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ON A NON-ABELIAN VARIETY OF GROUPS
WHICH ARE SYMMETRIC ALGEBRAS

ERNEST PLONKA

L

It is known that symmetric operations have nice properties and there are many
types of algebraic systems in which commutative systems play very special role.
This is the case, for example, of groups, rings and modules. From the algebraic
point of view two algebras (4; F,) and (4; F ;) are equal if the sets A(F;) and A(F,)
of all their algebraic operations (= all superpositions of fundamental operations
and the projections) coincide (cf. [2]). It may happen that not all fundamental
operations F of the algebra (4; F) are symmetric, i.e. do admit of all permutations
of their variables but (4;F) is a symmetric algebra. This means that all
non-symmetric operations from F can be presented as a superpositions of
symmetric algebraic operations of the algebra (A4;F) and the projections
Xy, X0y X)) =X 1Sk En,n=1273,....

Itis clear that the Abelian group (G;., ™!, 1) is symmetric algebra in the sense.
In [4] E. Marczewski has asked whether there are non-Abelian groups which are
symmetric algebras. Since 0-ary and 1-ary operations are symmetric the question
is whether the group operation - can be expressed as a superposition of projec-
tions and of symmetric algebraic operations, which, in the case of groups, are
symmetric words. It turned out [5] that such group exists.

In this note we find a non-Abelian variety (= equationally definable class) of
groups which have the same property.

We prove the following

THEOREM. If the group G satisfies the following identities

(1) X =1
) [x,y]} =1
3) [x2y] =1
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then G is symmetric algebra. Namely we have

@ xy = w(g(q(x, ), y*), w(w*(x, ), s(x, y, x))),
where

) w(x,y) = xy[x,y]

(6) q(x, y) = xylx, yIx*y?

(7 s(x, y,2) = [x,,2][z, y,x]

are symmetric operations in the group G.

IL

Let us begin with notations and auxiliary results which enable us to prove the
theorem. As usual, [x,y] = x "'y~ 'xy, and

[xlst’-Haxn] = [[x13x2a--~sxn—l]9xn] for n>2.

The following relations

®) xy = yx[x,y]

© ey~ =[p,x]

(10) [xy, 2] = [x,2][x, 2, y1[y, 2]
(11 [x, yz] = [x,2][x, y1[x, y,2] .

are identities in any group [cf. [1]).

LemMa 1. If (1)A3) are identities in G, then the following equations

(12) [[x,y]z*]=1

(13) [[x,y], [z, u]] =1

(14) [y, x,2] = [x, y,2]?
(15) [y %, 3, x] = [x, 9, x]?
(16) [, x,y,x1 = [y, x,x,y]
(17) [y, %, %, 3, y1 = [y, %, %, y]
(18) [y, x, y,x,x] = [y, x,y,x]
(19) [y, x,x,x]1 = [y, x,x]
(20) [xy*y]=1

are identities in G for k = 1,2,3,...
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Proor. If we take [x,z]? instead of x into (3) and apply (2) we get (12). This
implies (13) by putting [z, u]? instead of z. Using (2), (10) and (13) we have
[y’ X, Z] = [[xa y] N la Z] = [[xa y]z’ Z]
= [xs Y, Z] [[X, Ys Z]s [x’ y]] [x’ Y, Z] = [xa Y, 2]2,

which yields (14).
From (3), (10), (12) and (14) it follows

[y, x,y,x]1 = [[x,, 1%, x1 = [x, 5,5, x]*

which gives (15).
It is known (cf. e.g. [1]) that in metabelian groups, i.e. in the groups with
identity (12), the following Jacobi identity

21 [x,5. 21y 2, x][z,x, y] = 1
holds. Thus we have )
1 =[x,y,[x y11ly, [x, y], x1[x, y, x, y]
which together with (2), (3), (9), (10), (12) and (14) gives
[x9,%y] = [y, [%y1, x17 ! = [[x 5, y1%x)* = [x,5,5,x]* = [x,,,x]

i.e. equality (16) is fulfiled.
The equalities (17), (18) and (19) follow from (2), (11) and (12), because we have

1=[y,x%y"] = [y,xx 1’0y, %% 5]
1=[y,xyx*]=[y,xyx1°0y,xy,xx]
1 = [y,x,x2] = [y, x, x1*[y, x, x, x].
Now the Jacoby identity yields
1 =[x,y y1v* y, x10y, %, y*],
which together with (12) gives (20) and lemma 1 follows.

LEMMA 2. Ifthe equations (1)~(3) are identities in the group G, then the words w,
q and s defined by the formulas (5), (6) and (7), respectively, are symmetric operations
in G.

Proor. By (2), (8) and (9) we have
w(y, x) = yx[y,x] = xy[y, x]* = xy[x, y] = w(x, )
Using this and (12) we get

q(, x) = yx[y,x]y*x? = w(y, x)y*x* = w(x, y)x2y* = q(x, y).



