ON EMBEDDINGS OF PROPER SMOOTH G-MANIFOLDS

MARJA KANKAANRINTA

By a linear Lie group we mean a Lie group isomorphic to a closed subgroup of a general linear group. A euclidean space \mathbb{R}^n equipped with the linear action of G via some representation $\varrho: G \to \mathrm{Gl}(n,\mathbb{R})$ is denoted by $\mathbb{R}^n(\varrho)$ and called a linear G-space. If M is a smooth, i.e., a C^∞ -differentiable manifold and the action $G \times M \to M$ is smooth, we call M a smooth G-manifold. In case the mapping $G \times M \to M \times M$, $(g,x) \mapsto (gx,x)$, is proper, i.e., if the inverse image of every compact set is compact, we call M a proper smooth G-manifold. This definition of properness is equivalent to the definition used in [Pa3]. The purpose of this paper is to prove the following result:

THEOREM. Let G be a linear Lie group and M a proper smooth G-manifold having only finitely many orbit types. Then there exists a G-equivariant, closed smooth embedding of M into some linear G-space.

Suppose for a moment G is an arbitrary Lie group. Let G act on itself via multiplication on the left. This action makes G a proper smooth G-manifold having only one orbit type. Assume there exists a G-equivariant topological embedding f of the G-manifold G into a linear G-space $R^n(\varrho)$. Then $f(g) = \varrho(g)f(e)$ for every $g \in G$ where e is the identity element of G. Since f is injective it follows that also $\varrho: G \to Gl(n, R)$ is injective. It now follows from Proposition 5.1.2 in [Pr] that ϱ is a smooth immersion. Since the mappings $\varrho(G) \to R^n(\varrho)$, $\varrho(g) \mapsto \varrho(g)f(e)$, and $f(G) \to G$, $f(g) \mapsto g$, are continuous, it follows that their composition $\varrho(G) \to G$, $\varrho(g) \mapsto g$, is continuous. Theorem II 2.10 in [He] finally implies that $\varrho(G)$ is closed in Gl(n, R), i.e., that G is a linear Lie group. Thus we see that in the previous theorem it is necessary to assume G is a linear Lie group.

The smooth embedding is constructed essentially in the same way as the topological embedding in [Pa3] and the subanalytic embedding in [Ka]. It will

Received March 17, 1993.

be used in a paper to appear where we will prove the real analytic version of the theorem by using G-equivariant real analytic approximations.

If $x \in M$ we denote its isotropy subgroup by G_x . We note that if G acts properly on M, then G_x is compact for every $x \in M$. For a subgroup H of G we denote $(H) = \{gHg^{-1} \mid g \in G\}$ and $M_{(H)} = \{x \in M \mid (G_x) = (H)\}$. The set (G_x) is called the orbit type of x. Let S be a G_x -invariant smooth submanifold of M containing x. If GS is an open subset of M and there exists a G-equivariant smooth mapping $f: GS \to G/G_x$ such that $S = f^{-1}(eG_x)$, then we call S a slice at x and GS a tube at x. It has been proven in [Pa3] that if M is a proper smooth G-manifold, then there exists a slice at every $x \in M$.

Suppose S is a slice at x. Let $g_0 \in G$, U be an open neighbourhood of $g_0 G_x$ in G/G_x and $\sigma: U \to G$ be a local cross section. It follows from Proposition 2.1.2 in [Pa3] that the mapping $F: U \times S \to V$, $(u, s) \mapsto \sigma(u)s$, is a homeomorphism onto an open neighbourhood V of $g_0 S$. In fact, F is a diffeomorphism with the inverse mapping $F^{-1}: V \to U \times S$, $g_S \mapsto (g_S G_x)^{-1} g_S$.

1. LEMMA. Assume G is a Lie group, M a smooth G-manifold, $x \in M$ such that G_x is compact and S a slice at x. Let A and B be disjoint, closed G-invariant subsets of GS. Then there exists a G-invariant smooth mapping $f: GS \to [0,1]$ such that $f \mid A = 0$ and $f \mid B = 1$.

