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AMENABILITY IN GROUP ALGEBRAS
AND BANACH ALGEBRAS

ANDREW KEPERT

0. Introduction.

In this paper, we will examine some aspects of the relationship between amenabil-
ity in groups and amenability in Banach algebras. While leaving specific charac-
terizations of these properties for the next section, we have the following results
from [13].

0.1. PROPOSITION. A locally compact group G is amenable if and only if L(G) is
amenable.

0.2. PROPOSITION. Suppose W and B are Banach algebras and v: W —» B is
a continuous homomorphism with range dense in B. If B is amenable then B is
amenable.

0.2.1. CorOLLARY. If X is a locally compact Hausdorff topological space, then
Co(X) is amenable.

0.2.2. COROLLARY. If H is a Hilbert space then X (H) is amenable.

Each of these Corollaries is proven by constructing an amenable locally
compact group G and a dense-ranged continuous homomorphism L}(G) — . It
is natural to ask whether any amenable Banach algebra A can be shown to be
amenable by a similar construction. It will be shown in Sections 2 and 3 that this
is not the case, and for certain classes of Banach algebras we will develop some
necessary and sufficient conditions for there to exist such a homomorphism.

The research presented in this paper was undertaken for the degree of Doctor
of Philosophy at the Australian National University, and I would like to thank
my supervisors Dr R. J. Loy and Dr G. A. Willis for their encouragement and
suggestions. Many thanks also to Professor B. E. Johson for his proof of
Proposition 2.3, Professors U. Haagerup and P. C. Curtis for the suggestion
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leading to the results in Section 3, and to Dr N. Grenbzk for the suggestion that
lead to the results in Section 4.

1. Notation and Preliminary Results.

Throughout, G,G,... will denote locally compact groups, each represented
multiplicatively with unit denoted e. If H is a closed normal subgroup of G, Ty
will denote the epimorphism L!(G) — L'(G/H) as described by Reiter in [20,
3.3.2-3.5.3]. When G is Abelian, its dual group will be denoted I', and this will be
identified with &), the maximal ideal space of the group algebra L'(G). If  is
a commutative semisimple Banach algebra, the hull of a set X = U is
Z(X) = {pePy: ¢(X) =0} and the kernel of a set S< ®y is S(S)=
{aeW p(a) =0, (pel)}.

Let C,(G) be the space of continuous bounded functions on G, then M € C,(G)*
is called a mean when inf f(G) £ M(f) < sup f(G) for each f e C,(G) with rng
f = R. A group G is amenable if there exists a mean M on C,(G) that is
left-invariant, that is, M(f) = M(.f), (f€ Cy(G), x€ G). Locally compact groups
that are Abelian or compact are amenable. There are many equivalent character-
izations to the above, including the existence of left and/or right-invariant means
on other function spaces on G, such as L*(G), UC(G), UC,(G),... and a variety of
structural conditions on G, referred to as Felner conditions. See [10] or [17] for
more on invariant means and Fglner conditions.

Let 2 be a Banach algebra, and let U & A (defined as in [3, Chapter 6]) be
endowed with its canonical structure as a Banach U-bimodule, given by
(@a®b)-c=a®(bc)anda-(b ® c) = (ab) ® c. Let n be the mapping A @ A —» A
given by extending a ® b+ ab by linearity and continuity. An approximate
diagonal for A is a bounded net {d,},s € A ® A such that for each ae 4,
n(d,)a - a,and d,-a — a-d, — 0. If an approximate diagonal exists, then we say
that 9 is amenable. Again, there are other characterizations equivalent to this,
such as the condition that every derivation from U into a dual Banach U-bi-
module is inner (see [3, Theorem 43.97]), or that U has bounded approximate
identity and ker n, when considered as an ideal of the algebra U ® 2A°®, has
a bounded approximate identity (see [8]).

We say a Banach algebra U has property (G) if there exists an amenable locally
compact group G and a continuous homomorphism v: L'(G) — 2 with range
dense in . Then as noted in the introduction, a Banach algebra with property
(G) is amenable.

We present some basic results on property (G) which will aid us in later
sections, when we will characterize property (G) for certain Banach algebras 2.

1.1. PROPOSITION. Suppose U and B are Banach algebras with property (G),
then A @ B and A ® B have property (G).
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PRrOOF. By hypothesis, there exist amenable locally compact groups G, and
G, and continuous homomorphisms v,: [}(G,) —» A and v,: LY(G,) - B with
ngv; = A and tngv, = B. Then the continuous homomorphisms v; @ v,:
LY(G) @ L'(G,) » ADB and v; @ v;: LN(G,) ® LY(G,) > A ® B have dense
range, so it suffices to show that L{G,)® LY(G,) and L(G,;) ® LY(G,) have
property (G). For this, note that the groups G; x G, and G, x G, x Z, are
amenable with

LG, x G,) = LNG,) ® L'(G,),
LNG, x G, x Z,) = LYG, x G,) ® C?
=~ LG, x G,) ® LY(G, x G,),

and T, ® Tg,: L'(G, x G,)® LG, x G,) - L'(G,)® L'(G,) is an epimor-
phism.

1.2. PROPOSITION. Suppose G is a locally compact group and v: L} (G) - U is
a continuous homomorphism into a commutative Banach algebra, then there is
a locally compact Abelian group G’ and a continuous homomorphism v': [N(G') —
withrngv = rngv'.

