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APPROXIMATION BY SOLUTIONS OF
ELLIPTIC EQUATIONS ON CLOSED SUBSETS OF
EUCLIDEAN SPACE

PETER V. PARAMONOV! and JOAN VERDERA

0. Introduction.

In the last twenty years the question of how to reduce problems of qualitative
approximation by analytic or harmonic functions on unbounded closed sets to
the compact case has been often considered and different answers have been
givenin a variety of particular cases. In this paper we provide a general method of
localization which applies to all instances previously dealt with and which
considerably simplyfies the available proofs.

As an example of the kind of results we are envisaging we mention Nersesjan’s
Theorem on uniform approximation by analytic functions of one complex
variable. Denoting by « continuous analytic capacity [17] we have

THEOREM 1. (Nersesjan [11]). Let F be a closed subset of the complex plane.
Then the following are equivalent:

(i) Each continuous function on F which is analytic on F°® can be uniformly
approximated on F by functions which are analytic on some neighbourhood (de-
pending on the approximating function) of F.

(ii) a(D\F) = a(D\F°), for each disc D.

For compact F the above statement is just the well known Vitushkin Theorem
[17, p. 183] on rational approximation. To settle the case of unbounded closed
sets Nersesjan had to find a suitable new localization argument. Later on
Hadjiisky [6] discovered another way of localizing the problem which gave
a direct proof of (ii) = (i) without appealing to the compact case. This idea was
further exploited in [2] to deal with the analytic approximation problem on
general closed sets in I?, Lipschitz and BMO norms. Another interesting refer-
ence is [15].
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In Section 1 we give a short proof of Theorem 1 which already contains some of
the elements of our general method. To get a better insight into it we prove in
Section 2 the harmonic analog of Theorem 1 (see Section 2 for a precise state-
ment). In that proof the reader will find in action all the ingredients of our idea. In
Section 3 we present a fairly general context in which our localization method
works: we are able to deal with a homogeneous elliptic operator on R" with
constant complex coefficient, the approximation taking place in the norm of
a Banach space satisfying certain conditions.

In Section 4 we study weighted uniform analytic approximation in the plane
showing that the conditions required in Section 3 are, in some sense, sharp.

Our notational conventions will be standard. For example, C will denote
a constant, independent of the relevant variables under consideration and which
might be different in different occurencies. The open ball with center a and radius
dis denoted by B(a, 9). If Bis a ball, kB is the ball with the same center and radius
k times the radius of B.

1. Proof of Nersesjan’s Theorem.

The important part in Theorem 1 is (i) = (i). Let us then assume that F is a closed
subset of the complex plane and that f is a continuous function on F which is
analytic on F°. Extend f continuously to the whole of C. We wish now to localize
the singularities of f by means of Vitushkin’s method. To this end take a covering
of C by discs (D;) of radius 1, which is almost disjoint, in the sense that each point
in C belongs to at most a fixed number of discs D;. Let (¢;) be a C* partition of

1
unity subordinated to (D;). Set f; =V, (f) = g * (¢,;0f). Then f; is continuous
on C, analytic on F® and outside Dj, and [17, p. 150]
1) I/l = CN;lifllp,

where C is an absolute constant and N; = ||@;| + ||V¢;|. In this and in the next
section we will denote by || ||z the supremum norm on the set E and we will let || ||
stand for || ||c. ’

Condition (i) implies that there exists C > 0 such that, setting F; = F n D;, we
have a(D\ F }’) < Ca(2D\F)) for all discs D. Then Vitushkin’s Theorem gives (i)
with F replaced by F;. Therefore, for fixed j, there exists h;, analytic on a neigh-
bourhood of F; such that || f — hjllp, <n = ¢/(2'N;), where ¢ is a given positive
number. A well known modification argument, which we reproduce below for the
reader’s convenience, gives that in fact we can assume || f — h;|| < 5. To see this
setd; = f — h;. For some open neighbourhood U of F; on which h; is analytic we
still have ||d;| 7 < 1. Extend d;from U to a continuous function on C, still denoted
by d;, satisfying ||d;| < #. Modify h; outside U in such a way that the identity
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hj = f — d;holds everywhere. Then h; is analytic on a neighbourhood of F; and
If = hill <n.

Define g; = V,, (h)), so that for some absolute constant C we have by (1)
Ifi—gill =1 Vo, (J —hll < CN;llf = bl < Ce/2’. 1t is not difficult to see that
g=f—Y(fj—gj) is analytic on some neighbourhood of F. Since

J
lf — gll < Ce, g is the desired approximant.

