In other words, S is
amultiplicatively closed subset of G which contains the identity element 1 of G. In
particular, S is a two-sided cancellation monoid: if u, v, we S and either uw = vw
or wu = wo, then u = v. With G and S as above, we say that S fills G (on the left)
provided for each g e G, there exist u,ve S such that g = u~ v,

(2.1) LemMA. If S fills G, then for each x,y€S, there exist u,s€S such that
ux =vyinS.

Proor. Givenx,yeS,letg = xy~! e G. By hypothesis, there exist u, v € S such
that g = u~'v. It follows easily that ux = vy in S, as required.

If S is a monoid and x, ye S, then w e S is called a common left multiple of x and
y provided there exist, u,v € S such that w = ux = vy in S. A two-sided cancella-
tion monoid in which every pair of elements has a common left multiple is said to
satisfy the left Ore condition. By (2.1), if a monoid S fills a group G, then S satisfies
the left Ore condition. This fact has the following converse:

(2.2) THEOREM. Suppose that the monoid S satisfies the left Ore condition. Then,
up to isomorphism, there exists a unique group G such that S fills G.

Proor. For aconstruction of G, see [12, p. 35]. From [12], it is also clear that
any monoid homomorphism from S to a group H factors through a group
homomorphism from G to H. To prove uniqueness of G, it suffices to show that if
¢: G - H is a group homomorphism whose restriction to S is injective, then ¢ is
injective. But if ge G satisfies ¢(g) = 1, then, writing g = u™ v with u,ve§, it
follows that ¢(u) = ¢(v). By hypothesis, u = vin S so g = 1, as required.

We turn to homological properties of groups and monoids that fill them. Let
R be a commutative ring (with 1), let G be a group and let S be a submonoid of G.
Then the monoid ring RS is a subring of the group ring RG. Thus, by “restriction
of scalars”, left RG-modules can be viewed as left RS-modules. Conversely,
viewing RG as a left RG-, right RS-module, there is an “extension of scalars”
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functor (— ) RG ® gs(—) from the category of left RS-modules to the category
of left RG-modules.

(2.3) THEOREM. If S fills G, then the functor (—)+— RG ® gs(—) is exact.

ProOF. See[10, p. 191]. Briefly, the proof of (2.3) proceeds by showing that, as
a right RS-module, RG is the direct limit of the system {w~*(RS)|we S} of right
RS-modules. Clearly, each w™ }(RS) s a free right RS-module. By (2.1), the system
aboveis directed and has limit RG. It follows that RG is a flat right RS-module so
that (—)— RG ®gs(—) is exact.

We conclude this section by noting that (2.3) has the following converse:

(2.4) THEOREM. Let G be a group and let S be a submonoid of G. If S does not fill
the subgroup of G that it generates, then the functor (—)— RG ® gs(—) is not
exact.

Proor. Clearly, S is a two-sided cancellation monoid. By hypothesis and (2.2),
S cannot satisfy the Ore condition. It follows that there exist x, y € S such that for
all u,veS, ux + vy. Let M denote the free left RS-module with basis {e;,e,}.
Define a left RS-module homomorphism ¢: M — RS by ¢(e;) = x and ¢(e;) = y.
Clearly, ¢ is injective. Note that RG ® s M is a free left RG-module with basis
{1®e,1®e,}. Also note that x ' ®e; — y ' ® e, + 0 in RG ®gs M and
belongs to the kernel of the extension of ¢ to RG ®zs M. It follows that the
extension of ¢ to RG ® zs M is not injective, so that (—)+— RG ®gs(—) is not
exact.

§3. Exactness and duality.

Let S be amonoid and let A be a subset of S. We call w e S a common left multiple
of A provided there is a function f: A — S such that for each ae 4, w = f(a)a.
(Note that any element of S is a common left multiple of the empty set @ and that if
B = A, then a common left multiple of A is a common left multiple of B.) We call
weS a least common left multiple of A provided w is a common left multiple of
A and for each common left multiple u of A4, there exists v € S such that u = vw. (It
follows that the identity 1 € Sis a least common left multiple of @ and that if xe X,
then x is a least common left of {x}.)

(3.1) DEFINITION. Let S be a monoid. A subset X of § is called exact provided
any finite subset of X which has a common left multiple in S also has a least
common left multiple in S.

If X is an exact subset of the monoid S, define 2 to consist of all finite subsets of
X which have a common left multiple in S. It follows from the remarks preceding
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(3.1) that 2 satisfies conditions P0), P1) and P2) of § 1. Assume that for each 4 € 2
aleast common left multiple 4 4 of Ain S has been chosen such that 4, = 1 and if
xe X, then 4, = x. Note thatif A€ 2 and B = 4, then 4 4is a left multiple of 4.

Let S be a right cancellation monoid: if x, y, z € S satisfy xz = yz, then x = y.
Equivalently, if x € S is a left multiple of z € S, then there exists a unique y € S such
that x = yz; in this situation, we write y = xz~ !, Clearly, if xe S, then x is a left
multiple of x and xx ™! = 1. Similarly, if x, y,z€ S satisfy: x is a left multiple of
yand yis a left multiple of z, then x is a left multiple of zand xz ™! = (xy ") (yz~1).

Let S be a right cancellation monoid, let X be an exact subset of S and let R be
a commutative ring (with 1). Define Dy: 2? — RS by Dx(4, B) = A4z ". (As
noted above, if B < A€, then 4, is a left multiple of 4;.) Clearly, (1.2) is
satisfied, so that Dy is a diagram of (X, Z) in RS.

(3.2) THEOREM. If S is a right cancellation monoid and X is an exact subset of S,
then Dy is an exact diagram.

Proor. Totally order X. If A€ 2 has k(> 0) elements, then
WA = ) (=1 4,41, [A - x].

xeA
We define for each k = 0 an R-linear homomorphism s,: C, = Cy ;1 such that if
weS and @ + A2, then

(Ok+ 15k + Sk—10)(w[A4]) = w[A]

where A4 has k elements. It will follow that if kK > 0, then ker 0, = im J . ¢, as
required.

To define sy, first define & S — X U {0} as follows: if w e S, then £(w) = Oif and
only if for each x € X, w is not a left multiple of x. Otherwise, £(w) is a chosen
element of X of which w is a left multiple (so that wé(w) ! is defined).

As aleft R-module, C, is free on all w[ 4] as w ranges over all elements of S and
A ranges over all k-element sets in . With this in mind, define

o if ¢(wd,)eA v {0}
siwlA]) = {(_ 1YDwA, A7 [A+ 2] if z=Ewd,)d AU {0}

and extend to C; by R-linearity. (If z = £(w4 )¢ A U {0}, then there exists w; € S
such that wAd, = w,z, so that w4, is a common left multiple of 4 + z and
therefore a left multiple of 4,,,. Also, é(w4,) =0 can only arise if 4 = : if
A & 0, then (wd)e X))

For the remainder of the proof, we omit subscripts from s and 0. Let we S and
0+ Ae?. Since A + , there are two cases: {(wd,)eA and é(wd,)éA. If
z = {(wd )€ A, then s(w[A]) = 0 so that
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(s0 + 0s)(W[A]) = sd(w[A4])

= s< Y (=1 waa1[A— x]>

xeAd
=s(—1F“wd,4;1,[A - 2])
= w[A4]

where the third equality follows from the fact that z = &(wd ,4;1)4,_,)€
A—xifx +z Ifz=E&Ewd,)é A, then

ds(w[A]) = a(—17"“wd 4451, [4 + 2])
= 2 (_ I)Z(A)+x(A+Z)WAAA;-}-z—x[A +z— X]

xeA+z

= wlA] — 3 (— 140 WA, 45%, [A + 2 —x]

xeA

where the third equality uses (1.1b). Also

so(w[A4]) = s( Y (=1 Dwa, a5t [A— x])

xeA

= 3 (— O, AL T4~ x + 2]

xeA

since for each xe 4, z¢ A — x. Thus (s0 + ds)(w[A4]) = w[A] in this case as well.

The module Cy/im 0, of Dy can be described as follows: Cy/im 0, is isomorphic
to RS modulo the left ideal generated by X. It follows that Cy/im 0, is a free
R-module with basis corresponding to {we S| {(w) = 0}.(Note thatif Sis a group
and X # @, then the module of Dy is the zero-module. (See Lemma (4.2).)

In the following definition, we use the notion of a (least) common right
multiple.

(3.3) DEFINITION. Let S be a right cancellation monoid and let X < S be exact.
Then X is said to satisfy the duality condition provided whenever A€ 2 and
x,y€ Asatisfy x # y,itfollows that 4,41, _ is aleast common right multiple of
{44451, 44452,).