ProoOF. Let C be the closure of the commutator subgroup of G, then by [12,
Theorem 23.8, G/C is Abelian. We show firstly that the kernel of
Te: L{G) - LNG/C) is ¢, the commutator ideal of L'(G). The inclusion
F < ker T follows from the observation that T¢ is a continuous homomorphism
into a commutative Banach algebra.

Conversely, by [20, 3.6.4], we have ker T, = span{f— ,f: xeC, feLG)}.
PutH = {xeG: f — .fe #,(f € L'(G))}, a closed subgroup of G, and let {e,},c4
be a bounded approximate identity for L'(G). For each x,yeG and each
feLXG),

”yxf_yen*xen*f” é ”y(xf— en*xf)” + “yen*x(f - en*f)"
é “xf_en*xf” + ”en” "f_en*f”
-0,

so that (,&,% €, — ,€,%,€,) % f = . f — ,f  Furthermore, (ye,*.e, —
xen* €)% f€ #, which is closed and translation-invariant, so that
s-ty-1xyf — f€ #and x~ 'y~ 'xye H. But C is the closed subgroup generated by
{x"'y~'xy:x,yeG},s0 C < H. Hence ker T < #.

Now, since U is commutative, ker Tz < kerv, and so vo T¢"': LY(G/C) » A
defines a continuous algebra homomorphism, as required.
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2. Subalgebras of Commutative Group Algebras.

In this section we will examine closed subalgebras of commutative group alge-
bras, which we call group subalgebras, and for certain classes of these, develop
necessary and sufficient conditions for property (G).

By Proposition 1.2, a subalgebra 2 of L(G) has property (G)if and only if there
is a locally compact Abelian group G’ and a continuous homomorphism
v: LY(G') » L(G) with ¥ = rngv. Thus we can use the Theorem of Cohen, [6,
Theorem 1], which characterizes homomorphisms between commutative group
algebras. For this we define the terms coset ring, affine, piecewise affine and
proper. The coset ring of a locally compact Abelian group I', denoted Z(I'), is the
Boolean ring generated by the opencosetsin I'. If E = I',amap y: E — I"'is affine
if for any yy, v2, 73€E, Y(y1y; 'v3) = ¥y )¥(p2) "W(y3). If ES T, a map
Y:S — I is piecewise affine if there exist disjoint Sy,...,S,e%(I') such that
§=8,v...uS,and for each 1 £ k < n,q|s, has a continuous affine extension
o E, — I'". (Here it is understood that E, is a coset containing S,.) If X and Y are
locally compact topological spaces then a map y: X — Y is proper if for any
compact C < Y, y ~}(C) is compact.

Then with v: LY(G’) - L(G) as above, it follows from [6, Theorem 1] that
Y= {yel:v¥y) £ 0} e (') and a = v*|y is a proper piecewise affine map.
Furthe/r\more, any such a uniquely determines a homomorphism v by the rela-
tions v(7)(y) = foa(y) if ye ¥ and W(J)() = 0if y¢ Y.

In the paper [14], it was shown that for such a homomorphism,
Y = I'\Z (rngv) and rng v = k(a), where

k(@) = {feL(G): / = 0 off Y and f(y1) = f(y,) whenever a(y,) = (y)},

which is closed. Thus we can classify the group subalgebras with property (G) as
follows.

2.1. PrROPOSITION. If G is a locally compact Abelian group and U is a closed
subalgebra of L*(G), then U has property (G) if and only if

(i) Y=I\ZW)eR(), and

(ii) thereis alocally compact Abelian group I'" and a proper piecewise affine map
o Y - I'" with W = (a).

We now consider specific classes of group subalgebras and develop necessary
and sufficient conditions for amenability and property (G). The simplest such
class consists of the closed ideals of commutative group algebras. For this, define
the discrete coset ring of a locally compact Abelian group I to be %(I',), the coset
ring of I' with its discrete topology. We denote this %,(I'), and it is the Boolean
ring generated by all cosets in I'.

We will, in fact, mainly be interested in sets in
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R () = {X e R(T): X is a closed subset of I'},

as these are the only sets in %,4(I") that can be hulls of ideals. The fact that an ideal
has hull in £,(I') if and only if it has bounded approximate identity is vital in the
next theorem and subsequent results.

2.2. THEOREM. Let f is a closed ideal of L(G), and put E = Z(.#). Then J is
amenable if and only if E € R.(I"), whereas .# has property (G) if and only if E € (I").
In either case, ¥ = $(E).

PROOF. The first part of this is [16, Theorem 1]. For the second, we have by
Proposition 2.1 that if # is an ideal with property (G), then Y = I'\E € #(I'), and
so Ee #(I'). Conversely, if E = Z(#)e %(I'), then E is clopen, and consequently of
synthesis, so that .# = #(E). Moreover, if we define oz Y — I' to be the inclusion
mapping, then a is a proper piecewise affine map with x(x) = #(E), so by the
above discussion, .# has property (G).

REMARK. In the above proof, the epimorphism v: L'(G) — .# determined by
« has v(f) = yrg- f This is clearly a multiplicative projection. Then by [5,
Theorem 1], there is an idempotent measure pe M(G) with i = yrg, so that v is
given by f+— f *x u. This is a demonstration of the fact that M(G) is the multiplier
algebra of L!(G).

We now turn to another construction of closed subalgebras of L!(G) that are
amenable and yet lack property (G). Suppose U is a commutative Banach
algebra and H is a group of automorphisms of . Put

Wy = {aeW: h(a) = a, (he H)}

certainly Uy is a closed subalgebra of A. We then have the following result,
whose proof in this generality was kindly suggested by Professor B.E. Johnson.

