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HOLOMORPHIC FUNCTIONS AND THE
(BB)-PROPERTY

SEAN DINEEN

§ 1. Introduction.

A holomorphic function on a balanced domain in a locally convex space may be
regarded as a sequence of polynomials which satisfies certain growth conditions.
Locally convex topologies on the space of all holomorphic functions are a quan-
tification of these conditions on aggregates of functions. This quantification is
frequently obtained by combining, in an appropriate fashion, estimates on spaces
of homogeneous polynomials. In this introduction we give an intuitive view of
the process and in doing so, reformulate a number of known results.

To be more specific we require some definitions. E will denote a locally convex
space over the complex numbers C, Z("E) is the space of continuous n-homogene-
ous polynomials on E and 5#(U) will denote the space of C-valued holomorphic
functions on the open subset U of E. The three most frequently studied topologies
in infinite dimensional holomorphy are 74, the compact open topology, 7., and ;.
A seminorm p on s#(U) is said to be 7, continuous if there exists a compact subset
K of U such that for every V open, K = V < U, there exists ¢(V) > 0 such that

(1.1) p(f) = cM)flly forall fe(U).

The t,, topology on #(U) is the locally convex topology generated by the 7,
continuous semi-norms. A semi-norm p on #(U)is said to be 7;continuous if for
every increasing countable open cover of U,¥” = (V,),, there exists ¢ > 0 and
a positive integer n, such that

p(f) = cllfly, forall fin H#(U).

We always have 1o < 7, < 75 and conditions for equality have been investigated
by various authors [1, 2, 3, 12, 13, 16]. An important special case is obtained by
taking U balanced since this leads, via the Taylor series expansion, to a Schauder
decomposition of #(U). As #("E), n arbitrary, is a complemented subspace of
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216 SEAN DINEEN

#(U) for any of the above topologies we see that any equality of topologies on
H#(U) will lead to the same equality on each space of homogeneous polynomials.
When we restrict to 2("E) simplifications and refinements are possible. On the
one hand 7, = t; on Z("E) for all n. On the other hand #("E) may be identified

with the dual of ( @ E) —the completion of the space of symmetric n-tensors on
n,n,s .

E endowed with the projective n topology. This duality can be used to describe 7,
and t,, as well as two other natural topologies in 2("E) (we use the notation

&) xifor x;®...® x; (n times) and ) x; to denote x; ® x,... ® X,);
7, — the topology of uniform converéencggn the bounded subsets of E,
B - the strong topology inherited from (¥) E.

n,ms

The duality between @ E and 2("E) is given by <P, ® x> = P(x). The 7,

7, and f topologies on #("E), E metriz&l)le, are then identified as uniform
convergence on the following subsets of ® E,;

(@ )r(@a).0r( @),

respectively, where K is compact in E, B is bounded in E, (U,,),, denotes a funda-
mental sequence of convex balanced neighbourhoods of zero in E and (r,,),, is
a sequence of positive numbers, I is the convex balanced hull and I the closed
convex balanced hull.

For each positive integer m let 2("E),, denote the set of all P € Z("E) such that
[IP|ly,, < co and we endow this space with the topology of uniform convergence
on U,,. #("E),, is a Banach space and Z("E) = U P("E),,. With the above duality

#("E),, has the topology of uniform convergence on I’ ( ® Um> and

n,s

(PCE).7,) = lim CE),.

From the above description it is clear that 71, < 7, £ 8 < 1, on Z("E) for all n.

By the Hahn-Banach theorem we have 14 = 7, on 2("E) for some (and hence
for all n) if and only if E is semi-Montel (i.e. the closed bounded subsets of E are
compact).

We have 7, = f on 2("E) if and only if the sets I" ( ® B) , B bounded in E,

form a fundamental system of bounded subsets of ® E. This is the n-fold

n,r,s
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symmetric version of Grothendieck’s “Probléme des topologies” which we now
state.

For locally convex spaces E and F is every bounded subset of E @ F contained

in the closed absolutely convex hull of a set of the form B, ® B, where B, is
a bounded subset of E and B, is a bounded subset of F?