PROOF. We first remark that $A \cap S$ and $B \cap S$ are disjoint, closed G_x -invariant subsets of S. Thus there is a smooth mapping $f_1: S \to \mathbb{R}$ such that $f_1(y) = 0$ when $y \in A \cap S$ and $f_1(y) = 1$ when $y \in B \cap S$. By Theorem 0.3.3 in [Br] the mapping $f_2: S \to \mathbb{R}$, $y \mapsto \int_{G_x} f_1(gy) dg$, is smooth. Obviously, $f_2(y) = 0$ when $y \in A \cap S$ and $f_2(y) = 1$ when $y \in B \cap S$. Let $f: GS \to \mathbb{R}$, $gs \mapsto f_2(s)$. Let $g_0 \in G$ and U, V, σ and F be as in the previous paragraph. Let $p: U \times S \to S$ be the projection. Then $f \mid V = f_2 \circ p \circ F^{-1}$ is smooth as composite of smooth mappings. Since g_0 was arbitrary, it follows that f is smooth. Clearly, f is G-invariant.

2. PROPOSITION. Let G be a Lie group, M a proper smooth G-manifold and A and B disjoint, closed G-invariant subsets of M. Then there exists a G-invariant smooth mapping $f: M \to [0,1]$ such that $f \mid A = 0$ and $f \mid B = 1$.

PROOF. Let $\{GS_i\}_{i=1}^{\infty}$ be a cover of M by tubes. Since M/G is paracompact by Theorem 4.3.4 in [Pa3], $\{GS_i\}_{i=1}^{\infty}$ has locally finite refinements $\{W_i\}_{i=1}^{\infty}$ and $\{V_i\}_{i=1}^{\infty}$ by open G-invariant sets W_i and V_i , respectively, such that $\overline{V_i} \subset W_i$ and $\overline{W_i} \subset GS_i$ for every i. Then $B \cap \overline{V_i}$ and $W_i \setminus A$ are G-invariant subsets of GS_i , $W_i \setminus A$ is open, $B \cap \overline{V_i} \subset W_i \setminus A$ and the closure of $W_i \setminus A$ is a subset of GS_i for every i. Thus, by Lemma 1 there exists for every i a G-invariant smooth mapping $f_i'|: GS_i \to [0,1]$ such that $f_i'|(GS_i \setminus (W_i \setminus A)) = 0$ and $f_i'|(B \cap \overline{V_i}) = 1$. We extend f_i' to $f_i: M \to [0,1]$ by setting $f_i(y) = 0$ when $y \in M \setminus GS_i$ and $f_i(y) = f_i'(y)$ when

 $y \in GS_i$. Then f_i is G-invariant, and since $\overline{W_i} \subset GS_i$, it follows that f_i is smooth. Since $\{\sup f_i\}_{i=1}^{\infty}$ is locally finite, it follows that $f_B: M \to \mathbb{R}, \ x \mapsto \sum_{i=1}^{\infty} f_i(x)$, is smooth. Clearly, f_B is G-invariant and non-negative, $f_B \mid A = 0$ and $f_B(x) > 0$ for every $x \in B$.

Let A' and B' be closed G-invariant neighbourhoods of A and B, respectively, such that $A' \cup B' = M$, $B \cap A' = \emptyset$ and $A \cap B' = \emptyset$. Then there exist non-negative G-invariant smooth mappings $f_{B'}$, $f_{A'}$: $M \to \mathbb{R}$ such that $f_{B'} | A = 0$, $f_{B'}(x) > 0$ for every $x \in B'$, $f_{A'} | B = 0$ and $f_{A'}(x) > 0$ for every $x \in A'$. Since $f_{A'}(x) + f_{B'}(x) \neq 0$ for every $x \in M$, the mapping

$$f: M \to [0,1], \qquad x \mapsto \frac{f_{B'}(x)}{f_{A'}(x) + f_{B'}(x)},$$

is well-defined. Since f is smooth and G-invariant, $f \mid A = 0$ and $f \mid B = 1$, the proposition follows.