It follows from the right cancellation property in S that the duality condition

for X is independent of the choice of 4 ’s.

(3.4) LEMMA. Let S be a two-sided cancellation monoid and suppose that X < S
satisfies the duality condition. If Ac ? and B < A, then A,Ag " is a least common
right multiple of {4,4;2,|z€ A — B}.
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ProOF. Note that if ze A — B, then B< A — z so that 4,45 = (4,4;1))
(44-,45"). Thus 4,45 is a common right multiple of {4,4;},|ze 4 — B}.

We prove (3.4) by induction on the cardinality of 4 — B. If this cardinality is
0 or 1,(3.4) is easy. In general, choose x,ye A — B with x % y. By the inductive
hypothesis, 4,45}, is a least common right multiple of {4,45!,|ze 4 — B — x}
and 4,45}, is a least common right multiple of {4,4;!.|ze A — B — y}.

Assume that we S is a common right multiple of {4,4;!,|ze A — B}. Thus
for each ze A — B, there exists w,€ S such that w = 4,41, w,. Since 4,45} is
aleast common right multiple of {4,4,|z€ A — B — x}, there exists u € S such
thatw = 4,45 ! u. Similarly, there exists ve S such that w = 4,445} v. It follows
that

(Aad5 s psxryAgidu = 44451 u
=w
= A,445} v
= (44454 1)t xryA5iy )0

so that, by left cancellation, (4p,,+,45¢ )4 = (4p4,+,45 +,)v. By (3.3), there
exists woeS such that (dpy,.,d5i)u = (g4, +,45 " Wo. Clearly, w=
(4,445 Ywy, as required.

(3.5) THEOREM. Let S be a two-sided cancellation monoid and let X be a finite
subset of S which has a common left multiple and satisfies the duality condition.
Then Dy is co-exact.

Proor. We use (3.4) to reduce the proof of (3.5) to (3.2). For each x € X, define
% = AyAx!, andforeach A < X, define 4 = {X|xeA}. By (3.5),if 4 < X, then
AxAx !, is a least common right multiple of 4, so that X is exact (on the right).
Thus (3.2) applies: the (right) diagram Dy is exact. The associated complex, which
we denote (C * 5*), may be described as follows: each C, is a free right RS-module
on all [A] for 4 a k-clement subset of X and

5k([z]) = z (— l)x(A)[A - x]~AX—A+xA;£A'
xeA
We show that the complexes (5*,5*) and (C*, 0%) are chain isomorphic. Let
n — 1 denote the cardinality of X and for0 < k < n — 1,define ¢: C, - C" V¥
on generators by

i [AD) = (— 15X — 4)
and extend to C, by RS-linearity. Here, 4(X) = ), x(X). Each ¢, is an isomor-

xeA

phism of right RS-modules. Note that if xe 4 € X, then (— 1)A®+**~4 =
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(— 1) +A=0X Tt follows that if 0 < k < n — 1, then " *~ ¢, = $,J;. Since
(C,» 5*) is exact in positive dimension, (C*, 0¥) is exact in positive codimension, as
required.

We conclude this section by noting a situation in which (3.2) is particularly
uninteresting:

(3.6) THEOREM. In the situation of (3.2),if X contains a unit of S, then the module
of Dy is the zero module and the contracting homotopy of (C,, 0,) can be chosen to
the RS-linear.

Proor. The first conclusion follows from the remark following the proof of
(3.2). To prove the second conclusion, we appeal to (1.7): note that if z € X is a unit
and A e # satisfies z ¢ A, then 4, is a common left multiple of 4 + z. It follows
that z is a cone point of Dy so that (1.7) applies; all of (3.6) follows easily.

§4. Homology approximation.

We begin with a homology “approximation” lemma. Let R be a commutative
ring with 1. For each k = 0, let C, be an R-module graded by the non-negative
integers: C,, = @, C«(p). An R-module homomorphism 6;: Cy — C;_, is said
to be homogeneous provided each 0,(Ci(p)) = Ci-1(p). A second R-module
homomorphism d,: C, — C,_, is said to be dominated by 0, provided whenever
ce Cy(p), it follows that (dy — O;)(c)e D5 3 Ci-1(q). Finally, let (C,,d,) be
a chain complex with each C, graded and each d, homogeneous as above. Note
that if (C,, ) is contractible in positive dimension (for each k = 0, there exists
an R-module homomorphism s;:C, — C;.; such that if k>0, then
Ok + 15k + Sk 10, is the identity on Cy), then the s,’s can be chosen to be homogene-
ous (each sy(Ci(p)) < Cy+1(p))-

(4.1) THEOREM. Let (Cy,0,)and(C,,d,) be chain complexes. Assume that each
C, is graded, each 0, is homogeneous, each d, is dominated by 0, and (C,,0,) is
contractible in positive dimension (all as above). Then

a) (C,,d,) is contractible in positive dimension.

b) Co/im 0, and Cy/imd; are isomorphic R-modules.

Proor. Clearly, we may assume that C, = 0 if kK < 0. It suffices to show that
(Cy. 04) and (C,, d,) are isomorphic chain complexes over R. Choose a contract-
ing homotopy {s, } for(C,, d,) so that each s, is homogeneous. Note thatif k > 0,
then &;s,- 10, = 0,. For k = 0, define f;: C, —» C; by the following formula:
Ji = dy+ 18k + (1 — 0 +15). Clearly, if k > 0, then
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dife — fum10k = di(1 — Op 4 18k) — dieSic— 10k
=di(1 — O+ 15k — Sk—10k)
=0.

(The first equality uses dydy.y =0 and 0y85_10, = 0.) Thus f,:(C,,0,) —
(C,.d,) is a morphism of chain complexes.

To see that each f, is an isomorphism of R-modules, note that
Si =1 —=(0x+1 — di+1)S- Since 0+, dominates d; ., and s, is homogeneous,
(Ok+1 — di+1)sx 1s locally nilpotent: if ¢ € C;, then there exists N = 0 such that
(G +1 — die+ 151)"(c) = 0. (In fact, if c€ Cy(p), then ((3+ 1 — di+ )5 )P T '(c) = 0.)

It follows that each f, is invertible. (In fact, fi™ ' = Y, (Ox+1 — di+ )SK)")
n=0

We view 0, as a “top-degree approximation” of d,.

In order to apply (4.1) to (3.2) and (3.5), we assume that the monoid S is
equipped with a homomorphism wi— [w|: S — N. (Here N denotes the set of
non-negative integers, viewed as a monoid under addition. By definition, if
u,veS, then |uv| = |u| + |v|. Also, |1} =0.) In this situation, we will say that
S admits an N-valued length homomorphism.

If S admits an N-valued length homomorphism and X < § is exact, then
defining C,, asin §3, we extend length notation to each C, asfollows. First,if we S
and 4 € 2 has cardinality k, then |w[A]| = |[w4 4. Also, if We C, is an R-linear
combination of w[ 4]’s as above, then |W| is the largest |[w[ A]| among the w[4]’s
that occur with non-zero coefficient. (Recall that C, is a free R-module on the
w[A]'s.) We let Ci(p) = {WeC,||W| = p}. Clearly, each 0, and s, in (3.2) is
homogeneous.

(4.2) LEMMA. In the situation of (3.2), Co/im 0, is a free R-module.
ProOF. In the notation of (3.2)

0 if Ew)=0
wz i[z] if z=¢w)eX.

Note that if ¢(w) € X, then 0, so(w[@]) = w[@]. It follows easily that 5,950 = o
and 0,500, = d;. We claim that C is an (internal) direct sum im d; @ ker s, as an
R-module. First, if We Cy, then W = 0,5 W + (1 — 8,50)W. Since 540,50 = 5o,
(1 — 0;59)W ekers, so that Cy =im 9, + kers,. To show im d; nkersy =0,
assume We C, satisfies d; Wekersg. Then 0, W = 0,500, W = 0, as required.

It follows that C,/im 0, is isomorphic to ker s, as an R-module. Clearly, ker s,
is a free module on {w[@]| &(w) = 0}, as required.

(4.3) COROLLARY. In this situation (and notation) of (3.2), suppose that S admits

so(w[0]) = {
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an N-valued length homomorphism and that (C,,d,) is a chain complex such that
each d, isdominated by 0;. Then

a) (C,.d,) is exact in positive dimension.

b) Co/imd, is a free R-module.

ProoF. By (3.2) and its proof, the hypotheses of (4.1) are satisfied. Thus
(C,.d,) is contractible in positive dimension by (4.1a) from which (4.3a) follows.
Also, (4.3b) follows from (4.1b) and (4.2).