If this is the case then the pair {E, F} is said to have the (BB)-property. We shall
say that the locally convex space E has the (BB),-property if each bounded subset

of @ E is contained in I’ < ® B) for some bounded subset B of E. If E has

n,x,s n,s

(BB), for all n we say that E has (BB),,. With our new notation we have thatt, =
on Z("E) if and only if E has the (BB),-property. If { E, E} has the (BB)-property
then E has the (BB),-property and 1, = f on 2(2E). The history of Grothen-
dieck’s problem can be divided into two distinct phases: the positive solutions of
Grothendieck ([20]), circa 1955, and the recent developments, all of which
follows from Taskinen’s fundamental 1986 paper [20]. It is no coincidence that
the Fréchet spaces for which the most interesting results have been obtained in
infinite dimensional holomorphy — Banach spaces, nuclear and Schwartz spaces
—are included in the classes for which Grothendieck obtained positive solutions
to the “probléme des topologies” and that the class of spaces which often
appeared as the critical case in infinite dimensional holomorphy — the
Fréchet-Montel spaces — should yield mixed results (i.e. both positive results and
counterexamples) to the “probléme des topologies”. It is our belief that the
(BB),-property will frequently appear as an essential hypothesis in topological
problems of infinite dimensional holomorphy. Taskinen and his followers have
shown by example and counterexample, that the collection of pairs of spaces with
the (BB)-property will probably not coincide with any of the usual linear collec-
tions but will contain large subcollections of interesting spaces. We shall consider
the (BB)-property more closely in the next section and confine ourselves here to
a general presentation.

If Eis a Fréchet-Montel space and E has the (BB),-property then each bounded

subset of @ E is contained in a subset of the form I’ < ® K) . By our previous

n,m,s n,s

remarks this implies that 7, = # on 2("E) and, moreover, since I" < X K) is

n,s

a compact subset of @ E it follows that ® E is itself Fréchet-Montel. Hence

n,m,s n,m,s

(2("E), 1) is reflexive and 14 = 1, on Z("E). To summarize we have the following
result.
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PROPOSITION 1. If E is a Fréchet-Montel space then E has the (BB),-property if
and only if 1y = 1, on P("E).

Taskinen [22] constructed a Fréchet-Montel space which did not have the
(BB)-property and a suitable modification by Ansemil-Taskinen [3] yielded the
first example of a Fréchet-Montel space for which 1, + 1, on #(2E). For positive
results ansmg from proposition 1 we refer to proposition 4 and § 2.

Since ® is an associative functor the following is immediate.

PROPOSITION 2. [8, proposition 8]. If & is a collection of Fréchet spaces which is
stable under the formation of completed projective tensor products and {E, F} has
the (BB)-property for any E, F € & then each E € & has the (BB),-property.

The collection of tensor-(FG) spaces introduced in [8] satisfies the hypothesis
of proposition 2. Remarks regarding the definition of this collection and
examples are given in the next section.

The collection of separable Banach spaces is stable under completed projective

tensor products. Using this fact, associativity of ® and [21, proposition 2.13]
modified for separable Banach spaces we can easily show the following.

PROPOSITION 3. If E is a separable Fréchet space, {E, F} has the (BB)-property
for every separable Banach space F, and E contains a fundamental system of
absolutely convex bounded sets 9 such that Eg has the approximation property for
all B € % then E has the (BB),,-property.

Separable Hilbertizable Fréchet spaces satisfy the hypothesis of proposition 3.
The hypothesis of proposition 3 may be weakened by using recent results from
[6].

Finally we consider the equality = 1, on 2("E). Since 1, is the barrelled
topology associated with 7o on ("E) and 7, = f = 1, it follows that 7, is also the
barrelled topology associated with f. A locally convex space is said to be
distinguished if its strong dual is barrelled. Hence for arbitrary Fréchet spaces we
have f = 1, on 2("E) if and only if @ E is distinguished. Since we require this
property for all n it is more convenient to consider the density condition [5].
A Fréchet space E is said to have the density condition if the bounded subsets of

" (= (P((*E), p)) are metrizable. If E has (BB), and the density condition then

E also has the density condition ([5]) and hence is distinguished.

Quasinormable spaces and Fréchet-Montel spaces have the density condition.
This concludes our first examination of locally convex topologies on spaces of
homogeneous polynomials. We now consider the problem of how these locally
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convex spaces of homogeneous polynomials are combined to provide locally
convex structures on #(U), U a balanced domain in a locally convex space E. In
later sections we shall see how to lift estimates to obtain more precise information
about J#(U).

The 174 topology on s#(U), U a balanced domain in a Fréchet space, is
generated by all seminorms of the form

CO

(1.2) px(f) =

"f ©) ”

where f = Z d f(O) ——>e #(U) and K is a compact subset of U.

Thez, topology on J#(U), U a balanced domain in a Fréchet space (or indeed
in any locally convex space) is generated by all seminorms which have the
following three properties

()
(13 wn= 3 o(412)
n=0 .
forall f = i d"f(O) e A (U),
(1.4) p|2("E) is t,, continuous for all n

there exists a compact subset K of U such that for every V open, K =« V < U,
there exists ¢(V) > 0 such that
(1.5) p(P) = c(V)IIPlly

for all Pe 2("E) and all n.

The 1,5 topology on J#(U) is generated by all seminorms which satisfy (1.3) and
(1.4).