3. PROPOSITION. Assume G is a linear Lie group, M a proper smooth G-manifold and $x \in M$. Then there exists a slice S at x such that the tube GS admits a G-equivariant smooth embedding in a linear G-space.

PROOF. Let S_0 be a relatively compact slice at x. Then, by Proposition IV 1.2 in [Br], S_0 only has finitely many orbit types when regarded as a G_x -space by restriction. It has been proven in [Mo] and in [Pa1] that there exists a representation $\varrho_0 \colon G_x \to \operatorname{Gl}(n, \mathbb{R})$ for some $n \in \mathbb{N}$ and a G_x -equivariant smooth embedding $j_0 \colon S_0 \to \mathbb{R}^n(\varrho_0)$. According to Theorem 3.1 in [Pa3], there exists a representation $\varrho \colon G \to \operatorname{Gl}(p, \mathbb{R})$ for some $p \ge n$ and a linear G-space $\mathbb{R}^p(\varrho)$ which, considered as a linear G_x -space by restriction, contains $\mathbb{R}^n(\varrho_0)$ as an invariant linear subspace. Therefore we can regard j_0 as an embedding in $\mathbb{R}^p(\varrho)$.

Since G is a linear Lie group, Theorem 3.2 in [Ka] implies that there exists a representation $\psi: G \to \mathrm{Gl}(q, \mathbb{R})$ for some $q \in \mathbb{N}$ and a point $v \in \mathbb{R}^q(\psi)$ such that $G_v = G_x$ and the mapping $G/G_x \to \mathbb{R}^q(\psi)$, $gG_x \mapsto \psi(g)v$, is a closed smooth, in fact a real analytic, embedding. We define

$$j: GS_0 \to \mathbb{R}^{p+q}(\varrho \oplus \psi), \qquad gs \mapsto (\varrho(g)j_0(s), \psi(g)v).$$

Since j_0 is G_x -equivariant and injective, it immediately follows that j is G-equivariant and injective.

Let $g_0 \in G$ and $\sigma: U \to G$ be a local cross section at $g_0 G_x$. The mapping $F_0: U \times S_0 \to V_0$, $(u, s) \mapsto \sigma(u)s$, is a diffeomorphism onto an open neighbourhood V_0 of $g_0 S_0$. Also $h: U \times S_0 \to U \times j(S_0)$, $(u, s) \mapsto (u, j(s))$, is a diffeomorphism. Since easily $j(S_0)$ is a topological slice at j(x) in the G-space $j(GS_0)$ the mapping $F: U \times j(S_0) \to V$, $(u, j(s)) \mapsto \sigma(u)j(s)$, is a homeomorphism onto an open neighbourhood V of $j(g_0 S_0)$ in $j(GS_0)$. Clearly F is smooth. Then $j \mid V_0 = S_0$

 $F \circ h \circ F_0^{-1}$ is a smooth homeomorphism onto V. Since g_0 was chosen arbitrarily it follows that j is smooth and j^{-1} : $j(GS_0) \to GS_0$, $j(gs) \mapsto gs$, is continuous.