2.3. ProrosiTION. If U is a commutative amenable Banach algebra and H is
a finite group of automorphisms of N, then Wy is an amenable Banach algebra.

PrOOF. Let {d,},cs € A ® A be an approximate diagonal for A, and let
H have identity 1 and cardinality N. Put K = max,g ||h||.

The group H x H can be made into a group of automorphisms on A @ Ay
via (hy, h,)a, ® a;) = hi(a,) ® h(a,) and then Ay @ Wy = (A @ W)y x ). For

eachne 4, putd, = %Zheﬂ(h, h)(d,). Then {d,},.4 is an approximate diagonal
for A with (b, h)(d,) = d,, for each he H; let M = sup, ||d,||. Now put
dy =e®e— ] (e®e—(h1)(d),

heH
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where this product is in the algebra 0 ® 2, and the term e ® e plays a purely
formal r6le as a multiplicative identity. It is clear that {d, },., is a bounded net in
A ® A. Moreover, if (h,, h,)e H x H, then

(hy, hy)d,) = e® e — [] (e ® e — (hyh, hy)(d,))

heH

=e®e— [[(e®e~ (hhh;',1)d,) = dy,

heH

so that d e Uy ® y. Also, if ae Wy then

la — an@)ll = |la [] n(e ® e — (h,1)(d,))
heH
Slla —an@d)l [] lle®e— (hi)d,)l
heH\{1}
< lla — an(d,)ll (1 + KM)" !
-0,

so that {n(d,)},.4 is an approximate left identity for Wy. Finally, we have

di= Y (=D"[](h1)d),

B+ScH heS

so if we let S+ hge S be a choice function, then for each ae Wy,

ldy-a—adyl< ¥ lhs,)d,-a —a-(hs,0d | T] Nh o)l lidy)

B4ScH heS\{hs)

< Y s )l ldy-a — hs '@ dy || (KM)YSI
o+ScH

=2V - DK |d,-a —a-d, [ (KM)" ™!

- 0.

Hence {d, },.4 is an approximate diagonal for 2, and so A is amenable.

So we see that if G is a locally compact Abelian group and H is a finite group of
automorphisms of L'(G), then L}(G) = LY(G)y is amenable. To determine when
L},(G) has property (G), note that, by [6, Theorem 1], the automorphisms of L!(G)
are characterized by the piecewise affine homeomorphisms of I'. Hence we can
consider H as a finite group of piecewise affine homeomorphisms I' — I'. Then

Ly(G) = {feLXG):foh =] (heR))
= {feL}(G): f is constant on each orbit H(y)}.
So, applying Proposition 2.1, we see that L},(G) has property (G) if and only if
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there is a proper piecewise map « from Y = I'\Z(L},(G)) into some other locally
compact Abelian group such that LL(G) = k(x). However,

k(@) = {fe LNG): f(I'\Y) = 0 and f is constant on each set ™ *{a(y)}},

so it would seem that the partition of I' into orbits H(y) is identical to the partition
of I' into sets on which a is constant. The following lemma delivers precisely this
result.

2.4. LEMMA. Let v: IN(G) - LY(G) be a homomorphism between commutative
group algebras with Y e Z(I') and a: Y — I’ as above, and let H be a finite group of
piecewise affine homeomorphisms of I'. If rngv = LYy(G), then Y = I and for y,,
v2€l, alyy) = a(y2) <> H(yy) = H(y).

ProoF. For each ye I, H(y) is finite, and since LY(G)" separates points of I',
. . 1

there exists f € LY(G) with f(H(y)) = {1}. Put f = mzh foh, then fe(LL(G)"
and f(y) = 1. Hence ye N\ Z(LY(G)) = Y,so Y = I".

Now suppose y;,7,€l" are such that H(y,) = H(y,). For each feLY(G),
v(f)€ Liy(G), s0 v(f)y1) = v(f)(y2). Thus f(x(y,)) = f(a(y2)), and since A(I")
separates points, a(y;) = a(y,).

On the other hand, if H(y,) + H(y,), then H(y,) and H(y,) are finite disjoint
sets, so there exists feL'(G) with f(H(y,) = {0} and f(H(y,)) = {1}. Then

1 A A
/= EZJ che(Ly(G)" = (k(@)" and f(y1) + F(71), s0 a(ys) + o(y2).

We now use the above to characterize property (G) in algebras L}(G) in the
case where H is a finite group of automorphisms of I'. This is a natural situation
to consider, as we then have a finite group of automorphisms on G, given by H*,
the group of adjoints of elements of H. Then Li(G) = {feL (G):foh* = f,
(h*e H*)}, which is L(G™"), a convolution algebra on the orbit hypergroup
GY = {H*(g): g € G}. The amenability of hypergroups and hypergroup algebras
is studied further in [23].

We will need a stronger characterization of the terms “coset ring” and “piece-
wise affine”. For more details of this, see [ 14, Section 2]. Define #(I') to be the
subset of (') of sets of the form S = Eo\({T Ex), where E,, ..., E,, are clopen
cosets in I" and each of E,, .. ., E,, is a subcoset of infinite index in Eq. Then E, is
the coset generated by S, which we denote Eq = Eq(S). Also, any member of %(I')
can be represented as a finite disjoint union of elements of #4(I'), and so we can
suppose that in the definition of piecewise affine, each S is in Z,(I") and each o,
has domain Ey(Sy).

In the situation where x(x) = L}(G), we have seen that we have Y = I'. The
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following lemmas allow us to obtain further special properties of such a piecewise
affine map.