Ansemil-Ponte [2] used (1.2), holomorphic germs and a result of Mujica to
show that if 7, = 7, on 2("E) for all n where E is a Fréchet-Montel space then
1o = T, 0n H#(U), U an arbitrary balanced open subset of U. In our terminology
and using proposition 1 we may rephrase this as follows.

PROPOSITION 4. If E is a Fréchet-Montel space then 1o = 1, on #(U) for any
balanced open subset U of E if and only if E has the (BB)-property.

If 7y = 7, on 2("E) then condition (1.4) is equivalent to
(1.4y there exists a compact subset K, of E such that
p(P) < |P|k,, for all Pe Z("E)

We may thus regard (1.4) and (1.5) as our estimates on spaces of homogeneous
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polynomials and (1.3) plays a role in putting these estimates together to obtain
1o = 1T, on J(U). Proposition 4 solves the 7, = 7, problem as a holomorphic
problem on balanced domains and what remains is now a polynomial problem.
The combined conditions (1.3), (1.4) and (1.5) may be regarded as a refinement of
(1.1).

More precise descriptions are available for certain classes of Fréchet spaces. By
proposition 4, if E is a Fréchet-Schwartz space then the t,, topology on #(U),
U balanced on E, is generated by all seminorms which satisfy (1.2).

If E is a Banach space with unit ball Band U is a balanced open subset of E then
the 7, topology on #(U) is generated by all semi-norms of the form

()
(1. = 3 |21
n=0 . K+a,B
where f = Z "f(O) ——~>¢e #(U), K is a compact subset of U and (a,), € ¢, ([4, 12]).

We now consxder the 7, topology on #(U). A subset B of U is called a bounded
subset of U if it is a bounded subset of E and there exists a neighbourhood V of
Oin E such that B + V < U. The natural analogue of 7, on J#(U) is the topology
of uniform convergence on the bounded subsets of U. However, it is rarely the
case that each holomorphic function on U is bounded on all the bounded subsets
of U. In this situation attention is often restricted to those holomorphic functions
which are bounded on the bounded subsets of U and one obtains a subspace of
H#(U) which is denoted by 5#,(U) (see example 10). We are interested in 5 (U) and
so motivated by (1.2) for Fréchet-Schwartz spaces and (1.6) for Banach spaces we
define a new topology on #(U). We shall say that a sequence of subsets (B,),, of
alocally convex space E, converges to a subset B if for every neighbourhood V of
0 in E there exists a positive integer ny such that B, = B + V for all n = n,,.

DerINITION 5. If U is a balanced open subset of a locally convex space E then
the 7, topology on #(U) is generated by all seminorms on 5 (U) which have the
form

0

() =3 £70

forall f = i a”f(O)

n=0
E which converges to some compact subset of U.

€ #(U), where (B,), is a sequence of bounded subsets of

If U is an arbitrary open subset of U we let

(H(U), 1) = lim (F(E + V),75)

14
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where the projective limit is taken over all pairs (&, V) with £ e U, V balanced in
E and £+ V < U (we use the canonical identification between (V) and
H(E + V) to define 1, on H#(¢ + V)). Many of the properties of #(U), U bal-
anced, shared by 70, 7, and 75 remain true for 7, and are proved in the same way.
For instance {({2("E), 1)}, is an &-absolute decomposition for (H#(U), 1)
(C13D).

Clearly we have 14 < 1, < 7, 0n #(U),and 74 = 14, for U balanced, if and only
if E is a semi-Montel space. We have already noted that t, = 1, for balanced
domains in Banach spaces and Fréchet-Schwartz spaces.

Our aim in this paper is to obtain a similar result for a large class of Fréchet
spaces.

For unexplained terminology, general definitions and results mentioned with-
out proof or reference we refer to [13].

§2. T-Schauder decompositions.

In § 1 we saw that a pair of locally convex spaces has the (BB)-property if every
bounded subset of their completed n-projective tensor products splits (modulo
taking the absolute convex hull). For this reason it is only to be expected that
good splittings of the component spaces should lead to examples of pairs with the
(BB)-property. A splitting of the whole space is a projection. The mere existence
of projections is not sufficient, however, as bounded sets in Fréchet spaces are
defined by estimates involving a sequence of semi-norms and it is necessary to
have further interactions between the projections and the semi-norms. The first
step in this direction was taken by Taskinen [20] who defined a class of Fréchet
spaces with an unconditional basis and a property allowing the extension of
norm estimates on subsets of the basis to their linear span in a uniform fashion.
The projections, given by the basis, led to a partition of the basis into disjoint
subsets on each of which tensor norms could be estimated and the results from
the different sections combined to obtain the (BB)-property. The technique of
using good estimates between different norms on sufficiently many projections
appears to be fundamental as in the same paper (see also [22]) the author
obtained counterexamples to the general problem by using projections. Tas-
kinen’s method has been developed to more general situations but in all cases it is
possible to see implicitly or explicitly the presence of projections.