In (4.3), it is only necessary to assume that each d, is R-linear. If, in fact, each d,,
is RS-linear, let (C*,d*) denote the RS-dual complex of (C,,d,): each
C* = Hompgg(Cy, RS) and if f e C*, we Cy4 1, then (@) (W) = f(dy+1W).

(4.4) COROLLARY. In the situation (and notation) of (3.5), suppose that S admits
an N-valued length homomorphism and that (Cy,d,) is a chain complex such that
each d, is RS-linear and dominated by 0,. Then

a) (C*,d*) is exact in positive codimension.
b) C*"!/imd"~? is a free R-module.

Proor. The proof of (3.5) reduces (4.4) to (4.3).

We remark that in (4.3) or (4.4), if the length homomorphism is trivial (for each
weS§, |w| = 0), then each d;, = 0, so that (4.3) or (4.4) give no new information.

Part II. Artin groups.

In Part II, we apply the homological machinery developed in Part I to Artin
groups. In §5, we recall the definitions of Artin groups, Artin monoids and
Coxeter groups and we recall the single most important fact (5.1) about Artin
monoids: the Kurzungslemma of Brieskorn-Saito [8] (proved by Garside [21]
for the braid groups and certain other groups). The easy consequence (5.2) of (5.1)
implies that any subset X of an Artin monoid is exact (3.1), so that (3.2) applies as
well; in the Artin group setting, we will only apply (3.2) when X is the generating
set X, of the Artin group (or monoid) as in §5.

In §6, we study fundamental elements of an Artin monoid Sy,: these are the
least common left multiples 4, of the subsets 4 of X,, which have a common left
multiple. The early results in §6 are due to Brieskorn-Saito [8] (and to Garside
[21] for the braid groups). Where convenient, we have indicated the proofs. The
main result of §6 is (6.12) which is used in §7 to obtain a group-theoretically
interesting “top-degree” approximation to the RS,-complex associated to X,
(3.2).

In §7, we prove Theorem A. We begin by defining the “diagram polynomial”
D,(w)e RSy of an arbitrary we Sy, (7.1): D,(w) is an “a-signed” sum of the right
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factors of w. In (7.4), we show that the functions D,(4, B) = D,(4 4,45 !) define
a diagram in RS,,. Combining (3.2) with (4.1), it follows that the corresponding
RS \-complex is exact in positive dimension (7.5). The remainder of §7 is con-
cerned with extending (7.5) from RS, to RG,,; it turns out that (2.3) applies if and
only if the associated Coxeter group W), is locally finite. In particular, we obtain
(7.7) from which Theorem A follows easily.

In §8, we prove Theorem B. To prove that if W, is finite, then G, is a duality
group, we use Theorem 9.2 of [3] and adopt the following notation: n — 1
denotes the cardinality of Xj,. Condition 9.2i of [3] (G, is of type FP) follows
from Theorem A. To prove condition 9.2ii of [3] (H¥Gy, RGy) =0, if
k & n — 1), we show (8.1) that X, satisfies the duality condition (3.3), from which
condition 9.2ii of [3] follows easily. The remainder (and bulk) of §8 is devoted to
a proof that G, satisfies condition 9.2iii of [3] (H"~ }(G, RG) is a flat R-module).
In fact, we show that H" }(G, RG) is a free R-module. Our proof of this fact
involves a “Mobius function” u for Sy, defined just before (8.6). The Mobius
function of a monoid with the “finite factorization property” was studied by
Cartier and Foata in [11]. In particular, their results about “partially-com-
mutative” monoids are an easy consequence of (8.6) below. We also remark that,
by a theorem of Tits [29], certain results about the weak Bruhat ordering of
Coexter groups (see, for example, [5]) are an easy consequence of our (8.6) below.

§5. Preliminaries on Artin groups.

Following [6], a Coxeter matrix is a symmetric matrix M each of whose entries
m(i,j) is a positive integer or co such that m(i,j) = 1 if and only if i = j. Given
a Coxeter matrix M, we define an Artin monoid Sy, an Artin group G, and
a Coxeter group Wy,.

To define S,,, we introduce the following notation: if x and y are elements of
a semigroup and me N, then

m ey if m=2k
X" = {(yx)"y if m=2k+ 1.

Given M, let X be a set in fixed one-to-one correspondence with the rows (or
columns) of M; a typical element of X,, is denoted a;. Sy, is defined by presenta-
tion to have generators X, and relations all

<aiaj>m(i’j) = <ajai>m(j'i)

with the convention that m(i, j) = oo stands for “no relation”. Also, Gy, is defined
to be the group with the same presentation as Sy, and W), is defined to be G, (or,
equivalently, S,,) modulo the additional relations that each a? = 1. Note the
natural homomorphisms from S, to G, and from G, to W, extending the
identity on X,,.
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We will use the tools developed in §1, §3 and §4 to study the homological
algebra of the Artin monoids S,,. When possible, we will use §2 to extend to G,,.

For the moment, we focus on S,,. The presentation of S,, has several special
properties. First, the defining relations of S,, are equalities between words of
equal length, so that S,; admits an N-valued length homomorphism w— |w|
where each |q;| = 1 (see §4). Second, both sides of each defining relation of Sy,
involve the same generators. It follows that if 4 < X, then the submonoid of Sy,
generaed by A has the “obvious” presentation: generators 4 and relations those
defining relations of S,, that only involve elements of A. Finally, each defining
relation is invariant under reflection: if each side of a defining relation is replaced
with its mirror image, then the same relation arises (interchanging sides, if m(i, j) is
odd). As a consequence, certain properties of Sy, “on the left” have as immediate
corollaries the analogous properties ““on the right”.

The following “Kurzungslemma” of Brieskorn and Saito will be crucial below:

(5.1) THEOREM. Let Sy be an Artin monoid. Suppose that a;, a;€ Xpypandu,ve Sy
satisfy ua; =va;. Then m(i,j)+ o and there exists zeSy such that
u = z<{a;a;)""" "1 and v = z{a;a; Y"1,

Proor. This is Lemma 2.1 of [8].

In particular,if m(i,j) + oo, then (a;a;»™"? is aleast common left multiple of a;
and a;. (If m(i, ) = oo, then a; and a; have no common left multiple.) If i = j, (5.1)
states that a; cancels on the right (m(i,i) = 1) so that S, is a right cancellation
monoid. The mirror image of (5.1) also holds. In particular, S, is also a left
cancellation monoid.

(5.2) COROLLARY. Let Sy, be an Artin monoid. Then any subset of Sy which has
a common left multiple is finite and has a unique laest common left multiple.

Proor. This is Proposition 4.1 of [8].

It follows from (5.2) that any subset X of S, is exact (3.1), so that (3.2) applies.
We will only apply (3.2) when X = X,,.

For the following consequence of (5.1), we adopt the following notation: if S, is
an Artin monoid and 4 < X,,, then S, will denote the submonoid of Sy,
generated by A.

(5.3) COROLLARY. Let Sy, be an Artin monoid and let A < Xy, If B < S, has
acommon left multiple in S\, then the least common left multiple of B belongsto S 4.

Proor. This follows from (5.1). See [8].
§6. Fundamental elements.

Let S), be an Artin monoid with generators X . In this section, we write S for
Sy and X for Xj,. Asin§5,if A = X, we write S, for the submonoid of S generated
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by 4. As noted in §5, each S, has the “obvious” presentation (and therefore is an
Artin monoid).

We let 2 denote the collection of all subsets of X which have a common left
multiple. By (5.2),each 4 € 2 is finite, so that the notation here agrees with that in
§3. By (5.2), each A € 2 has a least common left multiple which, asin § 3, we denote
4,4. (By (5.2), each 4, is uniquely determined by A.) Since, by (5.1), S is a right
cancellation monoid (and, from above, X is exact), (3.2) applies; we will save this
observation until we can apply (4.3) as well. Meanwhile, we study the 4 ,’s.

(6.1) LEMMA. If A€ P, then A €S ,.
ProoF. This follows from (5.2).

(6.2) LeMMA. If AeP and ac A, then there is a unique se€ A such that
AAa = SAA.

ProoF. See Lemma 5.2 of [8]. (Existence of s follows by noting that 4 4a is
a common left multiple of 4; uniqueness follows from right cancellation; a length
argument shows that se X since 4 ,a€ S,, we have se S; thus,se X NS, = A))

In (6.2), we write s = a*. Left cancellation and the finiteness of A imply that the
function ar> a? is a permutation of A.

(6.3) LEMMA. The function ar a® extends to an automorphism of S ,.