The restriction $j \mid S_0$ is a smooth embedding. Since the mapping $Gx \to G/G_x$, $gx \mapsto gG_x$, is a smooth diffeomorphism (see Proposition 1.1.5 in [Pa3] and Theorem VI 1.2 in [Br]) and the mapping $G/G_x \to \mathbb{R}^{p+q}(\varrho \oplus \psi)$, $gG_x \mapsto (\varrho(g))_0(x)$, $\psi(g)v$), is a smooth embedding it follows that the restriction $j \mid Gx$ is a smooth embedding. Let $y = (y_1, y_2) \in T_xGS_0 = T_xS_0 \oplus T_xGx$ and let $dj_x(y) = 0$. Let $j^1 \colon GS_0 \to \mathbb{R}^p(\varrho)$, $gs \mapsto \varrho(g)j_0(s)$, and $j^2 \colon GS_0 \to \mathbb{R}^q(\psi)$, $gs \mapsto \psi(g)v$. Then $dj_x^1(y_1) + dj_x^2(y_2) = 0$ and $dj_x^2(y_1) + dj_x^2(y_2) = 0$. Since $dj_x^2 \mid T_xS_0 \oplus T_xGx$ is injective, it follows that $dj_x^2(y_1) = 0$. Thus also $dj_x^2(y_2) = 0$. Since $dj_x^2 \mid T_xS_0 \oplus T_xGx$ is injective, it follows that $dj_x^2(y_1) = 0$. Thus $dj_x^2(y_1) = 0$. Therefore $dj_x^2(y_1) = 0$. Thus $dj_x^2(y_1) = 0$. Therefore $dj_x^2(y_1) = 0$. Thus $dj_x^2(y_1) = 0$. Therefore $dj_x^2(y_1) = 0$. Thus $dj_x^2(y_1) = 0$. Therefore $dj_x^2(y_1) = 0$. Thus $dj_x^2(y_1) = 0$. Thus $dj_x^2(y_1) = 0$. Since $dj_x^2(y_1) = 0$. Therefore $dj_x^2(y_1) = 0$. Thus $dj_x^2(y_1) = 0$. Thus $dj_x^2(y_1) = 0$. Thus $dj_x^2(y_1) = 0$. Since $dj_x^2(y_1) = 0$. Since $dj_x^2(y_1) = 0$. Thus $dj_x^2(y_1) = 0$. Thus $dj_x^2(y_1) = 0$. Since $dj_x^2(y_1) = 0$. Thus $dj_x^2(y_1) = 0$. Thus $dj_x^2(y_1) = 0$. Since $dj_x^2(y_1)$

We next show that for each orbit type (H_i) , $i=1,\ldots,m$, in M there exists a representation $\varrho_i\colon G\to \mathrm{Gl}(q_i,\mathsf{R})$ such that every $x\in M_{(H_i)}$ has a tube which admits a G-equivariant smooth embedding in $\mathsf{R}^{q_i}(\varrho_i)$. The representations ϱ_i are constructed in Lemma 4. In Lemma 7 they are used in showing that there exists a representation $\varrho\colon G\to \mathrm{Gl}(q,\mathsf{R})$ for some $q\in\mathsf{N}$, such that M can be covered with finitely many open sets each of which admits a G-equivariant smooth embedding in $\mathsf{R}^q(\varrho)$. Finally, the embedding of M is constructed by using Lemma 7 and Proposition 2. Lemma 5 and Corollary 6 are needed to make the embedding of M closed.

4. LEMMA. Suppose G is a linear Lie group and M a proper smooth G-manifold with only finitely many orbit types. Suppose H is a compact subgroup of G. Then there exists a representation $v: G \to Gl(n, R)$ of G for some $n \in N$ with the following property: If $x \in M_{(H)}$, there is a slice S_x at x such that the tube GS_x has a G-equivariant smooth embedding in $R^n(v)$.

PROOF. Proposition 4.4.2 in [Pa3] yields that M only has finitely many orbit types when regarded as an H-space by restriction. Let $\varphi: H \to O(m)$ be a representation for some $m \in \mathbb{N}$ such that there exists an H-equivariant smooth embedding $f: M \to \mathbb{R}^m(\varphi)$. The existence of f follows from [Mo] and [Pa1]. As in Proposition 3 we can consider f as an embedding in some linear G-space $\mathbb{R}^p(\varrho)$.