Bonet-Diaz [7] introduced T-spaces by replacing the basis by projections and
Bonet-Diaz-Taskinen [8] went a step further and replaced projections with
a partition of the identity. Diaz-Metafune [10] (see also [9]) characterized the
standard quojections of Moscatelli type E such that { E, F} has the (BB)-property
for every Banach space F as those spaces for which E” is a product of Banach
spaces (in other words the spaces with a single twist or spaces whose second dual
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contains sufficiently many projections onto spaces with the (BB)-property (i.e.
Banach spaces)). The other major class for which there is a positive solution are
the Hilbertizable Fréchet space and here again projections are implicitly avail-
able as every closed subspace of a Hilbert space is complemented.

In infinite dimensional holomorphy the methods of Taskinen [20] and Bonet-
Diaz [7] was extended to the n-fold symmetric case in [14] and [16] to obtain
further examples of Fréchet-Montel spaces E for which 15 = 7, on #(U),
U balanced in E.

In this article we define a collection of spaces which are very similar to the
T-spaces of Bonet-Diaz [7] and adjust the method of [14] and [16] to obtain
more precise estimates for the (BB),-property. These estimates are then combined
to obtain examples of spaces of holomorphic functions with 7, = 7,,.

Let {E,}, denote an unconditional Schauder decomposition of the locally
convex space E. For each nlet P, denote the canonical projection, defined by the
decomposition, from E onto E, and for any subset J of N let P, = ) P;.

jeJ

DEFINITION 6. An unconditional Schauder decomposition, {E,}, of a Fréchet
space E is a T-Schauder decomposition if there exists a fundamental system of
semi-norms for E, (|| ' ||, )xen such that

2.1) IP;(x)lx < lxllx forallJ = N,keN and xeE
(22) for every sequence a = (o), 0 < oy < 1, there exists a partition
Ji = (Ja,i) Of N such that if P, ,:= P;_, then
1P k(=1 = ot | Py, k(x)|ls for all xe E and all k = 2.
(2.3) ||-|lx defines the topology induced by E on P, ,(E) for all « and all k.

A basic sequence of semi-norms satisfying (2.1), (2.2) and (2.3) is called
T-adaptable and a subset A of E is said to be T-invariant if P;(A) < A for all
Jc N.

Definition 6 is very similar to the definition of T-decomposable space given in
[7]. The extra condition, required in order to prove lemma 7, is that each P, , is
obtained by adding together projections from the original Schauder decomposi-
tion and condition (2.3) shows that it may be difficult to construct an example of
a T-decomposable space which does not have a T-Schauder decomposition. The
FG-spaces of [8] are obtained by replacing the decomposition and (2.1) by

a partition of the identity ) P;and tensor (FG) spaces are FG-spaces for which

ji=1
1
Z P;|| < 1for all ] < k (see the remarks following proposition 2).
i=1

k
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LEMMA 7. If the Fréchet space E has a T-Schauder decomposition and U is
a T-invariant convex balanced open subset of E then each compact subset of U is
contained in an absolutely convex T-invariant compact subset of U.

Proor. Let K denote a convex balanced compact subset of U. Let

K= U Ps(K). Clearly K < U and we show that K is relatively compact. Let
JeN

(¥n)n denote a sequence in K and for each n choose x, in K and J, = N such that
yn = P; (x,). Since K is compact, (x,), contains a convergent subsequence (which
we may suppose is the original sequence) which converges to x € K. We identify
subsets of N with pointsin 2" in the usual way. If the set consisting of 2 elements is
given its discrete topology and 2V is given the product topology then 2~ is
a compact metric space. It follows that {J,}, contains a subsequence, which we
again assume to be the original sequence, which converges to an element J of N.
If k is any positive integer then

”PJ,,(xn) - P(¥)[x = "PJ,,(xn) - PJ,,(x)“k + ||PJ,.(X) — Py(¥)|l«
S Ixs — xllx + 1Py, (x) — Py(x)lli
—0asn— 0.

Hence I" (K) is a compact subset of E.
For any J; € N we have
PJ,(K) = U PJ,PJ(K) = U leJ(K) <K

JEN JjeN

Hence
Py (F(K)) = [(P,(K)) = I(K)

and I(K) is a convex balanced compact T:invariant subset of E which contains K.
This completes the proof.

ProPOSITION 8. Let (|*|x)x denote a T-adaptable set of seminorms for the
T-Schauder decomposition { E, }, of the Fréchet space E. Let K denote an absolutely
convex compact T-invariant subset of E and let Uy = {x€E; |x||, £ 1}. Let q,
denote the seminorm on E with closed unit ball U; + K and let g, = || ||, fork = 2.
Then (qi)x is a T-adaptable set of seminorms for the decomposition {E,},.