PRrOOF. Again see Lemma 5.2 of [8]. (Here, it suffices to show that arsa*
respects the defining relations of 4. For this, note thatif a;,a;€ X and me N satisfy
{a;a;3™ = {a;a; )™, then m is a multiple of m(i, j).)

The image of w e S, under the atomorphism of S, determined by a+ a* will be
denoted w”. It follows that A,w = w4, and if u,ve S 4, then (uv)* = utv”.

(6.4) LEMMA. If u,ve S, satisfy uv = A, then viu = 4,.
ProoF. Note that v4uv = v44, = 4,0 and cancel v.

(6.5) LEMMA. A4 is the least common right multiple of A and equals its own
mirro-image.

ProOOF. See Lemma 5.1 of [8]. (Here, the left-right symmetry of the defining
relations of S is crucial.)

(6.6) COROLLARY. If a€ A, then (a)* = a. In particular, A% is central in S ,.

PROOF. See Lemma 5.2 of [8]. (By (6.5), the mirror-image of a®4, = 4 a is
aAA = AAaA.)
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For the following proposition, we define weS to be square-free provided
w cannot be written as w = uaav with u,ve S and ae X.

(6.7) LEMMA. If A€ P, then A 4 is square-free.

PRrOOF. See Lemma 5.4 of [8]. (If 4, = uaav, then A, = v?uaa; as in the proof
of (6.2), show that v#ua is a common left multiple of 4, a contradiction.)

(6.8) LEMMA. Let we S and ae X. If w is square-free and cannot be written as
wya in S, then wa is square-free.

Proor. This is Lemma 3.4 of [8].

The next few propositions all involve factorizations of the fundamental el-
ements 4. Only the first of these appears in [8].

(6.9) THEOREM. Let A€ P. Suppose that A, = uv with u,ve S ,. Then for each
ac A, either there exists u, € S , such that u = uya or there exists v, €S, such that
= avl.

ProOF. See Lemma 5.3 of [8].

By (6.7), the phrase “but not both” can be added to the statement of (6.9). Note
that(6.8) and (6.9) have the following consequence: if 4 is a finite subset of X, then
A, exists if and only if S, contains finitely many square-free elements.

We shall need some extensions of (6.9). These require the following observa-
tion: any non-empty subset of S has a greatest common right factor. (Z < § has
a common right factor w provided there is a function f: Z — S such that for each
zeZ, Z = f(z)w; w is a greatest common right factor of Z provided it is a
common right factor of Z and, in addition, is a left multiple of any common right
factor.) To prove this, note that the set of common right factors of Z has
a common left multiple (any element of Z) and therefore by (5.2) a least common
left multiple w; clearly, w is a greatest common right factor of Z. (See [8].)

(6.10) THEOREM. Let A € 2. Suppose that A, = uv with u,ve S 4. Then for each
B < A, u and v can be factored uniquely as u = u,u, and v = v,v, in S, so that
uzvl = AB'

PrROOF. Let u, be the greatest common right factor of u and 4z. Then u, is
a right factor of u, say u = u,u,. Also, u, is a right factor, and therefore by (6.4),
a left factor of Ag, say Ay = u,v,.

We claim that no b e Bis a right factor of u;. To prove this, note that if be Bis
a right factor of u;, then bu, is a right factor of u. Now b is not a left factor of u,,
since 4, is square-free (6.7). Since u, is a right factor of 4z and bis not a left factor
of u,, (6.9) applied to Az shows that bu, is a right factor of 4. Thus bu, is
a common right factor u and 45, contradicting the definition of u,.
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Since no beB is a right factor of u;, (6.9) applied to the factorization
A4 = (ug)(u,v) of 4,4 shows that every b € B is a left factor of u,v. In other words,
u,v is a common right multiple of B; by (6.5), there exists v, €S, such that
u v = Apv,. Since 4g = u,vy, we get v = v,v,, as required.

To prove uniqueness, let u,, u,, v, and v, be as above and assume also that
u = ujuy, v =00, and 4y = u,v|. Then v} is a right factor of u and, by (6.4),
a right factor of 4. By definition of u,, there exists ze S, such u, = zu}. Since
u, € Sy, we have ze Sg. Then

Ayg=uv
/ !
= Uyl V10,
= u,zu, v\ v
= uyzAgv,

so that the assumption z # 1 would contradict (6.7). Thus z = 1, s0 u, = u,.
Cancellation easily gives 4| = u,, v} = vy and v}, = v,, as required.

Theorem (6.10) has two corollaries. The first is a generalization to an ascend-
ing union of subsets of A.

(6.11) COROLLARY. Let Ae?. Suppose that A, = uv with u,veS, If
B, € By,_{ S...< B, < A, thenuandvcanbefactored uniquely asu = ugu, ...t
and v = UV 1 ... Vg SO that v, = A and if 1 £ i <k, then u;Ag, ,v; = A,

ProoF. This follows from (6.10) by induction on k.

For the second corollary, we use the following notation: if we S, then R(w)
denotes the set of right factors of w.

(6.12) COROLLARY. Let A€? and B < A. Then the function R(4,45") x
R(4p) —» R(4,) defined by (vy,v,) > v,0, is a bijection.

PrOOF. We first check that if v; € R(4,45 ') and v, € R(4p), then v,v, € R(4 4).
If uv, = 4445 and u,v, = Ap, then by (6.4) and (6.6)

A4 = U0 U0,
= uy0,0,u8
.V
= (u3)"u 010,

so that v v, € R(4,).
To check surjectivity, suppose that ve R(4 ), say uv = 4 4. By (6.6), 4, = vu™.
By (6.10), we can write v = v,v, and u? = uu, with v,u; = 45. By (6.4),
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uBv, = Agso v,e R(4p). Since 4, = v, Agu, = ujv,Ap, we get ufv, = A,4; " so
v eR(4,445Y).

Finally, to check injectivity, note that if uv =4, and v =v,v, with
v, € R(4,445 ') and v, € R(4p), then the proof of (6.10) applied to 4, = vu”* shows
that v, is the greatest common right factor of 45 and v. Thus v, is uniquely
determined by v. By cancellation in S, v, is therefore also uniquely determined
by v.

§7. Proof of Theorem A

Let M be a fixed Coxeter matrix. In this section, we write X, S, G and W for X,
Sy, G and Wy, Let R be a commutative ring with 1.

(7.1) DeriNITION. If we S and a € R, then D,(w) € RS\, is defined by

D,w)= Y oMy
uv=w
where the summation ranges over all ordered pairs (u, v) of elements of S whose
product is w.

As usual, |u| denotes the length of u. The sum is finite, since each element of
S has only finitely many right factors and, by right cancellation, u is uniquely
determined by v and uv. For all ae R, we set a® = 1, so that, for example, each
Do(w) = w.

We use the notation 2, 4, and 4,45 ' asin §6. For Ae 2 and B < A, define
D,(A,B)e RS by D,(A,B) = D,(4,45"). Our first goal is to show that (1.2) is
satisfied.

(7.2) THEOREM. Let Ae P and B < A. Then D,(A,) = D, (4,45 ")D,(4p).
PROOF.

D,(4)= Y oMy

u=4,4

= oc"‘"*'“"vlvz
U101 =A44p ,uz02=48

< Z aludm)( Z 0(qulv2>
uivy=A4.44p ! uzv2=4p

= Da(AAAI; 1)Daz(AB)

where the second equality uses (6.12).

To show that (1.2b) follows from (7.2), we shall need some cancellation in RS.
Recall from §4 that if W e RS, then |W| denotes the maximum |w| for w appearing
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with non-zero coefficient in w. Call W e RS monic provided W = w + W, with
weS, |w| =|W| and |W;| <|w|. Since S is a right cancellation monoid, if
U,V,WeRG satisfy UW = VW and W is monic, then U = V. Note that each
D,(w) is monic.

(7.3) COROLLARY. If C < B< Ae?, then D,(A4,44;') = D,(4,45")
Da(ABAE 1)‘

ProoOF. By several applications of (7.2),
D,(A4,44¢ ")Dy(4Ac) = Dy(4.4)
= D,(4,445 1)Da(AB)
= D,(4445 ")D(4pAc ")D,(4c).
Since D,(4¢) is monic, (7.3) follows.

(7.4) CorOLLARY. The functions D,(A, B) = D,(4,45 "), for B < Ae P, define
a diagram of (X, %) in RS.

Proor. Clearly, 4,4;' =1 and D,(1) =1 which gives (1.2a). (7.3) gives
(1.2b).