2. Uniform harmonic approximation.

In this section we will prove the following harmonic analog of Nersesjan’s
Theorem [5], [9].

THEOREM 2. Let F be a closed subset of R". Then the following are equivalent.

(i) Each continuous function on F which is harmonic on F° can be uniformly
approximated on F by functions which are harmonic on neighbourhoods of F.

(ii) Cap(B\F) = Cap(B\F°), for each ball B.

Here Cap stands for the classical Wiener capacity of potential theory. For
F compact the result goes back to Deny and Keldysh [3], [8] in slightly different
formulations. For n = 3 the proof proceeds along the lines of the preceeding
section but for n = 2 a new difficulty arises owing to the fact that the fundamental

1
solution 2—nlog |z| of the Laplacean A4 is unbounded at co. We shall therefore

concentrate on the proof of (i) = (i) in the plane. Before starting with the details
some remarks are in order concerning Vitushkin’s localization operator for 4 in
dimension 2.

2
Let D be a disc of radius , ¢ € C3(D) and set N(p) = Y &|V/¢p|. Given
=0

J

1
a continuous function f in C define V,f = E;log |z * (@ 4f), so that A(V,,f) =

@Af in the distributional sense. A simple computation [1] gives

1/1 1/1
Vof @) = 9(2)/@) + 5 (loglll* f4¢)2) ~ ?<2 . f5¢>(2) - —;(f . fafp)(z),
and so

() IVeflp £ CN(@)flIps

the constant C depending only on 4. It is important to realize that we cannot
replace the left hand side of (2) by ||V, f|| because V,, f has a logarithmic singular-
ity at oo, and this fact is the only obstruction to the argument used in Section 1.

We proceed now to the proof of Theorem 2. Let F be a closed subset of the
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plane and f a continuous function on C which is harmonic on F°. Let (D;) be an
almost disjoint covering of C by open discs of radius 1 and (¢;) a C* partition of
the unity subordinated to (D;). For fixed j and given ; > 0 (to be specified later)
choose h; harmonic on a neighbourhood of F; = D; n F such that || f — h;]| F; <
n;. This is possible, arguing as in the preceding section, because we know that
Theorem 2 holds for the compact sets F;. Using the modification argument of
Section 1 we can furthermore suppose that h; is continuouson C and || f — h;|| <
n;- Set gj = V, (h;). The function f; — g; is harmonic outside D; and has a logar-
ithmic singularity at co. Thus, assuming that D; is centered at the origin,

fi(2) — 9,(2) = a;log|z| + Hi(z), |z| > 1,

1
where H; is harmonic outside D; and at o, and a; = EJA(pj(f — h;)dx dy.

Hence, for some constant C; depending only on j, laj| < C;|| f — hjllp, = Cjn;.
If D; c F then f; = 0,s0 we can take for granted that D;containsadiscD = C\F.
Let i be a C* function such that ¢ = 1 outside D and y = O on 3D. Set Lj(z) =
a;y(z)log |z — c|, where c is the center of D. Then L; is harmonic on a neighbour-
hood of F, |L;llp, = Cjnj, and f; — g; — L; is harmonic outside D; and at co.
Therefore, using (2),

Ifi—gi— Lill <l f; —g; — Lj”bj = V(pj(f - hj)”Dj + "Lj“Dj = Cjn;.

Choose now 7; so that C;n; = &/2/, where ¢ has been given in advance. Set g =
f— z (f; — g; — L;). Itis easy to check that g is harmonic on a neighbourhood of

J
F. Since || f — g|| < ¢ the proof is complete.

3. The main result.

The goal of this section is to describe a general setting in which our localization
method works.

We do not wish to restrict our attention to uniform approximation, so we start
by introducing a certain class of Banach spaces in whose norm the approxi-
mation will take place.

Following [12] we let V stand for a Banach space, whose norm is denoted by
Il I, which contains Cg, the set of test functions in R”, and is contained in (C§)*,
the space of distributions. We assume that V' is a topological Cg-submodule of
(C&)*, which means that for feV and pe C3

(©) Kool = Clo)lf1l,
{f, ®> denoting the action of the distribution f on the test function ¢, and

@ lefll = C@ 1,
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where C(¢) is a constant independent of f.

Given a closed subset F of R" let I(F) be the closure in V of those f € V whose
support (in the sense of distributions) is disjoint from F. The Banach space
V(F) = V/I(F),endowed with the quotient norm, should be viewed as the natural
version of ¥V on F. We will write || f| ¢ for the norm of the equivalence class in V(F)
of the distribution fe V.