ProOF. We retain the same set of projections (P, ), for the new set of
semi-norms. Since K is compact the norms || - ||; and g, are equivalent and hence
(2.3) is satisfied by (g4 )k > 1. To complete the proof we must check (2.1) for g, and
(2.2) for k = 2. For (2.1) it suffices to show that q,(P,x) < q,(x)forall J/ « N and
all xe E. This is equivalent to showing P,(U; + K) = U; + K. By (2.1) for ||- {4,
we have P,(U;) < U, and since K is T-invariant we have Py(K) < K.
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Hence P;(U; + K) = Py(U,) + Py(K) =« U; + K.
For (2.2) we are required to show that

q1(P,, 1(x)) = 2295(P,,1(x)) forall xeE.

Since U, = U, + K it follows that ¢, < || |;-
Hence

41(Py, 1(x)) S 1Py, 1(X)ly S 0z 1P, ()12 = 2242(Ps, 1(X))
and this completes the proof.

ExaMPpLE 9 (of Fréchet spaces with T-Schauder decompositions).

(a) Fréchet spaces with unconditional basis of type (T), I” and X valued Kothe
sequence spaces ([7, 8,22]). In [11] the authors show that a K6the echelon space,
p(I,A), 1 £p £ o or p=0 and I of arbitrary cardinality, has a T-Schauder
decomposition if and only if it has a total bounded set or equivalently if and only
if A,(I, A); admits a continuous norm.

(b) Banach spaces [7].

(c) Fréchet-Schwartz spaces which admit a continuous norm and a finite
dimensional decomposition ([7]).

(d) Fréchet-Montel spaces with unconditional basis (e,), which satisfy

(c) for all k,te N, k > t, there exists M, , > 0 such that if
lleille < Clle;ll;, i€ J, for some C > 0 and J = N, then
[xllk = CMy,, lIxll; for every x esp(e;,ie J) ([7,9]).

The above are all examples of T-decomposable spaces and the proofs given in
[7] show that they all have T-Schauder decompositions. Furthermore, the proof
of Observation 2 in [ 7] shows that the countable product of Fréchet spaces with
T-Schauder decompositions also has a T-Schauder decomposition.

Condition (2.3) implies that all except a finite number of semi-norms agree on
P, «(E). For this reason we find (see for instance the proof of proposition 3 in [7])
that in many examples the spaces P, ,(E) are finite dimensional. Finite dimen-
sionality also plays a key role in the final part of Taskinen’s proof [20, theorem
3.1and 3.3] and something similar is often necessary in the general case. Our next
example gives a natural situation in which all of the spaces P, ,(E) are infinite
dimensional Banach spaces.

ExAMPLE 10. Let E denote an infinite dimensional Banach space. The Taylor
series decomposition of 5#,(E) (the entire holomorphic functions of bounded type
endowed with the topology of uniform convergence on the bounded subsets of E)
is a T-Schauder decomposition of the Fréchet space #,(E). We have E, = 2("E)
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d"f(
and P,(f)= f( ) for all n and all fe #(E). The topology on #(E) is
generated by the seminorms
oo} n 0
p(f) = Z f() , k=12...
n=0 kB

where B is the unit ball of E.
Clearly (2.1) is satisfied. Let a = (a,), be given. Since

d"f(0)\ _ k" d"f(0)
P\ )T\ ) P\

for all k, I and ne N we can choose an increasing sequence of positive integers
(m)z2 such that p,_(P) < ap(P) for all Pe#("E) and all n > n,. Let
Jl = {0, 1,...,"2 - 1} and Jk = {nk,...,nk+1 - 1} fOr k g 2 Let Pa,k(f) =
j
20
!

d’f(0)

]' (k—1)B

< 3 [#1O

jeJk .]'
= 0 || Py, 1 (f) i

and (2.2) is satisfied. Since || ~ |||, on Z("E) for all n, k and | and the
projections P, , only involve a finite number of derivatives it follows that (2.3) is
also satisfied. Hence #,(E) has a T-Schauder decomposition. We note in passing
that the norms given above for J#,(E) satisfy condition (cQ) of example 9 (d)
without any restriction on k and I. A similar proof works for U balanced.

”Pa,k(f)"k~l = Z

jeJk

kB

The proof of the following proposition was motivated by the proofs of [20,
theorems 3.1 and 3.3], [ 14, theorem 1] and [ 16, proposition 3]. The crucial point
in proposition 11 is to obtain symmetric tensor representations and not just tensor
representations which have previously been given in [14] and [16].