2.5. LEMMA. Suppose G is an Abelian group and E, ..., E, are cosets in G such
that G = U'; E,, then for some 1 < k < n, E, is a subgroup of finite index in G.

Proor. Without loss, we have that for some 0 <m <n, E,,...,E,, are sub-
cosets of finite indexin Gand E,, 4 4, .. ., E, are subcosets of infinite index in G. For
1 £ k £ m,let Hy be the subgroup E E, ' < G, then H, is of finite index in G, and
so H = ﬂ’{' H, is of finite index in G. (If m = 0, put H = G.) For each k > m,
H N E, is empty or a coset of infinite index in H, so by [22, Theorem 4.3.3],
(Um+1(H N E) is a proper subset of H. However, H = | )] (H N E,), so for some
k<m, HnE,+ Q,so that H.n E, + Q. Hence H, = E,, and we are done.

2.5.1. COROLLARY. Suppose I'y, I', are locally compact Abelian groups and
o: I'y = I'y is a piecewise affine map. Then thereis aset S € Ro(I";) suchthat Ey(S) is
a subgroup of finite index in I'; and o|s has a continuous affine extension
ao: Eo(S) = I'y. Further, if a is proper, then so is ay.

ProoF. By the discussion above, that is, [14, Lemmas 2.1 & 3.1].

2.6. LEMMA. Suppose S€ Ro(I) is such that Ey(S) a subgroup of finite index in
I, and H is a finite group of automorphisms of I'. Then § = (\ner h(S) € Ro(I) and
Eo(S) = (\her h(Eo(S)) is a subgroup of finite index in I.

PrOOF. Suppose S = Eo\(|JT Ex), as in the definition of 2,(I'), and put
Eo = (\nen M(E,). Each of {h(E,): heH} is a subgroup of finite index in I', so E,, is
a subgroup of finite index in I". Also, S'=E\(Unen U"’(h(Ek) A Eo)) with each
h(Ek)r\Eo being empty or of infinite index in E,. Hence Se%,(I') and
Eo(§) =

2.6.1. CorOLLARY. With I'y, I', and o. 'y — I'y as in Corollary 2.5.1, if H is
a finite group of automorphisms of I',, then we can obtain S with the additional
properties that h(S) = S and h(Ey(S)) = E(S), for each he H.

In the following theorem, we will use the natural generalizations of [6, The-
orem 1] and [14, Theorem A] to the situation where we have a homomorphism
between two algebras, each a finite direct sum of commutative group algebras.

Suppose we have A = LY(G,) @ - ® L!(G,), where Gy,..., G, are locally com-
pact Abelian groups. We can naturally identify @y with ', v - -+ ©w I',, the disjoint
union of the dualsof G4, ..., G,. We can also define the coset ringof I'y w---w Iy,
denoted #(I'y w---wT,),to be

{(YeTiuulgYnTe®) (1=sk=n),

which happens to be the Boolean ring generated by all the open cosets of each of
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ry,...,l, Similarly, for G,...,G,, locally compact Abelian groups, and
YeR(I, v - wT,), wecan defineamap o: Y > I'y w---wT, to be piecewise
affine if we can partition Y into sets { Yj: 1 <j < m, 1 < k < n} such that for each
ok, Yp € R(I), oY) < Iy, and o = aly,,: Yy — I, is piecewise affine.

With such notation, it is elementary to show that a homomorphism v from
A=LYG,) D @ L(G,) into B =LYG) @ - ® LYG,,) is uniquely deter-
mined by the proper piecewise affine map v*|y, where Y = &g\ Z(rng v). More-
over, the proof of [14, Theorem A] generalizes naturally to considering such
homomorphisms, giving the conclusion rng v = k(). This is merely an extension
of the observation made in Section 4 of [14] regarding homomorphisms
LY(G) - LYGy) @~ ® L'(G,).

2.7. THEOREM. Suppose H is a finite group of automorphisms of a locally
compact Abelian group I'. Then the following are equivalent:

(i) LL(G) has property (G),

(i) the subgroup A = {yeI: H(y) = {y}} is of finite index in I, and

(ii)) L}(G) is isomorphic to a finite direct sum of group algebras.

PrOOF. Supposing (i), then by Proposition 2.1 and Lemma 2.4, there is
a locally compact Abelian group G’ and a proper piecewise affine map o: I' —» I
such that the level sets of o are precisely the orbits of the action of H on I'. By
Corollary 2.6.1, there exists S € #,(I") such that E(S) is a subgroup of finite index
in I', als has a proper continuous affine extension ay: Eo(S) — I, and for each
heH, h(S) = S and h(E(S)) = Eo(S).

Now, aoh = a, for each he H, so Ay = {ye Eo(S): ag o h(y) = ao(y), (he H)} is
a subgroup of Eo(S) with S < A,. Since Ey(S) is the coset generated by S, we have
that Ay = Eo(S), and s0 ag° h = ag, (he H). Put & = {y € Eo(S): ao(y) = aole)} =
ao H{ao(e)}, a subgroup of E(S). For each ye S, H(y) < S, so

Y eH(y)=a(y) = a(y)
< 0o()’) = ap(y) and y' €SS,

so H(y) = yZ n S. Thus {y e Eo(S): H(y) < yZ},a subgroup of EO(S), contains S. It
follows that H(y) = y& for all ye Ey(S). For each heH, let . Eo(S) > Z be the
homomorphism defined by f(y) = h(y)y ™, so that A = [,z b~ *{e}. It remains
to be proven that = is finite, for then each /i~ *{e} is of finite index in E(S), which
is in turn of finite index in I

By [14, Lemma 2.2], there exists yy,.. ., 7y € Eo(S) such that Eo(S) = (JY %S,
giving

E=EnES)= U n'®nS)= U »nHO"),

1<ksN 1<ksN

which is evidently finite.
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Now assume (ii). For each coset yA of A, and each he H, h(yA) is the coset
h(y)A, so that H acts on I'/A. Let H(y,A),..., H(yyA) be the orbits of this action,
and for each 1 Sk < N, let hy y,..., h ,, € H be such that the cosets of A that
make up H(y,A) are {h; j(pA): 1 <j < n}.