We need also to introduce local versions of ¥ and of V(F). Let V. be the set of
distributions f such that ¢ f €V, @ € C3. There is a natural Frechet topology in
Vioc given by the seminorms |f|, = ll@nfls,, where B, = {|x| <m} and
¢neCY is a fixed function taking the value 1 on some neighbourhood of B,,.
Define V,.(F) = W,./J(F), where J(F) is the closure in ¥}, of those distributions
in V. whose support is disjoint from F.

We present now some examples (see also Section 4 in which a non-translation
invariant example of V is considered).

ExampLE 1. V = IZ(R"), 1 £ p £ 0. Clearly I/(F), I,. and L5 (F) are the
standard spaces denotes by these symbols.

EXAMPLE 2. V = VMO(R"), the space of functions of vanishing mean oscilla-
tion. In [7] one finds an intrinsic characterization of VMO(F) involving only the
values taken by functions on F.

ExAMPLE 3. V = C™(R"), m being a non-negative integer. This is the space of
functions with bounded continuous derivatives up to order m endowed with any
of the standard norms associated to it. For example,

171 = sup 18°f1]...
lal<m
In this case C™(R"),. is just the space of functions with continuous partial
derivatives up to order m. Notice that,for m > 1 and F # R", C"(F)is not a space
of functions. With the help of the Whitney extension theorem, it can be identified
with a space of jets (see [14, Chapter VI]).

ExaMPLE 4. V = A*(R"), s a non-integer positive real number. Writing s =
m + o, with m an integer and 0 < ¢ < 1, we have that f€1*(R") if and only if
feC™R"), supw(d)d < oo and w(d)6 °—0 as § -0, where w(d) = sup

>0 laj=m

sup [0°f(x) — *f(y)l. Weset | f]| = [flcmam + sup (0)07°.

x—y|<é
| lglor 0 < s < 1, 45,.(F) turns out to be the set of functions on F which locally
satisfy a little “o” Lipschitz condition of order s. For 1 < s, the remark concerning
jets made in the previous example still applies.

The approximating functions in our abstract theorem will not be necessarily



254 PETER V. PARAMONOV AND JOAN VERDERA

analytic or harmonic, but instead they will be annihillated by a complex constant
coefficients homogeneous elliptic operator L of order r, as in [16].

We describe now the two basic assumptions on ¥ which make our localization
argument work.

First, the Vitushkin localization operator associated to L satisfies adequate
estimates. Let B be an open ball of radius 6, ¢ € C’(B), and set V,,f = & *(¢Lf),
where @ is a fundamental solution of L and f a distribution on R". We recall that
® can be taken of the form &(x) = Py(x) + P(x)log|x|, where Py(x) is a C*
function in R"\ {0}, homogeneous of degree r — n, and P(x) is a polynomial
which is either zero (this is the case if r < n) or homogeneous of degree r — n. We
will require that our Banach space V satisfies the estimate

©) Ve Nlis = N(e, B)|l f1,

where N(g, B) is independent of f. The definition of | f||x, K = support of ¢,
immediately gives that (5) can be improved to

(©) IVo fllz = N(@, B)|f lx-

Notice that (6) (or equivalently (5)) means exactly that V,, sends continuously ¥,
into V..

The proof of (5) for the examples considered above can be found in [1], [2],
[10], [12], [13], [16]. In [12] the reader will even find a proof of (5) for a wide
class of abstract Banach spaces.

Our second assumption on V is more technical. We require that for some
non-negative integer p one has

7 ”aa‘p"m\mo.n) =< “!S(R)Ial, la| = p,

where ¢(R) — 0 as R — oo.
That (7) holds in the examples 1-4 follows from

® 0° P(x)| < al C¥ x| =77+ 1D (log |x|| + 1), x %0,

which is essentially equivalent to the real analyticity of @ outside the origin. For
instance, pis Ofor L= dand V = C™(C),and pis 1 for L = Jand V = I?(C). For
L= A4,V =C"(C),pis lin the plane and p is O for all dimensions larger than 2.
Our next task will be to prove that (7) gives a sort of maximum principle for the
exterior of a ball and the norm of V. We start by discussing expansions of
potentials at co.
From (8) it follows that there exists k > 1 such that given any x # 0 we have an

expansion @(z) = Y —(;?‘(—xl(z — x)% in the ball |z — x| < k™ !|x|, the series

la|20
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being absolutely convergent there. Consequently, given points a and x such that
|x — a| > ko for some § > 0, we have an expansion

d(x — y) = Z (_1)lalw

p a4 0—a ly—d<s,
al=0 .

the series converging in C*(B(a, 9)). Let T be a distribution with compact support
contained in B(a, d) and set f = @ * T. Then, for |x — a| > ké
fG)=<KTO(x—y)) = ), c,0*P(x—a),
la|20
wherec, = (— 1) (a!) "< T,(y — a)*, the series converging in C*(|x — a| > k9).
We would like to point out here that the above statement is not true for k = 1

as was claimed in [10] and [16]. The results proved there are not affected by this
missing dilation factor.