We let 0, denote the differential associated to the diagram D,(A4,B) =
D,(4,445"). (In this section, we omit the dimension subscript from é,.) Interpret-
ing§1in the current situation, C, is the free left RS-module with basis consistng of
all [A] with A a k-element subset of X such that 4, exists; J, is given by

0([A]) = X (—=1)"D (4,452 )[A — x]
xeAd

(7.5) THEOREM. For each a€R, the RS-complex (C,,0,) is exact in positive
dimension.

Proor. By (5.1), S is a right-cancellation monoid. By (4.2), any subset of
S which has a common left multiple has a least common left multiple; it follows
that X is exact (3.1). Thus (3.2) applies: (C, 0o) is exact in positive dimension.
Clearly, each 9, is dominated by d, and the other hypotheses of (4.3) are satisfied.
From (4.3), we conclude that each (C,,d,) is exact in positive dimension, as
required.

Note that the module Cy/d,(C,) of D, is R with the following S-action: each
weS acts as multiplication by (—a)™!. (To verify this, note that if x € X, then

D,(x) = x + o) In particular, (C,,0_,) is a resolution of R as a trivial
RS-module.
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We would like to show that for each Artin group G, the extension of the
complex (C,, 0,) of (7.5) from RS to RG is exact in positive dimension. Unfortu-
nately, we only know how to do this in the situation in which (2.3) applies.

(7.6) THEOREM. The following are equivalent:

a) Any two elements of S have a common left multiple.
b) For each finite subset A of X, A, exists.

c) For each finite subset A of X, W, is finite.

Proor. (If 4 < X, then W, denotes the subgroup of W generated by 4.) If X is
finite, then (7.6) follows from [8]. If X is infinite, then (7.6) follows from the finite
caseand thefact thatif 4 < X, then S and W, have the obvious presentation (for
S 4, this was noted in §5; for W, see [6].)

Note that (7.6¢) holds if and only if every finitely-generated subgroup of W is
finite. If G satisfies (7.6), we say that G is locally of finite type. If, in addition, X is
finite (so W is finite), we say that G is of finite type.

(7.7) CorOLLARY. If G is locally of finite type, then the extension of (C,,d,)
from RS to RG is exact in positive dimension.

Proor. By (5.1) and its mirror-image, S is a two-sided cancellation monoid.
Thus, by hypothesis and (7.6a), S satisfies the Ore condition. Therefore, (7.7)
follows from (7.5) and (2.3).

(7.8) CorROLLARY. If G is locally of finite type, then G is torsion-free.

Proor. First note that if A = X, then G, (= the subgroup of G generated by
A) has the “obvious” presentation. (As already noted, S, has the obvious
presentation and therefore is an Artin monoid. By hypothesis, S satisfies (7.6b) so
that S, satisfies (7.6b). Thus S, satisfies (7.6a) and therefore satisfies the Ore
condition, so that (2.2) applies. Since the natural homomorphism from S, to G is
injective, it follows easily from uniqueness in (2.2) that G, is the Artin group
corresponding to the Artin monoid S,.) Also, since S 4 inherits condition (7.6b),
G 4 is locally of finite type.

Clearly, each cyclic subgroup of G is contained in G, for some finite 4 < X.
Thus it suffices to prove (7.8) under the stronger assumption that G is of finite
type. Under this assumption, we apply (7.7) with R = Z and o = — 1; the exten-
sion of (C,,0-,) from ZS ro ZG is then a finite free resolution of Z as a trivial
ZG-module, so that G is torsion-free.

§8. Proof of Theorem B.

Let M be a fixed Coxeter matrix we use notation (X, S, G, W, D,, #, 4 4, etc.) as
in §7. We show that if G is of finite type, then G is a duality group. We first show
that (3.5) applies to (C,, o)
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(8.1) LEMMA. X satisfies the duality condition (3.3).

Proor. By (5.1), Sis a right cancellation monoid. By (5.2), X is exact. Thus we
need to show: if Ae# and x,ye A satisfy x + y, then 4 AA;lx_y is the least
common right multiple of 4,45, and 4,4;!, in S. From the fact that

AAAglx—y = (AAAIIix)(AA—xAIle—y)
= (AAA,Ziy)(AA~yA;—1x—y)

we conclude that 4,41 and 4,4, , have a common right multiple and
therefore, by the mirror image of (5.2), they have a (unique) least common right
multiple. Let (4,41 )Ju= (4 AA;ly)v be the least common right multiple of
A4431, and 4,451, Using the expressions above for 4,41, _, as a right
multipleof 4,4, .and 4,4 and usingleft cancellation in S, we conclude that
there exists ze S such that 4,_,A;1,  =wuzand 4,_,4;! _ = vz To prove
(8.1), it suffices to show that z = 1.

If z4 1, then some aeA is a right factor of both 4,_,4;% _ and
A4-,A51,_,. We show that this contradicts (6.7). Since 4,_, = (44-,451,_))
A44-x-yand everyelement of A — x — yisaleft factor of 4,_, _,, it follows from
(6.7) that the only element of 4 which could be a right factor of 4, _XA;lx,y is
y itself. (In fact, by (6.8), y is a right factor of 4,_,4, ", ) Similarly, the only
element of 4 which could be a right factor of 4,_,4;1, _ is xitself. Since x + y,
this contradicts z & 1. Thus z = 1, as required.

From (8.1), we easily obtain the dual of (7.5) when G has finite type. Asin §4, we
let (C*, 0% denote the RS-dual complex of (C,,d,). (As in §7, we suppress the
dimension superscript on 0%.)

(8.2) THEOREM. If Ay exists, then for each a.€ R, the complex (C*, 0%) is exact in
positive codimension.

Proor. By (5.1) and its mirror-image, S is a two-sided cancellation monoid.
By hypothesis, X has a common left multiple. Thus, by (5.2), X is finite. By (8.1),
X satisfies the duality condition. Thus (3.5) applies: (C*, 8°) is exact in positive
codimension. As in the proof of (7.5), each d, is dominated by d,. Clearly, the
other hypotheses of (4.4) are satisfied. From (4.4a), we conclude that each (C*, 0%)
is exact in positive codimension.

Note that “Ay exists” is equivalent to “G is of finite type.”
(8.3) THEOREM. Let G be an Artin group of finite type. Then G is a duality group.

ProOF. We use the characterization of duality groups given in Theorem 9.2 of
[3]. Applying (7.7) witha = — 1, it follows that G is of type FP (in fact, of type FL)
so that G satisfies condition 9.2i of [3].
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Toprove that G satisfies condition 9.2ii of [3], we let n — 1 denote the cardinal-
ity of X. By (5.1) and its mirror-image, S is a two-sided cancellation monoid. By
the mirror-image of (7.6), S satisfies the (right) Ore condition. Thus the mir-
ror-image of (2.3) holds as well. Combining this observation with (8.2), we
conclude that the extension of (C*, 0% to RG (as a right RG-complex) is exact in
positive codimension. Noting that each C, is a finitely-generated free left
RS-module, it follows easily that the RG-dual of the extension of (C,, J,) to RG is
isomorphic to the extension of (C*, 0%) to RG. From all this, it follows easily that
HYG,RG) = 0, if k + n — 1, which is condition 9.2ii of [3].

Finally, we verify that G satisfies condition 9.2iii of [3]: H" (G, RG) is a flat
R-module. In fact, we will establish a slightly more general result. To state this
result, note that, via the inclusion RS < RG, the diagram D,(4, B) = D,(4 445 ")
in RS defines a diagram in RG. Clearly, the extension to RG of the RS-complex
associated to D, in RS is the RG-complex associated to D, in RG.

(8.4) LEMMA. If G is an Artin group of finite type and o is a unit of R, then, as
R-modulus, the co-module of D, in RS and the co-module of D, in RG are isomor-
phic.

Recall from (4.4b) that the co-module of D, in RS is a free R-module. Note that
the co-module of D_; in RG is H" (G, RG). From (8.4), we conclude that
condition 9.2iii of [3] is satisfied. From Theorem 9.2 of [ 3], we conclude that G is
a duality group, which completes the proof of (8.3).

The remainder of this section will be devoted to a proof of (8.4). The proof will
involve some new ideas. First, a monoid S is said to have the finite factorization
property provided for each weS there are only finitely many ordered pairs
(u,0)€S x S such that uv = w. Clearly, an Artin monoid has the finite factoriz-
ation property.

Let S be a monoid with the finite factorization property and let A be an
associative ring (with 1). If f,g: S — A are arbitrary functions, then the convol-
ution f *g of f and g is the function from S to A defined as follows:

frgw)= Y fug(v)
where, as in (7.1), the summation ranges over all pairs of elements of S whose
product is w. We leave the proof of the following to the reader.