For each 1 £k < N, H, = {heH: h(y,)ey, A} is a subgroup of H, and
A, = {h(y)yx : he H,} is a subgroup of A. Furthermore, H, acts on y,A by
h(yA) = (A - (h(y)ye 1), that is, by translations by elements of A,. For
1 £j £ m, define oy;: by f(yx)A = A/ A, by ayj(hif(7x)A) = AA,. This is continuous
and affine, and since o' (44,) = hyj(y)A4, is finite, ay; is also proper.

Each coset of A in I is of the form hyj(y,)A, for some unique k and j, so we can
define a proper piecewise affine map o: I' > A/A; v+ w A/Ay by “piecing to-
gether” all the ay;. For each ye I, say y = hy;(yi)A, we have H(y) = H(h (7 4) =
H(yA). Also o' (AAy) = hyj(yeAdy) = hyj(Hi(y,4)). Hence

“_1{“(7)} = U ak_jl(lAk) = U hj(Hi(y:A) = H(yd) = H(y),
1Sjs<m 1Sj<m
and as this holds for each ye T, k(x) = L(G). Now, by the extension of Cohen’s
characterization of group algebra homomorphisms, as outlined above, a deter-
mines a homomorphism v: A(A/A,) @ -+ ® A(A/Ay) - A(I') with range «(x).
Also, ker v = £ (rng(a)) and since « is surjective, we have that v is a monomor-
phism. Hence Ay(I') = k(o) = A(A/A;) ® - @ A(A/Ay).
The last implication (iii) = (i) follows from Proposition 1.1.

So we see that the amenable algebras of the form L},(G) will usually fail to have
property (G). For instance, if I' is connected, then for LL(G) to have property (G),
we must have A = T, and so H = {1} and L};(G) = [}(G).

If G is a locally compact Abelian group, we always have the automorphism
n on G given by x— x 1. (Although occasionally we have = 1, as we will see.)
Then H = {1,n} is a finite group of automorphisms of G and Li(G) = Léym(G), the
subalgebra of symmetric (or even) functions in L!(G). We now apply the preced-
ing theorem to this case

2.8. THEOREM. If G is a locally compact Abelian group, the following are
equivalent:

(') Liy(G) has property (G),

(i) G=Y,.Z, x [[s2Z2 x F, for some cardinals a and b and some finite group
F, and

(iii") LY,n(G) is isomorphic to a group algebra.

Proor. Suppose (i'), then we have by Theorem 2.7 that A = {yel:
H(y) = {y}} is of finite index in I, say |[['/4] = N. Then ye'=>y"e A =>y" =
7™ N = 92N = ¢, so that I is of bounded order. Thus, by [12, Theorem A.25], there
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is an algebraic isomorphism : I’ Z,d»ZiE,ZM, where I is an index set and
{n;:iel} is a bounded set of integers greater than 2. Then {yeI": y* = e} = Aisof
finite index, so F=y '(},>,Z,) is a finite subgroup of I' with
(T/F)a = Y =225

Let A, be a compact open subgroup of I', which we can assume to contain F. If
we now apply the argument of the above paragraph to A,, we obtain that
Ao = F x [[.2Z,, for some cardinal a. By continuing with an argument similar to
thatusedin [12,25.29], or by a straightforward application of Zorn’s Lemma, we
can obtain a complement to A,, which will be isomorphic to Y, Z, for some
cardinal b, giving G = F x Y ,Z, x [+ Z>.

For the implication (ii') = (iii'), we show that for G =) ,Z, x [[sZ, x F,
L,,(G) is isomorphic to a group algebra. Let H=),Z, x [[sZ,, so that
H®? = {e} and G = H x F.Let ¥: LY(G) - L'(H) ® I'(F) be the natural isomor-
phism. It is easily verified that W(LL,(G)) = L'(H) ® I},.(F). Now, I} (F) is
a finite-dimensional commutative semisimple Banach algebra, so I}, (F) =
C" = I'(Z,,), where m = dim(l},,,(F)). Consequently L, (G) = L'(H) ® I'(Z,,) =
L\H x Z,).

The final implication (iii') = (i) is trivial.

In light of the conclusion (iii') in Theorem 2.8, it is natural to ask whether we
can reach the same conclusion in Theorem 2.7. We will give an example of an
Abelian group G with a finite group of automorphisms H such that 1;(G) has
property (G), but is not isomorphic to a group algebra.

Let U and V be as constructed in [15, p. 616-7]. That is, U is a countably
infinite torsion-free Abelian group and V is a non-isomorphic subgroup that is of
index 2in U. Let 1 = U, a connected compact Abelian group, then £ = Ann (V)
is a two-element group, say £ = {e, £},and 1/E = Vis also compact and connec-
ted. Put G = U x Z,,sothatI’ = ¥ x Z,,and define € Aut(I') by 5(v,0) = (v,0)
and n(v, 1) = (v&, 1). Then n? = 1,50 H = {1,n} is a finite group of automorphisms
of G which clearly satisfies the criterion (ii) in Theorem 2.7. It then follows that
15(G) is isomorphic to a finite direct sum of groups algebras, and by applying the
construction in the proof of Theorem 2.7, we obtain [};(G) = I*(U) @ I*(V), which
has maximal ideal space ¥ v ¥/E.