LEMMA 1. Let f be a distribution such that Lf has compact support and f(x) — 0
as|x| » oo. Then f= @ = Lf.

PROOF. f — (@ *Lf) is a tempered distribution annihillated by L. Thus
f = ®*Lf+ P for some polynomial P. To show that P = 0 set, for |x| —» oo,

@*LNX) = T cud*B(),
lal 2k
where ¢, % 0 for some « with |a| = k. One can write [16, p. 161]
Y ¢, 0°®(x) = H(x) + Q(x)log x|

lal =k

for some polynomial Q of degree r — n — k and some function H, C* outside the
origin and homogeneous of degree r — n — k. Clearly

© f=H+Qlog|x|+g+P,

whereg = Y ¢,0%®. Arguing from the homogeneities of the different terms in
la] >k
(9), it is not difficult to conclude that P = 0.

LEMMA 2. Let B be an open ball and f a distribution in Vi, such that Lf = O on
R™\B and f(x) = O(x|™ %) as x = oo, where d = max{p + n —r,1}, p being the
integer appearing in condition (7). Then feV and || f|| < C| f |35

Proor. By Lemma 1 f = @ = Lf. Thus,forq=d —n+r=p,
f)= Y c,P(x), xékB.
lel2q

Choose pe C¥(2B), ¢ = 1on Band e CY(3B), ¥ = 1 on2B. Let us suppose first
that B is centered at the origin. Then, using the Leibnitz formula,
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e, = IKLf @(¥)x*)] = K Llex)x | £ Y, |al" KA L (@)x*#)| =
1Bl=0

= Y " K@)x* 2 £ LAo)l,

181=0

where I? is a differential operator of order r — |B| and in the sums above only
indexes f with « — BeZ", are taken. Observe now that (3) and (4) hold with || ]
replaced by | f ||k, K being the support of ¢. Applying (3) and (4) in this sharper
form, we get

olleql < Alo"CE 1 £1l35
where A depends only on r and

C, = max C(L¢) + max C(y(x)x;),
IBl<r 1<jzn
the constants in the right hand side being those appearing in (3) and (4) for the
indicated functions.
If R satisfies B(0, R) > kB, we get

IS lrmBo,ry = || 2. Ca0* P <
lel2q R™\B(0, R)
< Y @) Al CE I flaxe(R) < Clf I35
lelzq

provided R is large enough so that C,&(R) < 1.
It is easily proved that

11 = CU S N280,7) + I.f lrmBeo, &)-
On the other hand

”f”zi(o,x) = I/;pfuzli(o,m = Clflzs

because of (6) applied to 2B(0, R), and so the desired estimate follows.

We are left with the task of removing the assumption that B is centered at the
origin. Let B = B(a, 6) and take o € C(3B), ¢ = 1 on 2B. Then f = V,(f)and so
we get from (6)

(10) If 380,101 +8 = C Il f 1135
Since Lf vanishes outside B(0, |a] + ),
(11) I£I = Cllf 380, 1a1+5)-

Combining (10) and (11) one completes the proof of the Lemma.



APPROXIMATION BY SOLUTIONS OF ELLIPTIC EQUATIONS ON CLOSED ... 257

We are now ready to prove our main result.

THEOREM 3. Let V be a Banach space satisfying (3), (4), (5) and (7), F a closed
subset of R" and f € Vi .. Then the following statements are equivalent.

(i) Given a positive number ¢ there exists g€ Vi, such that Lg = 0 on some
neighbourhood of F and || f — gl|r < &.

(i) Given a ball B and a positive number ¢ there exists g € Vo, such that Lg = Oon
some neighbourhood of FA B and || f — gllr.j < &.

PrOOF. We only need to show that (ii) implies (i). Let (B;) be an almost disjoint
covering of R" by open balls B; of radius 1 and let (¢;) be a partition of unity
subordinated to (B)). Set N; = N(¢;,3B;). For fixed j and given > 0 (to be
specified later) choose hje ¥, such that Lh; = 0 on some neighbourhood of
F;=FnBjand | f — hyllg, <.