We let S denote the symmetrization (projection) from ® E onto ® E ob-

d,n,s

tained by extending

Sx; ®x3...0 xy) 1= — Z Xn(1) ® ... @ Xy

neSa

d!

where S, is the set of all permutations of {1,...,d}. If B is a convex balanced
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subset of E then the polarization formula [13, p. 4] and duality theory show that
for fe ® E we have

d,n,s

(2.4) |10]|pa:= inf{ ”xj.l"B ||xj,2||n--- ”xj,d“B;G = z Xj1 ®Xxj2...® xj,d}
=1 j=1

i=

J

< ||0||B:=inf{z Ixl50=Y & x:}
i=1 j=1 d

d

d
< = 10l

PROPOSITION 11. Let E denote a Fréchet space with T-Schauder decomposition
{E,} and T-adaptable set of semi-norms (|| |i)xz1. Let d be a positive integer,
U, = {x€E; ||x,|| £ 1}, B be a bounded subset of ® E and ¢ > 0 be arbitrary. If

d,mn,s

BcT ( ® U1> then there exists a bounded subset A in (1 + ¢)U; such that
d,s
Bc f( X A>.
d,s
PrOOF. We may suppose without loss of generality thatd > land0 < e < 1.

Since B is bounded there exists an increasing sequence of positive numbers,

(r)2 1, such that B< (\ I ( ® Tu U,,). By our hypothesis we may take r; =1

d,s

) d2d
and, without loss generality, we may suppose r, > max <(2d ) ;T)'

For each positive integer k and each z in B we have a representation
z= ii Aiu(2) @ xi,(2)
where
i i@l =1 +eforallkeN and ze B
i=1

and x; ,(z)er U, for all i,ke N and ze B.
Let o, = 2 *r, “*? for ke N and let (P, ), be the decomposition for a: = (o)
given by (2.2). For the d-tuple k = (ky, ..., k,) of positive integers let

Ak={i,1§i§d,ﬁ:= sup k,-=k,} andlet B, = {i;1<i<d k= 1}

15j=d

Let |4, =eand |B,|=f For1 £j<dlet
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rg*i-a ifjed,and f >0
rg=ee  ifjeA,and f =0
P(k) = it if j¢ A, and j¢ B,
relr ifjeB,.
If |B,| = 0 then

d
jl;[l (pj(k) — (rkd—e)/e)e(rﬁ—l)d—e — raiie—e—d+e =1.

If |B,] = f > 0 then

d

'1_11 (k) = (r}‘-‘” ! _e)/e)"(ri' l)d_e_f(r,{ 1-4

=rg+1—e—d+e+f—f—l =1

d
so that [] @;(k)=1 for all ke N°.
j=1
We now consider the formal sum

Z 4i,1(2) @ P, 1(x;,1(2))
Z Z ;k(Z)Z_kd"z_d ® (r22kPa,k(xi,k(Z)))

+ i > A i(2)27 %= 1kjS< ® (r % ®(k)25P, i (x;, k(z)))>

i=1 k=(ky,...ka)
| Aicl <d

We claim that the elements of E which appear in the tensor part of the above sum
form a bounded subset of E. We consider the different cases that may arise and
adopt the following notation.

If j < g we may use (2.3) to find C, ; > O such that ||-||, = C, ;||| on P, (E)

and weletc, = sup C, ;.
15jsq

In cases 3,4 and 5, ke N, k = 2, and let y, i(2) = r,2"P, i(x; 4(2)).
In cases 6 to 12, k = (ky,...,k;)e N* and |4,| < d and we let

1
Wi j(2) = dr%‘i‘p;(k)zkjp a, k,(xi,é(z))-

We let g denote a positive integer.
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Case 1.

Case 2.

Case 3.

Case 4.

Case 5.

Case 6.
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qg=1
[Py, 10xi, 121 S 113,12 £ 1
qg> 1.

| P, 1(x;, 1(2))||q =< Cq,l 1Py, 1(xi, (@)1 £ Can

q <k
Iy, i@y = 7225 | Py (i 1 (2) i - 1

S 227 D Py (s a2)) e

Srar 4,

< rz_"
q==k.

Iye,i@ g = r227 | Py, o(xi 42Dl
Srpr2t

q>k

ll v, i(Z)”q =< r22qu,k” P, q(xi,k(z))"k

£ rp2%,r,

d+
q < k;=k Wehave ®j(k) <r, ¢

Wi, 2 g = drz"r,; - 1Py, 2Cxi, i@ - 1

<dr2“r ek - o@D P, o(x 2

<1 sincer, > (2d)* > d?
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Case 7. q < k; < k. We have ®;(k) < r; !