(8.5) LEMMA. Convolution is associative. The function 6:S — A defined by
6(1) = 1 and 6(w) = 0 if w ¥ 1 is a two-sided identity for convolution.

Let S be a monoid with the finite factorization property and let R be a com-
mutative ring (with 1). We study convolution with A = RS. Define I: S — RS by
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I(w) = w. If § admits an N-valued length homomorphism w+ |w| and aeR,
definee,: S — RS by e,(w) = a!™!. (The definition (7.1) of D, can now be written as
D,=e, *1)

Finally, we assume that S is an Artin monoid. In this situation, we define
1S — RS by

(W) = (=D4, if w=A4, for some A<= X
Hw = 0 otherwise

where |A| denotes the cardinality of 4. In particular, u(1) = 1.
(8.6) THEOREM. Let S be an Artin monoid. Then p* [ = [y = 9.

Proor. Clearly I*u(1)=I(1)u(l) =1=95(1), since if uv=1 in S, then
u=v=1

Ifw #+ 1,let A = {ae X |forsomew e S,w = w'a}.Sincew + 1,4 + 0. By(5.2),
A is finite, since w is a common left multiple of 4. In particular, A4 4 exists and there
exists w, € S such that w = w 4. Also, if B € X is finite and A exists, then ther
exists w'eS such that w=w'4p if and only if B< 4, in which case
w = wy(4,45"). Thus

Ipw) = Y upv)

uv=w

Y u(=1)"1a,

BeX:udp=w

S (=1)"w

Bc4A
= (1 — 14w
=0.

Thus we have shown that I * u = 4. (The proof that u*I = 6 follows from the
left-right symmetry of the defining relations of S.)

(8.7) COROLLARY. Let S be an Artin monoid and suppose that Ay exists. Then,
writing N = |4y, 4x — (— 1)l belongs to the right ideal in RS generated by
{Da(AXA)le)I XGX}‘

PRrOOF. Since D, = e, *1, it follows from (8.5) and (8.6) that e, = D, * .
Applying this equality to 4y (and recalling that N = |4x|), we conclude that
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aN = ea(AX)
= D, * u(dy)
= 2 Di(upuw)

uv=4y

= Y (—)ID,(4x4;") 44

AcX

= (=DM Uy + ) (=)D, (4xd5 )44
Aix
Note that if 4 is a proper subset of X, then D,(4x4 ;') belongs to the right ideal in
RS generated by {D,(4x4x,)|xeX}: choosing xéA4, D,(4x4;") =
D,(Ax A5 )D,(4x_<44") by (7.2); (8.7) follows easily.

At last, we complete the proof of (8.3) by providing the

PrOOF OF (8.4). Write H"~ (S, RS) and H" (G, RG) for the co-modules of D,
in RS and RG, respectively. Since S is a two-sided cancellation monoid and, by
the mirror-image of (7.6), satisfies the right Ore condition, it follows from the
mirror-image of (2.3) that the fuctor (—)+— (—) ® gs RG is exact. It follows that
H" YG,RG) and H" (S, RS) ® rs RG are isomorphic RG-modules.

Now suppose that ais a unit of R. It follows from (8.7) that 4y acts invertibly on
H"~1(S, RS). Since each xe X is both a left factor and a right factor of Ay, each
xeX (and therefore all of S) acts invertibly on H" (S, RS). It follows that
H""Y(S,RS) and H"™ (S, RS) ® gs RG are isomorphic R-modules; (8.4) follows
easily.

Part III. Examples.

In part III, we apply the results of Part IT to certain specific Artin groups of finite
type. In §9, we study the three irreducible Artin groups (of finite type) whose
generating set X, has cardinality 3; in accordance with [6, p. 193], these three
groups are denoted 43, B; and Hj. In §10, we briefly treat the braid groups B™.
(Already, a notational anomaly has arisen: the Artin group denoted 43 in §9 is
denoted B in §10.)

In §9, we explicitly compute the ordinary integral homology H,(G) where G is
one of A;, B;, H, or their commutator subgroups A%, By, Hj, respectively. Some
of our results are not new. H,(A3) was described in [30] for example. A descrip-
tion of H,(A}) follows easily from the fact that A} is a semidirect product of two
free groups of rank 2 (see [ 18]). H,(B3) was described in [23]. Our description of
H,(B%) contradicts [24], where it is claimed that Bj is a free group of rank 4.
Apparently, our descriptions of H,(H3) and H,(H}) are new.
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In § 10, we briefly describe the homological algebra of Artin’s braid group B®.
In particular, we explicitly describe each D,(4,4;1,) as in §7. We also describe
a finite complex of finitely-generated free abelian groups whose homology is the
ordinary integral homology of B™ (the ordinary integral homology of B™ is
well-known; see [30] or [13]). In addition, we describe a finite complex of
finitely-generated free modules over the Laurent-polynomial ring Z4[t,t ']

whose homology is the ordinary integral homology of the commutator subgroup
of B™,

§9 A3, B3 and H3

In this section, we will carry out some explicit computations for Artin groups
whose Coxeter groups are of type 43, B; and H; in the notation of [6, p. 193]. It
follows from [6] that these Coxeter groups are finite, so that (7.7) applies to the
corresponding Artin groups. Before turning to these examples, we establish some
notation.

Throughout this section, G will be one of the three Artin groups indicated
above, o will be —1, 0 will denote d_; and R will be Z. In each case, X will be
{a,b,c} with the total ordering a < b < c. If A < X, then [A] and 4 , will be
written by listing the elements of 4; for example, if 4 = {a,c}, then [A] and 4,
will be written [ac] and 4., respectively.

If G is a group, then H,(G) will denote the ordinary integral homology of G.
For each of the three Artin groups G that we consider, H, (G) will turn out to be
a free abelian group of rank 1 or 2. In each case, we write the group-ring Z(G/G’)
as a Laurent polynomial ring. Recall Shapiro’s lemma (see, for example,
[9, p. 73]): if G is a group and N is a normal subgroup of G, then H (N) =
H,(G,Z(G/N)). We will use Shapiro’s lemma to compute H,(G') where G’ is the
commutator subgroup of G.

Finally, given amonoid S and a generating set X of S, we associate toeachwe S
a graph I'(w) defined as follows. A vertex of I'(w) is an ordered pair (u,v)€S x S
which satisfies uv = w. (Note the relationship between the vertices of I'(w) and the
definition (7.1) of D,(w).) An edge of I'(w) is an ordered triple (u,a,v)eS x X x §
which satisfies uav = w; the edge (u, a, v) will be directed from the vertex (u, av) to
the vertex (ua,v) and will be labelled a. We will use the graphs I'(w) to avoid
explicitly describing the complex (C,, d,) in two of the three examples below.

In each example, we will give the Coxeter matrix M, give the corresponding
presentation of the Artin group G, draw, for each xe X, I'(4xA4x1,)(as an aid in
computing 0[abc]), compute H,(G) and, at the very least, compute H,(G').

(9.1) ExaMPLE. M =

N W =
_— N

3
1
3
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The corresponding Artin group, denoted A3, and Artin monoid have the
following presentation: generators a, b, ¢ and relations aba = bab, ac = ca,
bceb = cbe. The Artin group Aj; is the braid group on 4 strands and, somewhat
inconveniently, is conventionally denoted B,. Here is (C,,, 0,,):

o[e) =0
([a)) = (a — [O]
a([b] = (b - DIA]
o] = (c — D[]

o([ab]) = (ba — a + 1)[b] — (ab — b + 1)[a]

d(fac]) = (a — Dlc] — (¢ — Dla]

o([bc]) = (cb — b + 1)[c] — (bc — ¢ + 1)[b]

d([abc]) = (cba — ba + a — 1)[bc] — (bacb — acb + ab + cb — b + 1)[ac]
+ (abc — bc + ¢ — 1)[ab]

The formula for d([bc]), for example, follows from the fact that 4,4, ' = cb and
Ap.4, = be. The formula for d([abc]) follows from the fact that 4, = abcaba,
Ayt = cba, Ay At = bach and A4 ,4,.4,' = abe. In Figure 1, we list the
corresponding graphs (edges are directed from left to right).

- -1
['(Aabe Ab:: ): T'(Aabe Aab):
c b a a b ¢
*——o—0 *——o—=~0

r‘(Aabc Aa;cl: ):

Figure 1.
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The integral homology of the group 4; may be computed by substituting
a=b=c=1 into the complex (C,,0,) and computing the homology of the
resulting complex over Z. This yields

a0 =0
d([al) = a([b]) = o([c]) =0
d([ab]) = [b] — [4]
d(lac) =0
0([bc]) = [c] — [b]
d(Labc]) = —2[ac]

It follows easily that Hy(A43) = H,(A3) = Z, Hy(43) = Z, and H(4;3) = 0ifk +
0,1,2.