Let $x \in M$ be such that $G_x = H$ and let S'_x be a relatively compact slice at x. Let $\psi \colon G \to \operatorname{Gl}(q, \mathbb{R})$ and $v \in \mathbb{R}^q(\psi)$, where $q \in \mathbb{N}$, be such that the mapping $G/H \to \mathbb{R}^q(\psi)$, $gH \mapsto \psi(g)v$, is a closed smooth embedding. Proposition 3 implies that there exists a slice $S_x \subset S'_x$ at x such that $j_x \colon GS_x \to \mathbb{R}^{p+q}(\varrho \oplus \psi)$, $gs \mapsto (\varrho(g)f(s), \psi(g)v)$, is a G-equivariant smooth embedding. For every $g \in G$, gS_x

is a slice at gx and $G(gS_x) = GS_x$. Thus j_x embeds also $G(gS_x)$ and the lemma follows.

5. LEMMA. Let G be a linear Lie group, H a compact subgroup of G and M a proper smooth G-manifold. Then there exists a representation $\psi \colon G \to \mathrm{Gl}(k, \mathsf{R})$ for some $k \in \mathsf{N}$ with the following property: If $x \in M_{(H)}$, S_x is a slice at x and K_x is a compact subset of S_x , then there exists a G-equivariant smooth mapping $h_x \colon GS_x \to \mathsf{R}^k(\psi)$ whose restriction to GK_x is proper.

PROOF. Let $x \in M$ be such that $G_x = H$. The mapping $f_x \colon GS_x \to G/H$, $gs \mapsto gH$, is smooth. Let $f_x|$ be the restriction of f_x to GK_x and ϕ_x the restriction of the group action mapping to $G \times K_x$. Since the projection $p_x \colon G \times K_x \to G$ and the natural projection $\pi \colon G \to G/H$ are proper mappings, it follows that $f_x| \circ \phi_x = \pi \circ p_x$ is proper. Since $\phi_x(G \times K_x) = GK_x$ it follows that $f_x|$ is proper. Let $f \colon G/H \to R^k(\psi)$ be a G-equivariant, closed smooth embedding in some linear G-space $R^k(\psi)$. Then $h_x = f \circ f_x \colon GS_x \to R^k(\psi)$ is a G-equivariant smooth mapping whose restriction to GK_x is proper.

Let $g \in G$, S_{gx} be a slice at gx and K_{gx} be a compact subset of S_{gx} . Then $g^{-1}S_{gx}$ is a slice at x and $g^{-1}K_{gx}$ is a compact subset of $g^{-1}S_{gx}$. Since $GS_{gx} = G(g^{-1}S_{gx})$ and $GK_{gx} = G(g^{-1}K_{gx})$ we can choose $h_{gx} = h_x$.

- 6. COROLLARY. Assume G is a linear Lie group and M a proper smooth G-manifold having only finitely many orbit types. Let H be a compact subgroup of G. Then there exists a representation $\varrho \colon G \to Gl(m,R)$ for some $m \in N$ with the following property: If $x \in M_{(H)}$, then there is a slice S_x at x such that if K_x is a compact subset of S_x , the tube GS_x has a G-equivariant smooth embedding f_x in $R^m(\varrho)$ where the restriction $f_x \mid GK_x$ is proper.
- PROOF. Let $v: G \to Gl(n, \mathbb{R})$ and $\psi: G \to Gl(k, \mathbb{R})$ be as in Lemmas 4 and 5, respectively. Let $x \in M_{(H)}$, S_x be a slice at x as in Lemma 4 and K_x be a compact subset of S_x . Then, obviously, $(h_x, j_x): GS_x \to \mathbb{R}^{k+n}(\psi \oplus v)$ is the desired mapping.
- 7. LEMMA. Let G be a linear Lie group and M a proper smooth G-manifold having only finitely many orbit types. Then M has covers $\{O_k'\}_{k=1}^n$ and $\{O_k\}_{k=1}^n$ for some $n \in \mathbb{N}$, satisfying the following three conditions:
 - 1) Every O'_k and O_k is open and G-invariant.
 - 2) $\bar{O}_k \subset O'_k$ for every k.
- 3) There exists a representation $\varrho: G \to Gl(q, R)$ for some $q \in N$ such that for every k there is a G-equivariant smooth embedding $j_k: O'_k \to R^q(\varrho)$ whose restriction to \overline{O}_k is proper.