Suppose [{(U) @ I'(V) is isomorphic to a group algebra L'(G'), so that there
exists a piecewise affine homeomorphism o: Vv ¥/Z — I". Thus I has two
connected components, which are necessarily affinely homeomorphic. It follows
that ¥ and Y/Z are topologically isomorphic, and so U and V are isomorphic.
(Contradiction.)

Many thanks to Dr Laci Kovacs for suggesting the group U used in this
example.
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3. A Non-commutative Amenable Banach Algebra Without Property (G).

In this section we examine some amenable Banach algebras which we show to
lack property (G) by methods entirely different to those in Section 2. For the
results presented in this section, I am indebted to a suggestion of U. Haagerup,
and its communication through P.C. Curtis and George Willis.

3.1. LeMMA. Suppose U and ‘B are unital Banach algebras and .# is a closed left
ideal of W with a left approximate identity {e,}nc 4, boundedby M > 0.Ifv: ¥ - B
is a continuous homomorphism with tngvn B~ & @, then there is a unique
homomorphism V: W —> B extending v. Moreover, V(e) = e = lim,,v(e,),
V(F) = ¥(A), and |7|| = M |v].

PRrOOF. Suppose ae.# is such that v(a)e B!, then any homomorphism
7: A —» B extending v must satisfy #(x) = v(xa)[v(a)] !, (xe A). Define 7 to be
exactly this. Then v is a continuous linear extension of v with v(e) = e.

For each ne 4, and each xe U,

v(xen) — ¥(x) = v(x(e,a — Q) [v(@)] "' -0

so  ¥(x) = lim,.4v(xe,). Hence #A)<v(F), ||| EM|v|, and e =V(e)
lim,. 4 v(e,). Also, if x, ye U, then yae #, so v(xya) = lim,_, v(xe,ya). However,
v(xya) = ¥(xy)v(a) and lim,., v(xe,ya) = [lim,4 v(xe,)]v(ya) = ¥(x)¥(y)v(a), and
since v(a)e A~ ', we have that ¥(xy) = ¥(x)¥(y), as desired.

3.2. PROPOSITION. Suppose U is a Banach algebra with unit e, G is a locally
compact group, and v: L\(G) —» U is a continuous homomorphism. If tngvn
N~ ! 4 @, thenv has a unique extension to a homomorphism v. M(G) — U. Further,
191l = Ilvll and (L(G)) = ¥(I*(G)) = ¥(M(G)).

ProoF. Let 4 be the set of compact neighbourhoods of ee G, and order 4 by
2. For each U e 4, take ey € Cg,(G) with support within U and |ley| = 1. Then
{ev}ues is a bounded approximate identity for L'(G), a closed ideal of M(G).
Hence, by Lemma 3.1, v has a unique extension to a homomorphism
¥: M(G) » U, with e = ¥(8,) = limy4 v(ey), |19 = |Iv|l, and v(L(G)) = #(M(G)).

Since 7('(G)) < #(M(G)), it remains to be proven that v(L'(G)) < 7('(G)). For
this it suffices to prove that v(Cg,(G)) < 7((G)).

For this we can use a portion of the proof of existence and uniqueness of Haar
measure, as givenin [12,15.5-6]. (Asis donein [24, Lemma 2.1].) This states that
for feCgo(G) and ¢ > 0, there exists U € 4 such that if ge Cgo(G) is zero off
U with ||g|| = 1, then there exists heI'(G) with ||h|| < | f]l and || f — h*g| <.
Take Ve Awith V < U,and ||v(ey) — e|| < &. Thene, € Co(G)iszero off U, so we
can take hel'(G) with || f — h*ey|| < & Then
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v(f) = V(W = Iv(f — h*ey)ll + [7(R)(v(ey) — o)
S VIS — hxeyll + 191 1Bl v(ey) — ell
<lvlie + lvilllf Il e
Hence v(f) e 71%(G)).

In the following, Z(%) is the centre of U, that is, Z(A) = {aeW: ab = ba,
(be)}.

3.3. THEOREM. Suppose U is a unital Banach algebra with property (G). Then
span{ab — ba: a,be A} N Z(A) = {0}.

PRrOOF. Let G be an amenable locally compact group and v: LY(G) - U be
a dense-ranged homomorphism. Then U ! is open, so rngv N A~ ! + &, and we
can apply Lemma 3.2 to obtain an extension v: M(G) — A with ||7]| = ||v|,
A = 7(I'(G)) and ¥(8,) = e. Then

spani{ab — ba: a,be W} = span {a¥(f) — ¥(f)a: ac, f €l'(G)}
= Span {av(d,) — ¥(d,)a: ae W, axe G}
= span {¥(0,-1)av(d,) — a:ae Y, xe G}.

Thus it suffices to show that for each ze (), there is an element of AU* that
annihilates each ¥(J,-1)av(d,) — a, but not z.

Take ze Z (). Let iy € U* be such that Y(z) £ 0and ||Y| < 1. Foreachae,
define the function Y, on G by Y,(x) = Y(¥(,-1)av(d,), (x€G). Then
SUPxeq [Wa(¥) < [IVI? llal, s0 ¥, € 1(G). Define ¥: A — [*(G) by ¥(a) = Y,.. Then
¥ is linear with |P| < ||v|% If aerngv, say a = v(f), then for each xeG,
VYa(x) = Y ov(Oy-1 % f *0,), s0 Y, € Cy(G). Hence ¥ (rngv) = C,(G), a closed sub-
algebra of [°(G), and since ¥ is continuous, ¥(A) = C,(G).