1
Wi j2) g < drdrg 2% || Py g (i, i(2) 1k, -1

L _

< dritrg 27 g D Py (i k()
1

< dr2rg rg 4D |(x 22 e
1
'2_ (d+2)

<dr?
—d+1

<dry Y

<r*

d+1-e

Case 8. 1f g = k; = k. We have &;(k) <r
d+1-e
Iwi i@l = dr“r 2Py o(xi 4,
< dzqr-ﬂ+d+l
- q

(Note that in this case we cannot have q = 1 since this would imply k£ = 1 and
k=(1,...,1). Hence |A,] = d and this is not possible).

Case 9. 11 = g = k; < k. In this casc |By| + 0 and (k) = r; ' 7

Lo 1
wi ;@ < dr % 7 i 1Py, 1(x:, (2D 1

ZL__;
§2d2 I3 frg
L 1
= 2dr2r; 7
Ll 1
< 2dr2i7d sincel £ f=d
_1
< 2dr;2d

<1 sincer, £ (2d)*.
Case 10. If 1 < k; < q < k. We have (k) =r; "
1
Wi, x(@)lq S drarg 124 || P, o (x:, (2l
< d2“r?r,{ re

1
= d2%2d
2
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d+1-—e
Case 11. If k; = k < g. We have ®;k) <1, °

uw.,k(z)u.,swr.; P i i)

Case 12. Ifk; < k < q. Then &j(k) <7 %,
1
Wi, s, k(@llq < dr2arg 124 || P, (x; i)l
1
< dr2arg 129C, ¢ || Py i, (%0,2(2)
2i%s
2 2%,

IIA

dr

Hence the set consisting of
{Pa, (i, 1(2))}311 U {r22kPa K(xi, h(Z))}ﬂ1 k22,zeB

U {dru‘pj(k)zk’P a k; (x;, k(z))}l 1,k=(ky,....ka)eNd

zeB 15j%d,|Ax|<d
is a bounded subsetof E and we denote by B, its closed convex balanced hull. By
cases 1, 3, 6, 7 and 9 it follows that B, = Uj,.

By (2.4)
” ( @, (Kra2P,, .‘,.(xi,,:(z»)
d j B,
d
< 211 | oo 0o, 69
j=1 2
at 1
=< TR <1 (by case (6) to (12)).
Hence

(® L” ,(k)2"fP u,k,(xi,k(l)))

where ) (10,405, < 1.
1=1
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We now have the formal sum of symmetric tensors

3 50l @ Pusa@) + 3 T 2us02 734 @ (22'Puslrinld)

Blkl >>
burill, ® (—
R AN

Ms

+ Z Z Aii(2)2” = tkips (
!

i=1k=(kq,..., ka)

|4kl <d
Now
had 1+¢
RCEIE z hia@|2 Mt s —— <
i=1 2
and
- I T o d
) Y @R Ei= A Y (10,15,
i=1k=(ky,..., ka) I=1
| Akl <d
él-i;ség
r;
and
1Py, 1(xi, 1 @)ls, S 1, 172 2Po X k@)1, S 1
so that this formal sum is absolutely convergent to some z; in @ E.
d,m,s

For any k = (ky,...,k;)€ N? we have
P, ®Ppi,...® Pa,kd(ZO) = Z A @(2) ® P, k,-(xi,ﬁ(z))
i=1 id

= Lok ® Paz,kz-" ® Pa,kd(z)-

Hence z = z, and

B; & x; where Y Bl <1+ 3¢

1 d Jj=1

’MS

I

J

and ||x;l|p, < 1 for all j.

This shows that
Bc(l+ 3s)f< X Bz> = r’( X 1+ 36)%Bz>
d,s d,s

Since ¢ was arbitrary this completes the proof.



232 SEAN DINEEN

§3. Applications to Spaces of Holomorphic Functions.

To apply propositon 11 we first need to improve inequality (1.5). This we do in
the following proposition.

PROPOSITION 12. Let U denote a balanced open subset of a Fréchet space E and
let (V)); denote a neighbourhood basis at the origin. If p is a T , continuous semi-norm
on H#(U) then there exists a compact subset K of U and a non-decreasing surjective
mapping ®: N L {0} — N and ¢ > 0 such that

(J"f(0)> < d"1(0)
P\ =¢

n!
for all f e #(U) and all n.

K+Vym

PrOOF. By (1.5) there exists a compact balanced subset K of U such that for
every neighbourhood V of 0 there exists ¢(V) > 0 such that

p<3"£!(0)>_ (V) d"f(O)

for all fe #(U) and all n.

K+V

Choose 4 > 1 such that AK is also a compact subset of U. For each positive
integer j we can choose a positive integer n; such that c¢(1™'V;)/A" < 1 for all
n = n;. Then

d"f(0) "f(0)
p( n! >< @ lV) K+%V}~
cA”'V) || d"f(©0)
= A n! AK+V;
d"f(0)
n! AK+V

forall fe#(U)and all n = n;.