PROOF. Let $(H_1), \ldots, (H_m)$ be the orbit types of M. Let $\{GS_{x_i}\}_{i=1}^{\infty}$ be a cover of M by such tubes that every S_{x_i} has the same properties as the slice in Corollary 6. The orbit space M/G is a paracompact space with finite covering dimension.

Thus, by Theorem 1.8.2 in [Pa2], there is an open cover $\{O'_{k\beta} \mid \beta \in B_k, k = 1, ..., n\}$ refining $\{GS_{x_i}\}_{i=1}^{\infty}$ such that each $O'_{k\beta}$ is G-invariant and $O'_{k\beta} \cap O'_{k\beta'} = \emptyset$ if $\beta \neq \beta'$. Here we can assume that each $B_k \subset \mathbb{N}$ and that $\{O'_{k\beta} \mid \beta \in B_k, k = 1, ..., n\}$ is locally finite and has an open G-invariant refinement $\{O_{k\beta} \mid \beta \in B_k, k = 1, ..., n\}$, where $\bar{O}_{k\beta} \subset O'_{k\beta}$ for every k and β .

We next choose for every k and β a tube GS_i such that $O'_{k\beta} \subset GS_i$ and denote this tube by $GS_{k\beta}$. We divide the family $\{GS_{k\beta} \mid \beta \in B_k, k = 1, ..., n\}$ into m subfamilies $\{GS^1_{k\beta}\}, \ldots, \{GS^m_{k\beta}\}$ in such a way that exactly those tubes $GS_{k\beta}$ for which $(G_{x_k\beta}) = (H_l)$ belong to the family $\{GS^l_{k\beta}\}$. By Corollary 6, there exists for each $l \in \{1, ..., m\}$ a representation $\varrho_l : G \to Gl(n_l, R)$ for some $n_l \in N$, such that every tube $GS^l_{k\beta}$ admits a G-equivariant smooth embedding $j^l_{k\beta}$ in $R^{n_l}(\varrho_l)$. Since $\bar{O}_{k\beta} \cap S_{k\beta}$ is compact and $\bar{O}_{k\beta} = G(\bar{O}_{k\beta} \cap S_{k\beta})$ we can assume that the restriction $j^l_{k\beta} \mid \bar{O}_{k\beta}$ is proper.

The representation $\tilde{\varrho} = \varrho_1 \oplus \cdots \oplus \varrho_m$ makes $\mathsf{R}^p(\tilde{\varrho}) = \mathsf{R}^{n_1 + \cdots + n_m}(\tilde{\varrho})$ a linear G-space. Then $j_{k\beta} \colon GS^l_{k\beta} \to \mathsf{R}^p(\tilde{\varrho}), \ y \mapsto (0, \dots, 0, j^l_{k\beta}(y), 0, \dots, 0)$, is a G-equivariant smooth embedding whose restriction to $\bar{O}_{k\beta}$ is proper. Finally, let

$$\varrho: G \to \mathrm{Gl}(p+1,\mathsf{R}), \qquad g \mapsto \begin{pmatrix} \tilde{\varrho}(g) & 0 \\ 0 & 1 \end{pmatrix}.$$

Since $O'_{k\beta} \cap O'_{k\beta'} = \emptyset$ when $\beta \neq \beta'$, it follows that $j_k: \bigcup_{\beta \in B_k} O'_{k\beta} \to \mathbb{R}^{p+1}(\varrho)$, $y \mapsto (j_{k\beta}(y), \beta)$ when $y \in O'_{k\beta}$, is a G-equivariant smooth embedding. Since only finitely many values of β can occur in any compact subset of \mathbb{R} it follows that the restriction $j_k \mid \bigcup_{\beta \in B_k} \bar{O}_{k\beta}$ is proper. Thus we can choose $O'_k = \bigcup_{\beta \in B_k} O'_{k\beta}$ and $O_k = \bigcup_{\beta \in B_k} O_{k\beta}$.

