SERIES REPRESENTATIONS OF LINEAR FUNCTIONALS

KARL KARLANDER

F. John [1] has given a series representation of the form $\int f(x)da(x) = \sum a_n f(x_n)$ for Stieltjes integrals. The purpose of this paper is to prove the following generalisation:

THEOREM. If X is a compact Hausdorff space with a countable base then for any continuous linear functional Λ on C(X) there exist sequences $a_n \in \mathbb{R}$, $x_n \in X$ such that

$$\Lambda(f) = \sum a_n f(x_n)$$
 for any $f \in C(X)$

PROOF. By the Riesz representation theorem this is equivalent to proving

(1)
$$\int f d\mu = \sum a_n f(x_n)$$

where μ is a bounded regular Borel measure on X, which we may assume to be non-atomic. It is not difficult to see that there exist closed subsets $E_{k,n}$, $1 \le k \le n$ of X such that

(2)
$$|\mu|(E_{k,n} \cap E_{j,n}) = 0 \quad \text{if} \quad k \neq j,$$

$$\bigcup_{k \leq n} E_{k,n} = X, \lim_{k \to \infty} \max_{k \leq n} |\mu|(E_{k,n}) = 0 \quad \text{and} \quad E_{k,n} \subseteq E_{j,n-1} \quad \text{for some } j,$$

and

(3)
$$\int f d\mu = \lim_{n \to \infty} \sum_{k \le n} \mu(E_{k,n}) f(y_{k,n}).$$

where $y_{k,n}$ is any sequence such that $y_{k,n} \in E_{k,n}$. One can for example choose a sequence $E_{k,n}$ such that (2) holds and (3) holds for every f_n , where f_n is a dense sequence in C(X), from which it follows that (3) holds for every $f \in C(X)$.

We may suppose the $E_{k,n}$ ordered so that the $E_{k,n}$ contained in $E_{1,n-1}$ come first, then those contained in $E_{2,n-1}$ etc. We now construct the sequence a_n in blocks as follows: the first block is $\mu(E_{1,1})$, for n > 1 the *n*th block consists of

Received March 18, 1993.

 $\mu(E_{k,n})$ for those $E_{k,n}$ that are contained in $E_{1,n-1}$ followed by $-\mu(E_{1,n-1})$ and then $\mu(E_{k,n})$ for those $E_{k,n}$ that are contained in $E_{2,n-1}$ followed by $-\mu(E_{2,n-1})$ etc. Choose x_n such that $x_n \in E_{j,k}$ where $a_n = + -\mu(E_{j,k})$, and the same x is chosen whenever $E_{j,k}$ occurs.

Then (1) holds. For if we sum to the end of the n first blocks we get

$$\sum_{k \le n^2} a_k f(x_k) = \sum_{k \le n} \mu(E_{k,n}) f(y_{k,n}) \to \int f d\mu$$

From this it follows that if (1) did not hold we would have for some sequences $n(k) \to \infty$, c(k), d(k) and $\varepsilon > 0$

$$\left| \sum_{j \le c(k)} \mu(E_{j,n(k)+1}) f(y_{j,n(k)+1}) - \sum_{j \le d(k)} \mu(E_{j,n(k)}) f(y_{j,n(k)}) \right| \ge \varepsilon \quad \text{for all } k,$$

where c(k), d(k) are such that the expression inside the absolute value sign is the sum of the first c(k) + d(k) terms of the (n(k) + 1)th block.

Let $M=\sup|f(x)|$ and $\delta=\varepsilon/(8M+7)$. Take r so large that $\max_{k\leq n}|\mu|(E_{k,n})\leq \delta$ if $n\geq r$. Let A be the set of all elements that are contained in $\bigcup_{j\leq d(k)}E_{j,n(k)}$ for infinitely many k. Since μ is regular there is an open set B containing A and a closed set C contained in A such that $|\mu|(B-C)<\delta$, where C can be chosen to be $\bigcup_{j\leq m}E_{j,n(k)}$ for some m,k. By Urysohn's lemma there is a continuous g such that $|g|\leq |f|, g=f$ on C and g=0 on the complement of B.

Choose $h \ge r$ such that $|\mu|(A - \cup E_{j,n(h)})$ and $|\mu|(\cup E_{j,n(h)} - A)$, where the union is taken for all $j \le d(h)$, are both less than δ and

$$\left| \int g d\mu - \sum \mu(E_{j,r}) g(y_{j,r}) \right| < \delta \quad \text{for all } r \ge n(h)$$

We then have

(5)
$$\left| \sum_{c(h)} \mu(E_{j,n(h)+1}) f(y_{j,n(h)+1}) - \sum_{d(h)} \mu(E_{j,n(h)}) f(y_{j,n(h)}) \right|$$

$$\leq \left| \sum_{c(h)} \mu(E_{j,n(h)+1}) f(y_{j,n(h)+1}) - \sum_{c(h)} \mu(E_{j,n(h)+1}) g(y_{j,n(h)+1}) \right|$$

$$+ \left| \sum_{c(h)} \mu(E_{j,n(h)+1}) g(y_{j,n(h)+1}) - \sum_{d(h)} \mu(E_{j,n(h)}) g(y_{j,n(h)}) \right|$$

$$+ \left| \sum_{d(h)} \mu(E_{j,n(h)}) f(y_{j,n(h)}) - \sum_{d(h)} \mu(E_{j,n(h)}) g(y_{j,n(h)}) \right|$$

It follows from the way the $E_{k,n}$ were ordered and the choice of h that $|\mu|(S) < 3\delta$ where S is the union of those $E_{i,n(h)+1}$ with $j \le c(h)$ that are not contained in C.

Hence
$$\left| \sum_{c(h)} \mu(E_{j,n(h)+1}) f(y_{j,n(h)+1}) - \sum_{c(h)} \mu(E_{j,n(h)+1}) g(y_{j,n(h)+1}) \right| =$$

$$\left| \sum_{E_{j,n(h)+1} \subseteq S} \mu(E_{j,n(h)+1}) f(y_{j,n(h)+1}) - \sum_{E_{j,n(h)+1} \subseteq S} \mu(E_{j,n(h)+1}) g(y_{j,n(h)+1}) \right| \le 6M\delta.$$

A similar estimation of the other terms of (5) gives $|\sum \mu(E_{j,n(h)+1})f(y_{j,n(h)+1}) - \sum \mu(E_{j,n(h)})f(y_{j,n(h)})| < \delta(8M+7) = \varepsilon$, a contradiction which proves the theorem.

If we let X = [1, 2], $\mu = \text{Lebesgue}$ measure $E_{k,n} = [(k-1)/2^n, k/2^n]$, $2^n + 1 \le k \le 2^{n+1}$, $x_{k,n} = (k-1)/2^n$ we obtain after a change of variables F. John's formula

$$\sum (-1)^{n+1} / n f(\{\log n / \log 2\}) = \log 2 \int f(x) \, dx,$$

for all bounded Riemann integrable f, where $\{x\}$ is the fractional part of x.

(It is clear that the above proof applies also to bounded Riemann integrable functions.)

REFERENCES

 Fritz John, A representation of stieltjes integrals by conditionally convergent series, American Journal of Mathematics 59 (1937), 379-384.

ALTHEMS VÄGEN 9 S 18262 DJURSHOLM SWEDEN