We claim now that h; can be modified to H;e V|, so that LH; = 0 on some
neighbourhood of F;and || f — H;|| < #. Using the definition of the normin V(F;)
we find an open neighbourhood U of F;on which Lh; = Oand || f — h;|lg < n. Let
gjeVbesuchthat f — h; = g;on U and ||g;| < #. The distribution H; = f — g;
fulfills all requirements in the claim.

Set fj=V,,(f) and G; =V, (H)). If B; = F then f; = 0 and if B; = R"\F then
L(f;) = 0 on a neighbourhood of F. Hence, in what follows we will consider only
indexes j such that B; intersects 0F. For such indexes B; contains a ball
B = B(a,6) c R"\F. Let yeC®(R") be 1 outside B and 0 on %iB. Set
2 =yYx)P(x —a)and K; = Y ¢,0%;, where the coefficients c, are defined by

lal<q
the expansion fj(x) — Gj(x) = ), ¢,0*®(x —a) and q = max{p,r —n+ 1},
laiZ 0 ,

p being the integer appearing in (7).
Since a! |¢,| = |[<f — Hj, L(p;(x)(x — «)*)>|, applying (3) we get the estimate

lcal £ Clu) LS — Hll = Claj)n,

where C(a,j) is a constant depending only on « and j. Hence

||Kj||3§j =< z Cla, j)n Haan”an = C(g,)n,

lal<q

where now C(g,j) stands for a constant depending only on q and j.
On the other hand, the function f; — G; — K; satisfies the hypothesis of
Lemma 2. Applying Lemma 2 and (6) we obtain

”f, - Gj - Kj” = Cj ||f1 - Gj - Kjllaﬁj =<
< CillV, (f — Hplsg, + C(g.j)n = C;Njn + C(g,j)n = C(q,j)n.

Choose 1 so that C(q,j)n = &/2/, where ¢ has been given in advance, and define
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g=f—Y(fi— G;—K;). Then || f — f]| <& and Lg = 0 on some neighbour-
j
hood of F. This shows (i).

ReMARK. It is clear that Theorem 3 also gives the corresponding approxi-
mation results for classes of functions in the spirit of theorems 1 and 2. We also
would like to mention that small modifications of our arguments would prove
analogous theorems for Banach spaces V defined on subdomains of R".

4. Weighted uniform approximation.

Let o be a positive radial continuous function on the plane. Let V be the set of
continuous functions on C such that

I/ llo = sup|f(2)l w(z) < co.
zeC
If F = C is closed then, as it is easily seen, fe V(F) if and only if || fll, r=
sup | f(z)l w(z) < o0, and the norm of V(F)is exactly || ||,, r. Conditions (3),(4) and

zeF

(5) clearly hold for any w. Our last result states that condition (7) with @ replaced
by 1/nz is equivalent to the fact that local analytic approximation implies global
analytic approximation.

THEOREM 4. The following statements are equivalent.

(i) Letfbe a continuous function on a closed subset F of the plane. If for each disc
D and & > O there exists afunction g, analytic on some neighbourhood of F ~ D such
that | f — gllw.rnb < & then for each ¢ > O there exists a function g, analytic on
some neighbourhood of F such that || f — gll, r < &.

(i) Condition (7), with @ replaced by 1/nz, holds.

(iii) There exists a positive integer d such that iff € C(C) is analytic on C\D(0, 6)
and f(2) = 0(|z| %) as z — oo then || f o £ C || flw, B0, 35)-

(iv) There exists a positive integer q such that lim w(z)|z|] " = 0.

Proor. That (ii) = (iii) = (i) follows from Theorem 3. A simple computation
shows that (iv) = (ii). Thus we only need to prove that (i) = (iv).

If (iv) is not true then lim sup w(z)|z| ¢ = oo for all ¢ > 0. Set F = {zeC:
|z} = 1}. Then the only function in V(F) which is analytic on F is the zero function,
as one can easily check using the maximum principle and the fact that w is radial.
Let now f be a continuous function on F, analytic on F° and such that it can not
be continued analytically on a neighbourhood of F. If g is analytic on a neigh-
bourhood of F and | f — gll,,r < 1 then f = g, which is impossible. Therefore
f can not be globally approximated on F, but a local approximation is possible
because || ||, is locally equivalent to the uniform norm. Thus (i) fails.
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