PROOF OF THE THEOREM. Let $\{O_k'\}_{k=1}^n$ and $\{O_k\}_{k=1}^n$ be the covers of M as in Lemma 7. Let $\{W_k\}_{k=1}^n$ be a refinement of $\{O_k\}_{k=1}^n$ by open G-invariant sets W_k , where $\overline{W}_k \subset O_k$ for every k. According to Proposition 2 there exists for every k a G-invariant smooth mapping $h_k \colon M \to [0,1]$, which is identically one on \overline{W}_k and zero outside O_k . Let $\varrho \colon G \to \mathrm{Gl}(q,\mathbb{R})$ be a representation such that for every k there is a G-equivariant smooth embedding $j_k \colon O_k' \to \mathbb{R}^q(\varrho)$ whose restriction to \overline{O}_k is proper. Next, for every k let $j_k^* \colon M \to \mathbb{R}^q(\varrho)$ be a mapping defined by $j_k^*(x) = h_k(x)j_k(x)$ if $x \in O_k$ and $j_k^*(x) = 0$ if $x \in M \setminus O_k$. Then each j_k^* is smooth and G-equivariant. Let \mathbb{R}^n be a euclidean space where G acts trivially. Then the mapping

$$j: M \to \mathsf{R}^n \oplus \mathsf{R}^q(\varrho) \oplus \cdots \oplus \mathsf{R}^q(\varrho), \qquad x \mapsto (h_1(x), \dots, h_n(x), j_1^*(x), \dots, j_n^*(x)),$$

is G-equivariant and smooth. It is an immersion since each j_k^* is immersive in W_k . Let $x \in M$ and let $(x_d)_{d=1}^{\infty}$ be a sequence in M such that $j(x_d) \to j(x)$. We know that $x \in W_k$ for some k. Thus $h_k(x) = 1$. Since $h_k(x_d) \to h_k(x)$, it follows that $h_k(x_d) > 0$ for sufficiently large d. Thus $x_d \in O_k$ for sufficiently large d. Since $h_k(x_d)j_k(x_d) \to h_k(x)j_k(x)$, it now follows that $j_k(x_d) \to j_k(x)$. Since the restriction $j_k \mid O_k$ is an embedding, it follows that $x_d \to x$. Therefore j is injective and j^{-1} is continuous.

Since all the restrictions $j_k^* \mid \overline{W}_k$ are proper also the restrictions $j \mid \overline{W}_k$ are proper for every k. Since $\{\overline{W}_k\}_{k=1}^n$ is a closed cover of M it follows that j is proper. This completes the proof.

REFERENCES

- [Br] G. Bredon, Introduction to Compact Transformation Groups, Academic Press, Orlando, Florida, 1972.
- [He] S. Helgason, Differential Geometry and Symmetric spaces, Academic Press, New York-London, 1962.
- [Ka] M. Kankaanrinta, Proper real analytic actions of Lie groups on manifolds, Ann. Acad. Sci. Fenn., Ser. A I Math. Dissertationes 83, Acad. Sci. Fennica, Helsinki, 1991.
- [Mo] G. D. Mostow, Equivariant embeddings in euclidean space, Ann. of Math. (2) 65 (1957), 432-446.
- [Pa1] R. S. Palais, Imbedding of compact, differentiable transformation groups in orthogonal representations, J. Math. Mech. 6 (1957), 673-678.
- [Pa2] R. S. Palais, The classification of G-spaces, Mem. Amer. Math. Soc. 36 (1960).
- [Pa3] R. S. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. (2) 73 (1961), 295–323.
- [Pr] J. F. Price, Lie Groups and Compact Groups, Cambridge University Press, Cambridge, 1977.

DEPARTMENT OF MATHEMATICS P.O. BOX 4 (HALLITUSKATU 15) FIN-00014 UNIVERSITY OF HELSINKI FINLAND