WHEN DOES byca (Σ, X) CONTAIN A COPY OF l_{∞} ?

JUAN CARLOS FERRANDO*

Abstract.

Let X be a Banach space and let Σ be a σ -algebra of subsets of a set Ω . Denoting by bvca(E, X) the Banach space of all X-valued countably additive measures of bounded variation defined on Σ endowed with the variation norm, we show that if X has the Radon-Nikodym property with respect to each element of $ca^+(\Sigma)$, $bvca(\Sigma, X)$ has acopy of l_∞ if and only if X does.

Our notation is standard (see [1] and [2]). In what follows X will be a Banach space, Ω a set and Σ a σ -algebra of subsets of Ω . We denote by $\operatorname{ca}(\Sigma,X)$ the Banach space of all X-valued countable additive measures equipped with the semivariation norm. By $\operatorname{ca}(\Sigma)$ we denote the Banach space of all scalar countably additive measures defined on Σ provided with the variation norm, whose positive members we denote by $\operatorname{ca}^+(\Sigma)$. If $\mu \in \operatorname{ca}^+(\Sigma)$ and $1 \leq p < \infty$. $L_p(\mu, X)$ will stand for the Banach space of all (classes of) X-valued Bochner p-integrable functions defined on Ω equipped with their usual norms. By $\operatorname{bvca}(\Sigma, X)$ we denote the Banach space of all X-valued countably additive measures F of bounded variation defined on Σ with the variation norm $|F| = |F|(\Omega)$.

If $\mu \in \operatorname{ca}^+(\Sigma)$ we denote by $\operatorname{bvca}(\Sigma, \mu, X)$ the linear subspace of $\operatorname{bvca}(\Sigma, X)$ formed by all those measures that are μ -continuous. The linear operator $T: L_1(\mu, X) \to \operatorname{bvca}(\Sigma, \mu, X)$ defined by $(Tf)(E) = \int_E f d\mu$ (integral of Bochner) for all $E \in \Sigma$, is an isometry onto if and only if X has the Radon-Nikodym property with respect to μ .

The main aim of this note is to demonstrate the theorem below. Our proof is based upon the proofs of Lemma 4 and Theorem 2 of [4].

THEOREM. If X has the Radon-Nikodym property with respect to each $\mu \in \operatorname{ca}^+(\Sigma)$, then the space $\operatorname{bvca}(\Sigma, X)$ contains an isomorphic copy of l_∞ if and only if X does.

This result can be aligned with those given in [3] and [4], where conditions are

^{*} This paper has been supported in part by DGICYT grant PB91-0407. Received March 18, 1993.

imposed on the spaces $cca(\Sigma, X)$ and $ca(\Sigma, X)$ in order to ensure that they contain copies of l_{∞} and c_0 . We shall need the following lemmas.

LEMMA 1 (Rosenthal, [7]). Let T be a bounded linear operator from l_{∞} into X. If X does not contain a copy of l_{∞} , T is weakly compact.

LEMMA 2 (Mendoza, [6]). If $1 \le p < \infty$, then $L_p(\mu, X)$ contains an isomorphic copy of l_{∞} if and only if X does.

PROOF OF THE THEOREM. The *if* part of the theorem is trivial. So we concentrate on the converse. Suppose that $bvca(\Sigma, X)$ contains a copy of l_{∞} . Let J denote a canonical isomorphism from l_{∞} into $bvca(\Sigma, X)$ and let (e_n) be the unit vector basis of c_0 . We are going to define some useful linear operators (these definitions have been taken from [4, Lemma 4]).