Finally, we compute the integral homology of the commutator subgroup A4’ of
A;. From above, 43/A4; = H,(A43) is an infinite cyclic group. We identify the
group ring Z(A3/A%) with the Laurent-polynomial ring Z[t,t~ 1] where t denotes
the common image of a, b, c in A5/A%. Using Shapiro’s lemma (described above),
H,(A%) may be computed by substituting ¢ for a, b, ¢ in (C,, 0,.) and computing
the homology of the resulting complex over Z[t,¢t~']. In describing the resulting
complex, we will use the following abbreviation: ¢,, (n > 0) will stand for the nth
cyclotomic polynomial, with the convention that ¢; = t — 1. (Aside from ¢, the
only ¢,’s that appear here are ¢, = t> + 1 and ¢¢ = t*> — t + 1.) This yields

o0 =0
d([a]) = 8([b]) = o([c]) = .[0]
d([ab]) = ¢6([b] — [a])
(Lac]) = ¢1([c] — [a])
0([bc]) = ds(lc] — [b])
0(Labc]) = ¢a(d1[bc] — pslac] + ¢1[ab])

It follows easily that Hy(A3) = Z, Hy(A%3) = Hy(A3) = Z2@ Z and H(45) =0 if
k % 0,1,2. We remark that the Z[t, ¢t~ !]-module structure of H,(A3%), induced by
conjugation in A5, can be deduced from the Z[t,t~']-complex above.

In examples (9.2) and (9.3) below, we will not explicitly describe the complex
(Cy, 04). Except for the formulas for ([bc]) and d([abc]), (C,, 0,)in (9.2) and (9.3)
will agree with (9.1). The formula for d([bc]) will be easy enough to describe. The
formula for d([abc]) would take up more space than our apology for not printing
it. We will print the graphs I'(4 s 4,52 Y), ['(AapeAie) and (A gy 4 5'); from these
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graphs, it is easy enough to describe d([abc]). For this reason, we suggest the
following exercise: in (9.1), understand dJ([abc]) in terms of the graphs
F(AabcAb_cl), F(AabcAa_cl) and F(AabcAa—bl -

1 3 2
(9.2) ExamMmPLE. M = (3 1 4

2 41

The corresponding Artin group, denoted B;, and Artin monoid have the
following presentation: generators a, b, ¢ and relations aba = bab, ac = ca,
bebe = cbeb. As noted above, we will omit the explicit description of (C,, 0,). Itis
easy enough to check that

o([bc]) = (beb — ¢b + b — 1)[c] — (cbc — bc + ¢ — 1)[b]
and that d([abc]) can be read off from the graphs in Figure 2.

T(Aabe Ape I'(Agbe Aab )

Figure 2

The integral homology of the group B; may be computed by substituting
a =b = c =1 into the complex (C,, d,) that results from above. This may be
easily seen to yield the following complex over Z

o[y =0
d([a]) = o([b]) = d([c]) =0
d([ab]) = [b] — [a]
d([ac]) = d([bc]) =0
d([abc]) =0
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It follows easily that Hy(B3) = Z, Hi(B3) = Z@® Z, Hy(B;) =Z® Z, H;(B;) = Z
and all other Hy(B;3) = 0.

Finally, we compute the integral homology of Bj. Since B;/B; = Z ® Z, we
identify Z(Bs/B%) with the Laurent-polynomial ring Z[s,s™ !, t, t ~!], where, in
B;/Bj, t denotes the image of a and b and s denotes the image of c. Proceeding as
in (9.1), we substitute ¢ for a and b and s for ¢ in (C,, d,). It is not difficult to see
that this yields

o) =0
d([ad) = a([b]) = (t — D[P])
a[c)) = (s — D[P
d([ab]) = (¢* — ¢ + 1)([b] — [a])
d([ac]) = (t — D] — (s — D[a]
A([bc]) = (st + D{(t — DLe] — (s — b1}
d([abc]) = (st*> — 1){(t* — t + D[bc] — (st + D(t* — t + 1)[ac]
+ (st + 1)(s — 1)[ab]}

To describe H,(B%), we let A denote Z[s,s~,t,t '] and if py, p,,... €4, we let
(P1,D2,. - .) denote the ideal in A generated by p,, p,,. ... Then

Ho(B3) = Afs — 1,1 =1)
Hy(B3) = A/(f> —t + 1, (st + 1)(s — 1))
Hy(By) = A/(st* — 1)

and all other H,(B};) = 0. Note that, asabelian groups, H,(B%) and H,(Bj) arefree
of rank 4 and countably infinite rank, respectively. (It follows that B} is not
finitely-related. In fact, B} is finitely-generated; it is not hard to show thata™!'b,
ba™', ca”'bc~ ! and cha”!c~! generated Bj.)

1 3 2
(9.3) ExampLe. M= |3 1 5
2 51

The corresponding Artin group, denoted Hj, and Artin monoid have the
following presentation: generators a, b, ¢ and relations aba = bab, ac = ca,
bebeb = cbebe. We will omit explicit description of (C,, 8,). Clearly,

O([bc]) = (cbeb — beb + ¢b — b + 1)[c] — (bcbe — cbe + be — ¢ + 1)[b]
It is also easy to describe d([abc]) using the graphs in Figure 3.
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F(Aabe Aa;::’:

CRAIG C. SQUIER

Figure 3.
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To compute H,(H;), we substitute a = b = ¢ = 1 in (C,, 0,.). This yields
arPn =0
d([a]) = o((b]) = 0([c]) =0
d(Lab]) = [b] — [4]

d([ac]) =0
d([bc]) = [c] — [b]
([abc]) =0

It follows H,(H3) =Z if 0 <k <3 and H,(H;) =0, otherwise. To compute
H,(HY%), since Hy(H3) = Z, we identify Z(H;/H';) with Z[t,t '] and proceed as in
(9.1). (In addition to ¢; and ¢¢, which appeared in (9.1), we will also see
3=t +t+1, ps=t*+3+2+t+1 and ¢ o=t*—t3+12—t+1)
This yields

o) =0
d([a]) = o([b]) = A([c]) = 4[]
0(Lab]) = ¢6([b] — [a])
d(Lac]) = ¢1([c] — [a])
d([bc]) = 1o(lc] — [b])
d(Labc]) = ¢1d3¢s(d1¢6lbc] — dedrolac] + 1¢iolabl)

It follows that Hy(H%) = Z, H,(H3) is free abelian of rank 7 and each other
Hy(H%) = 0. In particular, Hj is a perfect group and any presentation of H
requires at least 7 more relations than generators. We remark that H’ is finitely-
presented. This can be seen as follows: 4, is central in H; and the subgroup
{Aay generated by A, satisfies (4, N H = {1}. It follows that HY is
isomorphic to a subgroup of finite index in the finitely-presented group
H;/{4 4> and is therefore finitely-presented.

§10. B™

In this section, we apply the results of §7 to Artin’s braid group B"™, which for
n> 0, is presented as follows: B™ has generators X = {s,,...,s,_,} and
relations as given in the introduction. For notational convenience, we let ™
denote the Artin monoid associated to B™. Note that B is the trivial group, B*)
is an infinite cyclic group, B‘® is the fundamental group of the complement of the
trefoil knot and that B® is the group denoted A4; in §9. The Coxeter group
associated to B™ is the symmetric group on n letters so that B™ is an Artin group
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of finite type. In particular, (7.7) applies to B™. Our goal in this section is to give
an explicit description of 8, in (7.7) for B™,

We begin with some terminology and notation. First, two subsets 4 and B of
X™ are said to be separated provided if s;€ A and s;eB, then |i — jl = 2.

(10.1) LEMMA. Let A, B < X™ be separated.
a) IfueS,  and ve Sy, then uv = vu.
b) 4408 = A4 ,445.

Proor. (10.1a) follows from the fact that every element of 4 commutes with
every element of B. For (10.1b), note first that since, by (10.1a), 4,45 = 454,
A 4Agis acommon left multiple of A U B, so there exists z e S™ such that 4,4 =
zA o8- Since B < AU B, 4,45 is a common left multiple of B, so there exists
z,€S™ such that A, = z,45. Since A N B = @, by (6.9), every ae 4 is a right
factor of z, so that there exists z,eS™ such that z; = z,4,. It follows that
Aqdg = 22,444 in S™ so that z = z, = 1. In particular 4,45 = 4,5, as re-
quired.