Now, if ae U and x, y € G, then

WP (@)(x) = Yo(yx) = (0 - 1)7(0,-1)av(6,)¥(6x)) = ¥(V(d,-1)a¥(6,))(x),
so that if M is a left-invariant mean on C,(G), then
Mo ¥(a) = M(,¥(a)) = Mo P(¥(J,-1)av(é,)).

Hence Mo ¥eU* annihilates each ¥(5,-1)a¥(d,) — a. But y,(x) = y(¥(d,-1)
z¥(8,)) = Y(¥(0,-1)¥(d,)z) = Y(z) is the constant function (z). Hence
Mo ¥(z) = y(z) + 0.

Suppose H is a separable Hilbert space, n is an integer greater than 2, and
H,,..., H,are orthogonal closed infinite-dimensional subspaces with H; + -+ +
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H,=H. For each 1 £k=<n, let S, be a linear isometry H — H,. Then
Si,....8,€BH)and I =SS, = = S}S, = S;8F + -~ + S,Sk. Let ¢, be the
C*-algebra generated by S, ..., S,, which we call the Cuntz algebra on n gener-
ators. This algebra was introduced in [ 7], where it is shown not to depend on the
actual isometries Sy,..., S, chosen, but only on n. In [21], it is shown that the
Cuntz algebras are amenable. However,

(ST81 = 8u8P) + -+ + (838w — $,u87) = (n — DI e Z(G),

so we see that ¢, cannot have property (G).

This seems related to other properties of the Cuntz algebras related to amena-
bility. In particularly, the Cuntz algebras are amenable, but not strongly amen-
able. (Strong amenability is a property of C*-algebras defined in [13]. The Cuntz
algebras were shown to not be strongly amenable in [21].)

Suppose U is a C*-subalgebra of B(H), and v: L'(G) — A is a homomorphism
with rngvnA~' + . By Proposition 3.2, we have a homomorphism
I'(G) » A, which gives a continuous representation 7n: G — B(H) with
n(x) < ||v|, for each xe G. (cf. [18, p. 77].) Then by [18, Corollary 17.6], & is
equivalent to a unitary representation, that is, there is an isomorphism ¥: H - H
such that n": x+— ¥ ~'n(x)¥ is a continuous representation of G such that each
7'(x) is unitary. Then, by [13, Proposition 7.8], A’ = n(I}(G)) is a strongly
amenable Banach algebra. Moreover n(IY(G)) = ¥ 'n(IY(G)¥ = ¥ 'AY.
Now, if strong amenability was preserved by such a transformation, then we
could conclude that U is strongly amenable. Unfortunately, this avenue is not
open to us.

4. Other Constructions Preserving Amenability.

Having demonstrated that property (G) falls short of providing a characteriz-
ation of amenability, it is natural to ask whether other stability properties of
amenability can be used to provide a “constructive” characterization of amena-
bility in Banach algebras.

For this, define a Banach algebra U to have property (G') if there are closed
subalgebras {0} = Wy = Ay < -+ = A, = Usuch thatforeach 1 <k < n, A,
is a closed ideal of U, and A, /A, _, has property (G). A repeated application of
[13, Proposition 5.1] demonstrates the amenability of such 2. It is also a simple
matter to show, using the fact that each U, factorizes, that each U, is an ideal of
A

Furthermore, algebras such as L(G)*, where G is a nondiscrete locally com-
pact Abelian group, are easily shown to have property (G') while lacking prop-
erty (G). (To show the latter, consider L(G)* as the closed subalgebra
LYG) + CJ, of M(G). This can be shown to lack property (G) by a simple
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application of Cohen’s characterization of homomorphisms L(G,) = M(G,), [6,
Theorem 1].)

Unfortunately, examples we have already seen are sufficient to show that
property (G’) is not necessary for amenability. For instance, if n = 2, then the
Cuntzalgebra ), is simple — it has no nontrivial ideals, closed or otherwise. Hence
the above chain of ideals could only be {0} = A, = A, = @, and since ¢, lacks
property (G), it lacks property (G'). Also, if H is a group of automorphisms of R"
with 2 < |H| < oo, then by [14, Corollary 1.6.2], L}, (R") has no subalgebra with
property (G), and so L},(R") cannot have property (G').

This last example can also be used to show that similar attempts to use other
constructions that preserve amenability will also fail. In particular, it is possible
to show that if {2,},., is a net of amenable closed subalgebras of A with union
densein U, and the approximate diagonals of the 2, have a common bound, then
A is amenable. (This is similar to the construction in [19, Proposition 1.12]. It
can be shown to be equivalent.) Thus we can define a property (G*) to be that of
having such a net of closed subalgebras, each having property (G). As already
noted, this cannot occur in LL(R"). It can also be shown, by quite different
methods, that the Cuntz algebras and many of the closed ideals of commutative
group algebras also lack this property. (In fact, the author’s PhD thesis presented
acharacterization of property (G®) in such ideals: .# < L'(G)has property (G®) if
and only if X = Z(#)e Z(I') and XE < X, where ZE is the component of the
identity in I".)