If X does not contain any copy of l_{∞} , then for each E in Σ the operator $J_E: l_{\infty} \to X$, defined by $J_E(\xi) = (J\xi)(E) \ \forall \xi \in l_{\infty}$, is weakly compact by Lemma 1, and therefore the series $\sum_n J_E e_n$ is unconditionally convergent. Hence the operator $T: l_{\infty} \to \text{ba}(\Sigma, X)$ defined by $T\xi(E) = \sum_n \xi_n J_E e_n$ for each $\xi \in l_{\infty}$ and each $E \in \Sigma$ is well-defined. It is bounded too, since if $\{E_i, 1 \le i \le n\}$ is a partition of Ω by elements of Σ and we write $\xi^n := (\xi_1, \ldots, \xi_n, 0, 0, \ldots, 0, \ldots)$, then

$$\sum_{i=1}^{n} \|T\xi(E_{i})\| = \sum_{i=1}^{n} \|\sum_{j}\xi_{j}J_{E_{i}}e_{j}\| = \sum_{i=1}^{n} \lim_{k} \|J_{E_{i}}\xi^{k}\| = \lim_{k} \sum_{i=1}^{n} \|J\xi^{k}(E_{i})\|$$

$$\leq \sup_{k} \sum_{i=1}^{n} \|J\xi^{k}(E_{i})\| \leq \sup_{k} |J\xi^{k}| \leq \sup_{k} \|J\| \|\xi^{k}\|_{\infty} \leq \|J\| \|\xi\|_{\infty}$$

Thus $T\xi$ is of bounded variation for each $\xi \in l_{\infty}$, and $||T|| \le ||J||$. So setting $v := \sum_n 2^{-n} |Je_n|$, clearly $Je_n \in \text{bvca}(\Sigma, v, X)$ for each $n \in \mathbb{N}$, and hence $J\xi^n << v$ for each $\xi \in l_{\infty}$ and each $n \in \mathbb{N}$. Now, since $\lim_n J\xi^n(E) (= T\xi(E) \in X)$ exists $\forall \xi \in l_{\infty}$ and $\forall E \in \Sigma$, the Vitali-Hahn-Saks theorem guarantees that $T\xi << v$ for each $\xi \in l_{\infty}$. Therefore $T(l_{\infty}) \subseteq \text{bvca}(\Sigma, v, X)$.

As $Te_n(E) = J_E e_n = Je_n(E)$ for each $E \in \Sigma$ and each $n \in \mathbb{N}$, then $Te_n = Je_n$ for each $n \in \mathbb{N}$ and hence $\inf_n ||Te_n|| > 0$. Now a well-known theorem of Rosenthal ([17]) assures that there is some $M \subseteq \mathbb{N}$ with card $M = \aleph_0$ such that the restriction of T to $I_\infty(M)$ is an isomorphism. So the space bvca (Σ, ν, X) has a copy of I_∞ . But bvca (Σ, ν, X) is isometric to $L_1(\nu, X)$, since X has the Radon-Nikodym property with respect to the positive measure ν . Hence Lemma 2 applies to get the contradiction.

COROLLARY 1. If Σ is such that each $\mu \in \operatorname{ca}^+(\Sigma)$ is purely atomic, then $\operatorname{bvca}(\Sigma, X)$ has a copy of l_∞ if and only if X does.

REMARK. If X has the Radon-Nikodym property with respect to each μ in $\operatorname{ca}^+(\Sigma)$ and $\operatorname{bvca}(\Sigma, X)$ has a copy L of c_0 , then there clearly exists a $\mu \in \operatorname{ca}^+(\Sigma)$ so that $L \subseteq \operatorname{bvca}(\Sigma, \mu, X)$. According to a well-known theorem of Kwapien, [5], X must contain a copy of c_0 .

COROLLARY 2. If X is a reflexive Banach space, then $bvca(\Sigma, X)$ does not contain any copy of c_0 .

PROOF. Since X is reflexive, X has the Radon-Nikodym property and hence does not contain any copy of c_0 . Therefore byca (Σ, X) cannot have a copy of c_0 .

PROPOSITION. Suppose that the σ -algebra Σ is countably generated and that $bvca(\Sigma, \mu, Y)$ is separable whenever Y is a closed separable subspace of X and $\mu \in ca^+(\Sigma)$. Then $bvca(\Sigma, X)$ contains a copy of l_∞ if and only if X does.