Next, we introduce “open interval” notation on X™: if 0 < i <j < n, then
X(i,j) = {sili <k <j}. Note that each X(i,i+ 1) is empty and that
X™ = X(0,n). In particular, we let S(i, j) denote the submonoid of S® generated
by X (i,j) and let 4(j, j) denote the least common left multiple of X (i, ). If 4 = X®,
then X (i, j) will be called a subinterval of A provided: ifi < k < j, then s, € A. If, in
addition, s;,s; ¢ A, then X(i,j) is called a full subinterval of A4.

(10.2) COROLLARY. Let A = X™, let s, € A and let X (i, j) be the full subinterval of
A which contains s;. Then A AA;lsk = A(i, j)(AG, k) Ak, j) " L.

PTooF. Write A = Bu X(i,j) with B and X (i, j) disjoint. Clearly, B and X(i,))
areseparated. By (10.1), 4, = 434(i,j)and 4, _,,_= ApA(i, k)A(k,j).(10.2) follows
easily.

(10.1) and (10.2) reduce the computation of 4, and 4,4, to certain special
cases. We begin by studying 4(0,n) and 4(0, n)(4(0,i)4(i,n)) " .

First, if j > i, we define the “descending product” I1(j, i) inductively as follows:
NG + 1,i) = 1 and if j > i, then I1(j + 1,i) = s;T1(j, i). We record the following:

(10.3) LEMMA. Letj > i.

a) If k <iork>j, then s I1(j,i) = I1(j,i)s;.
b) If i <k <j — 1, then s, I1(j,i) = T1(j,i)s + 1.
¢ If i <k <j, thenI1(j,i) = I1(j, k — 1)II(k,i).
Proor. Left to the reader.

Finally, record the well-known.
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10.4) THEOREM. 4(0,1) = 1 and if n > 1, then A(0,n) = A(0,n — 1)TI(n,0).

PRrOOF. See [21] or [4].

Note that I1(n,0) = A(0,n — 1)"'4(0,n). It is also easy to check that
I(n,0) = 4(0,n)4(1,n)" . It also follows from (10.4) that if i <j — 1, then
A(i,j) = A(i,j — 1)TI(j, i): the function s, s; 4 ; from X(0,j — i) to X(i,j) extends
to an isomorphism from S(0,j — i) onto S(i,j) and (10.4) applies directly to
40,5 — ).

Next, we study D,(4,) and D,(4,4;,) with D, as defined in (7.1). For
simplicity, we write D for D, so that if we S™, then

Dw) = Y v
For we 8™, we also define
Dwy= Y u

(10.5) LEMMA. Let A = X™.
a) D(44) = D'(4,).
b) If B < A, then D'(4,)) = D'(45)D'(45 1 4.,).

ProOOF. (6.4) identifies the left factors of 4, with the right factors of 4,,
proving (10.5a). (10.5b) is the mirror-image of (7.2).

(10.6) LemMa. D'(I1(n,0)) = Z I1(n,n — j). In particular, if 0 <i < n, then
D'(I1(n,0)) = D'(I(n,i)) + I(n, 1— 1)D'(T1(i, 0)).

ProOF. The formula for D'(TI1(n,0)) follows from the fact that no defining
relation of S™ applies to I1(n,0). The second part of (10.6) follows from the
formula for D'(I1(n, 0)).

For convenience, if 0 < i < n, we let 6 denote 4(0,n)(4(0,i)4(i,n))~*. The
formulae for D(6{”) and D(6™ ,) can be deduced from (10.6). The general case
follows from:

(10.7) THEOREM. Let 1<i<n—1. Then D)= D" V) + D" V)
I(n,i— 1)

Proor. First note that
D(4(0,n)) = D(3{")D(A(0, ))D(A4(i, n))
by (7.2) and (10.1). Next note that
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D(4(0,n)) = D'(4(0,n))
= D'(4(0,n — 1))D'(I1(n, 0))
= D(4(0,n — 1))(D'(TX(n,i)) + II(n,i — 1)D'(I1(3, 0)))
by (10.5a), the mirror-image of (7.2), (10.5a) and (10.6) in succession. Analyzing
the pieces individually, we have
D(A(0,n — 1))D'(T1(n, i)
= D8~ V)D(A(0, i))D(4(i,n — 1))D'(I1(n, i))
= D(o{"~ V)D(4(0, )D(A(i, n))

first using (7.2) and (10.1) as above, and then using (10.5a), the mirror-image of
(7.2) and then (10.5a) again. We also have

D(4(0,n — 1)TI(n,i — 1)D'(TI(i, 0))
= D(8"ND(A(0,i — 1)D(AGi — 1,n — 1)TI(n,i — 1)D'(T(i, 0))
= D(5")D(A(0,i — 1) (n,i — 1)D(A(i, n))D'(T1 (i, 0))
= D" ")TI(n,i — )D(A(0,i — 1)D'(T1(i, 0))D(A(, n))
= D(8"NTI(n,i — 1)D(A(0, )D(4(i, n))

first using (7.2) and (10.1) as above, second using (10.3b) repeatedly, then using
(10.3a) repeatedly and finally using (10.5a), the mirror-image of (7.2) and then
(10.5a) again, as above. Comparing the two expressions for D(4(0, n)) and then, as
in the proof of (7.3), cancelling D(4(0, i))D(4(i, n)), (10.7) follows easily.

We remark that (10.7) includes a proof of the formula 6 = 6"V T1(n,i — 1).
Define 60" = 6™ = 1, so that D(6¥") = D(6™) = 1. It is easy to check that the
recursion in (10.7) noe holds for 0 < i < n.

(10.8) COROLLARY. Let 0 < i < n. Then D (6) = &’'D (6" V) + D,(6" 1Y)
II(n,i — 1).

Proor. The case a = 1 follows from (10.7) and the remark above. For the
general case, we assume that « is an indeterminate over Z and work over the
Laurent-polynomial ring Z[«, o~ '] in order to prove (10.7) over the polynomial
ring Z[«]; the general case follows by taking a suitable homomorphism from
Z[«] to the given ring R.

For the remainder of the proof, we let R denote Z[«, o« ™ !]. For we S™, define
¢.(w) = a'¥lw. Extend D, D, and ¢, to R-linear functions from RS™ to itself.
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Since o is a unit, @, is an R-linear (ring) automorphism of RS™. It is easy to check
that D = ¢,D,¢, *. In particular, if we S®, then D(w) = o~ "¢, D, (w).

It follows easily from (10.4) that if n > 0, then |4(0,n)| = in(n — 1). In turn, it
follows that if 0 < i < n, then |6{"| = i(n — i). Noting that |II(n,i — 1)] = n — i,
(10.7) follows from (10.6) by a simple computation.

By (7.7), we can use (10.2) and (10.8) to explicitly describe a resolution of R as
a trivial left RB™-module (x = —1).

For example, the ordinary integral homology of B™ may be computed from
the complex of free abelian groups that arises from (10.2) and (10.8) by leting
R =2, « = —1 and substituting 1 for each s;. The image of D_,(6(") after

substituting each s; =1 will be denoted r:) . Clearly, each <g> =
1 .

<"> =1andif0<i<n,then<','> =(-1)"<"—,1) +<’?—1> tis
n_, i)y i /) i—1/_,

easy to check that if 0 < i < n, then

lo ' if n is even, i is odd,

Iy -
D)

. n . . .
where [ x] denotes the greatest integer < x and < ) denotes an ordinary binomial
i

coeflicient. In particular, this complex agrees with that described by in [30]; see
[30] (or [13]) for a complete description of the ordinary integral (co)homology of
B(").

For a second example, the ordinary integral homology of the commutator
subgroup of B™ may be computed, using Shapiro’s lemma as in §9, from the
complex of Z[t,t~!]-modules that arises from (10.2) and (10.8) by letting R = Z,
a = —1 and substituting t for each s;. The image of D _,(6") after substituting

each s; = t will be denoted <:l) . Clearly, each <g> = (:) =landif0 <i<n,
t t t

then (n) = (—1)i<n n 1) + t”‘i<r,' _11> . It is easy to check thatif 0 <i < n,
t l t r— t

1

then <r:> = pn/PiPn—i» Where, if n = 0, then

t

iy

=1 t+1
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so that, in particular, p, = 1. Itis not difficult to use the complex just described to
show that if n = 5, then the second commutator subgroup of B™ coincides with
the first commutator subgroup (see [22]). Apparently (see [15]), a complete
description of the ordinary integral (co)homology of the commutator subgroup
of B™ is not known.
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