Given the examples LY(G), it seems that we will need to consider other
constructions, if we are to achieve the goal of obtaining such a characterization of
amenability. An obvious place to start is to consider allowing the use of Proposi-
tion 2.3, as this is the result that gives us the amenability of the algebras L}(G).
However, this is of little use in the non-commutative case, as it provides no
guarantee of the amenability of 2y, when U is not commutative. It is not known
to the author whether a noncommutative version of Proposition 2.3 does hold.

5. Dense-ranged Homomorphisms of Amenable Banach Algebras.

We are left with the prospect that we cannot characterize amenability of Banach
algebras in terms of amenable group algebras. The question arises as to whether
there is some other “canonical” class &7 of amenable Banach algebras which we
could use in place of the amenable group algebras in the definition of property
(G), to arrive at a characterization of property (G). That is:

5.1. QUESTION. Is there some class &7 of amenable Banach algebras such that
for each amenable Banach algebra U, there is a Be o/ and a dense-ranged
continuous homomorphism v: 8 —» A?
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Evidently, setting &/ to be the class of all amenable Banach algebras will
suffice, but we seek a class considerably smaller. By enlarging .o slightly, we can
ensure that o/ is closed under taking quotients by closed ideals. Then the above
question is equivalent to the one where “homomorphism” is replaced by “mono-
morphism”.

5.2. DErFINITION. Let U be a Banach algebra. A Banach subalgebra of U is
a subalgebra B of A, with its own norm by which it is a Banach algebra, such that
the injection B —_, A is continuous.

With this definition, Question 5.1 is asking for a class of amenable Banach
algebras &/ such that each amenable Banach algebra U has a dense Banach
subalgebra B that is (isomorphic to) a member of /. In any such class .o/, we
must include each amenable Banach algebra 2 which has no dense amenable
Banach subalgebras. Define a Banach algebra 2 to be minimal-amenable if it has
this property, or equivalently, if every dense-ranged homomorphism from an
amenable Banach algebra into  is onto.

5.3. QuesTION. Which amenable Banach algebras are minimal-amenable?

The only examples known to the author of minimal-amenable Banach alge-
bras are those which are finite-dimensional, and those of the form C(X), where
X is a compact F-space. (See [9] for definitions, and [1, Theorem A] for the
relevant result.) These examples are not particularly illuminating, in that they are
also minimal, in that they have no proper dense Banach subalgebras. Also, for
such X, C(X) is either finite-dimensional or nonseparable, and so we ask:

5.4. QUESTION. Are there minimal-amenable Banach algebras that are not
minimal?

5.5. QUESTION. Are there infinite-dimensional separable minimal-amenable
Banach algebras?

A possible answer to each of these questions would be that commutative group
algebras are minimal-amenable. The result of [14] can be used to show that if
A has property (G), then any dense-ranged homomorphism 2 — L!(G) s onto, so
that any proper dense amenable Banach subalgebra of L!(G) must lack property
(G). It is interesting to note that two standard sources of proper dense Banach
subalgebras of group algebras can never yield an amenable algebra. The first of
these, Segal algebras, defined as in [20, Section 6.2] lack bounded approximate
identities, due to [4, Theorem 1.2]. The second construction is that of Beurling
algebras, defined to be LY(G, w), for some submultiplicative weight w: G —» R*, as
in[20, Section 6.3]. By [11, Theorem 0], such an algebra is amenable if and only if
x - o(x)w(x ) is bounded. However, since L}(G, w) is assumed to be contained
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within L'(G), o is bounded below, and hence w is also bounded above. However,
this implies LG, w) = LY(G).

We should note that the term “minimal” (or “minimal-amenable”, etc) is only
supposed to indicate the lack of a certain type of dense subalgebra, and as such,
only refers to an ordering (by inclusion) of such dense subalgebras. It is tempting
to lift this to an order on the category of Banach algebras (or the category of
amenable Banach algebras, etc). Such an order would be defined by
A < B if there is a dense-ranged monomorphism A — B. However, it is possible
to have non-isomorphic Banach algebras U, B with A < B <A. We give an
example where both U and B have property (G).

Define dense Banach subalgebras A, A,, A5, B,, B, of Co(Z x R) by

A, =B, = AZ x R)
A, = {feCoZ x R): f(n,") e AR) (ne2)}
A, =B, = Co(Z x R).

Each of these has carrier space Z x R and UA; <A, <A;. Also, B; =~ B, @ B,
and B, =~ B, @ B,, so that if we define

Q[=911@Q[2@QI3 and %=%1®%2
then BB, @B, OB, <A<B, OB, DB, ~B.

Suppose A = B, so that there is an isomorphism v: A — B. Now, each of A,
Ay, s, B, B, has carrier space Z x R, and so v*|4,, is a homeomorphism

«(ZxRw@ZxR)»(Z xR w(ZxRuw(Zx R).

Consider a coset E; = {n} x R < @y , then B|g, = A(R), and so W,z = A(R).
However, if a(E,) € Py, then W,z ) = Co(R). Hence a(E) is either one of the
lines in @y, or one of the lines in Py, Similarly, if E, = {m} x R < ®g,, then
(E;) & Py,. Hence v(UA; @ A,) =B, and v(A;) =B,. For r=1,2, put
Y, =0a" l(dh,r) S @g,. Then since the monomorphism v|g,: A, - B, is
a homomorphism of group algebras, aly, is piecewise affine. Thus Y; € Z(Z x R)
is piecewise-affinely homeomorphic to Z x R. By considering the structure of an
element of #(Z x R), it is easily shown that Y, = (Z x R)\Y; e Z(Z x R) is also
piecewise-affinely homeomorphic to Z x R. Thus B,|y, = A(Z x R), and so
A, =~ A(Z x R). This is clearly not the case.
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