PROOF. Let J be an isomorphism from l_{∞} into bvca (Σ, X) and assume X has not any copy of l_{∞} . Then define for each $E \in \Sigma$ the weakly compact linear operator J_E as in the Theorem and denote by Z the closed linear hull of $\{J_E e_n, n \in \mathbb{N}, E \in \mathscr{A}\}$, where \mathscr{A} denotes a sequence of elements of Σ containing Ω which generates Σ . Obviously, Z is a separable Banach space.

Next we shall see that $J_E e_n \in Z \ \forall E \in \Sigma$. In fact, given a family $\mathscr B$ of elements of Σ , denote by $\mathscr B^*$ the family of all countable unions of sets of $\mathscr B$ and all the complementary sets of sets of $\mathscr B$. Let ω be the first ordinal of uncountable cardinal. Set $\Sigma_0 = \mathscr A$ and for each ordinal α with $0 < \alpha < \omega$ define $\Sigma_\alpha = \{ \cup \{ \Sigma_\beta, \beta < \alpha \} \}^*$. Note that $\Sigma_\beta \subseteq \Sigma_\alpha \ \forall \beta \leqq \alpha$ and $\Sigma = \cup \{ \Sigma_\alpha, \alpha < \omega \}$. We shall proceed by transfinite induction.

We know that $J_E e_n \in Z$ for each $E \in \Sigma_0$. Suppose that, if $0 < \alpha < \omega$, $J_E e_n \in Z$ for each $E \in \Sigma_\beta$ with $\beta < \alpha$. As $\Sigma_\alpha = \{ \cup \{ \Sigma_\beta, \, \beta < \alpha \} \}^*$, choosing $E = \cup \{ E_k, \, k \in \mathbb{N} \}$ with $E_k \in \Sigma_{\beta_k}$ and $\beta_k < \alpha$ for each k, then one has that $J_E e_n = J e_n(E) = \lim_k J e_n \binom{k}{j-1} E_j \in Z$. On the other hand, if $E \in \Sigma_\beta$ with $\beta < \alpha$, then $J_{\Omega \setminus E} e_n = J e_n(\Omega \setminus E) = J e_n(\Omega) - J e_n(E) \in Z$.

Using the same notation of the Theorem, since $T\xi(E) = \sum_n \xi_n J_E e_n$ for each $\xi \in l_\infty$ and $E \in \Sigma$, and since all $J_E e_n \in Z$ as we have just seen, we have $T\xi(E) \in Z$ for each $\xi \in l_\infty$ and each $E \in \Sigma$. Besides, reasoning as in the last part of the proof of the Theorem, there exists a $\mu \in \operatorname{ca}^+(\Sigma)$ such that $T\xi << \mu$ for each $\xi \in l_\infty$. This shows that T is a bounded linear operator of l_∞ into byca (Σ, μ, Z) . Thus Rosenthal's theorem implies that byca (Σ, μ, Z) has a copy of l_∞ . But we suppose that byca (Σ, μ, Z) is separable, a contradiction.

ACKNOWLEDGMENT. The author is very grateful to the referee.

REFERENCES

- J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag. New York, Berlin, Heidelberg, 1984.
- 2. J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, 1977.
- L. Drewnowski, Copies of l_∞ in an operator space, Math. Proc. Cambridge Philos. Soc. 108 (1990), 523–526.
- 4. L. Drewnowski, When does $ca(\Sigma, X)$ contain a copy of l_{∞} or c_0 ? Proc. Amer. Math. Soc. 109 (1990), 747–752.
- 5. S. Kwapien, On Banach spaces containing c_0 , Studia Math. 52 (1974), 187–188.
- 6. J. Mendoza, Copies of l_{∞} in $L^p(\mu, X)$, Proc. Amer. Math. Soc. 109 (1990), 125–127.
- 7. H. P. Rosenthal, On relatively disjoint families of measures, with some application to Banach space theory, Studia Math. 37 (1979), 13-36.

E.U. INFORMÁTICA
DEPARTAMENTO DE MATEMÁTICA APLICADA
UNIVERSIDAD POLITÉCNICA
E-46071 VALENCIA
SPAIN