We may suppose, without loss of generality, that the sequence (n;); is strictly
increasing.
Let

o(n) = 1 for n<n
T for njsn<nj,jz1

Then
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(212).

forall fes#(U)and n = n,.

d"f(0)

n!

AK+V g(n)

For n < n; we have

(a"f(0)> < c(A” W) || d"f(0)
p n! = A"

n!

AK+V,

for all fe#(U).
If c = 1 + ¢(A™'V,) this completes the proof.

THEOREM 13. Let E denote a Fréchet space with a T-Schauder decomposition
and the density condition and let U denote a convex balanced T-invariant open
subset of E. Then

(”(U)’ ro)) = (*#(U)’ Tb)'

ProoF. Let p denote a 1, continuous semi-norm on ' (U) and let (|| [x)xx1
denote a T-adaptable set of seminorms on E. We may suppose, by proposition 12

and Lemma 7, that
d” 0 d" 0

=0 n=0 n'

and
G.1) ) ( a";’!(o)> <

for all fe #(U) and all n where K is an absolutely convex balanced T-invariant
compact subset of U, U; = {x€E; ||x|; £ 1} and ¢: N U {0} - N is a non-de-
creasing surjective mapping.

We now consider the semi-norm p, := p|pp, restricted to 2("E) for some fixed
n. By proposition 11, 7, = f on 2("E) and since E has the density condition
p =1, on Z("E).

Let g; denote the semi-norm on E with unit ball V:= K + Uy, and let
gk = I | pmy+x—1 for k = 2. Since (|| )k 2 ¢(m is @ T-adaptable set of semi-norms
on E proposition 8 implies that (g, ) »  is also a T-adaptable set of seminorms on
E.

Let B = {¢p € Z("E);|$| £ p.}. We have p,(P) = ||P||p for all Pe Z("E).

By (3.1)

d"f(0)

n!

K+Ugn)
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pa(P) < IIP] o
(&)
&

0

’

where we are considering P as an element of ( E) .
n,m,s

00
By the Hahn-Banach theorem B = < ® V) . Since E has the density condi-

tion <® E) is distinguished and hence, as B is a bounded subset of

n,m,s

(( @ E) ) we have, by remark 1.4 of [17] (see also [19, lemma 1]), that there
n,m,s B/ B
exists a bounded subset 4 of ) V such that B = A°.

Hence p,(P) < || P 4 for all Pe #("E).
By proposition 11 there exists, for any ¢ > 0, a bounded subset C of (1 + &)V

such that A = I'[ & C). Hence p,(P) < sup |P(x)| for all Pe 2("E).

xeC
Nowlet C=C,and ¢ =¢,.
We have thus shown that for all n there exists a bounded subset C, of
(1 + &)(K + Upy) such that

p(P) £ ||P|c, for all Pe Z("E).

By choosing the ¢,’s sufficiently small and by noting that ¢(n) — oo as n — oo we
see that the sequence (C,), converges to the compact set K. By (3.1) we have

w Jn 0 @ dn 0
p(,,z f:,“>§2 ;’!()

=0 n=0

CH
and hence p is a 74 continuous seminorm on J#(U). This completes the proof.

CoROLLARY 14. If K is a T-invariant compact convex balanced subset of
a Fréchet space E with a T-Schauder decomposition and E has the density condition
then the t,, topology on H#(K) is generated by semi-norms of the form

> d"f(0) 2 || d"f©)
”(,,Z ! >=Z n!

=0 n=0

Bn
where (B,), is a sequence of bounded subsets of E which converges to K as n — oo.

Theorem 13 and corollary 14 are also true for entire functions and germs at
the origin when E is a complemented subspace of a Fréchet space with the density
condition and a T-Schauder decomposition.

By proposition 3.6 of [15] we also have the following corollary.
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CorOLLARY 15. If U is a balanced open subset of a Fréchet space E with

a T-Schauder decomposition and the density condition then (3#,(U), B) is quasinorm-
able.

(B is the topology of uniform convergence on the bounded subsets of E which
lie strictly inside U).
By example 10 we have the following result.

CoroLLARY 16. If U is a balanced open subset of a Banach space then
(5 (#,(U)), P) is a quasinormable Fréchet space.

The method used in the proof of proposition 12 can also be used to prove the
following result.

ProPoSITION 17. IfK is acompact balanced subset of a Fréchet space then the t,
topology on #(K) is generated by all seminorms of the form

o O _ &[40
p(ngo n! >_u;0 n!

K,
where (K ,), is a sequence of compact subsets of E which converges to K.

We thank the referee for clarifying our original proof of lemma 7.
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