ON A NON-ABELIAN VARIETY OF GROUPS WHICH ARE SYMMETRIC ALGEBRAS 187

To prove s is ternary symmetric operation in G observe that the cycles (2,3, 1)
and (1, 3) generate the symmeetric group S5 of all permutations on three leters x,
y and z. Now from (13) we have

s(2, y, %) = [2,y, x][x, y,z] = s(x, y,2)
We have also by (2), (13), (14) and (21)
s(v,2,x) = [y, 2, x][x, 2, y] = [z, 5, X][2,y, x][x, 2, y]
=[z,y,x1y.x,21" ! = [x,y,21[2,y,x] = [x,y,2],

which completes the proof.

1I1. Proof of the theorem.

First of all we calculate g*(x, y). Using (8) we get
7*(x,y) = xy[x, yIx*y*xy[x, ylx*y*
= x?y[x, y, x]x*y*[y?, xJy[x, yIx?y?

Observe that [y?,x] = [x, y*]% because of (2) and (9). This together with (20)
gives [y%, x]y = y[y? x]. Hence, once more from (8), we get

q*(x,y) = x*y*[x, y, x1[x, y, x, yIx[x%, y1y*[y?, x1[x, yIx*y?
Now the equality (13), (9) and (10) yield
[x%,y10y%, x1 = [x, y10x, y, x10x, y10, 10y, %, y10y, X1 = [x, », X1y, %, y1.
Therefore, in view of (1), (2), (3), (12) and (13) we get
a*(x,y) = [x, Y10, y, x1°[y, %, y1[x, 3, x, Y]

Now we are going to calculate a = g(q(x, ), y*). Taking into account (1), (3), (6),
(10), (12) and (13) we get

a = xy[x, yIx*y*y* [xylx, y1x2y%, y* 1% (x, y)y®
= xyx?y*[x, y1[xy, y*14%(x, y)
It follows from (10) and (13) that
22 [x,y*1 = [x,y1%[x, 5, ¥]
This together with (2), (10) and (13) gives
[xy, ¥*1 = [x, ¥ 106 y4, 9] = [% ¥*1 = [%,5*])* = [x y10x, 3, y]°

Therefore we have
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a= X3YE}’, x2]y2[x’ y]z[xa Vs y]2q2(x, .V) = x3y3[y’ X, x][xa Vs Y]zqz(x, J’),
as a consequence of (8), (9) and (13). Now using (13) and (14) we obtain
a= xsys[x’y][x’yoy][x’y,x][xayaxay:l = x3y3cl

for a suitable product ¢, of commutators. It follows from (13) and the definitions
of the operations s and w that

b = w(w(x, y), s(x, y,x)) = (xy[x, y1)*[x, y, x]*
Thus, in viewof (2), (3), (6) and (9), we get
CeyDx, yI* = (eyDx, yIxyx, y])? = (x*yLy, x10x, y1[x, y, xy[x, y1)*
= (x?y*[x, y1[x, y, x1[x, , x, y))* = x*y*[y, x][x, , x]°[x, y, x, y]*
and consequently )
b= x*y*[y,xI[x, y,x1[x, y, %, y]* = x*y*c,

for a suitable product ¢, of commutators.
In order to calculate [a, b] let us consider the commutator [x3y3c,, a], « being
x or y or else ¢,. In view of (3), (6) and (10) we have

[x*y’cy, o] = [xyeq, ad[xy, «] = [x,a][x, o, y1[y, o]

This together with (11) and (20) yields
[a,b] = [x¥*y’ci, x*y*c,] = [x*ycy, x* 10Xy ey, y*1[x%y ey, €2 ]
= [, x*1[x, y*1[x, c21[x, €2, ¥y, 2]
Now by (3) and (22) we have
0, x*1 = [0, x*1* = (L, x1°[y, %, xD* = [y, x1*[y, x,x]*
and similarly
[x "] = [ y1* 0% ¥
which together with (13) and (14) gives
[a,b] = [x, y, x]Ly, X, y1[x, ¢21[x, 2, Y1 [ys 2]
It follows from (2), (11) and (13) that
[x,c21 = [y, %, x1* = [x,5, %, x)*[[x, y, x, 1%, xT?,

which, in view of (14), (15), (16) and (18), can be rewrite as

[x,¢2] = [x, 3, X10y, %, 10y, %, %, y, x]* = [x, 3, y, x]



ON A NON-ABELIAN VARIETY OF GROUPS WHICH ARE SYMMETRIC ALGEBRAS 189

Thus we get

[X,Cz,y] = [x’Ysy’x’y] = [x5yax7y’y] = [X,,V,X,YJ

as it follows from (16) and (18).
Using the same arguments we have also

.21 = [y, %, y1°[x, 3, X, y1* (0%, 3, X, y1%, y]?
=[x, 5,y % %, y10y: %, %, y1* = [x, 3, 1.
Thus
[a,b] = [x, y, x1[y, x, y1[x, y, y, x][x, y, x, y1[x, y, ¥]
=[x, y,x1[y, x, y, x]

as it follows from (2), (3), (14), (15) and (16).
Now we are able to calculate w(a, b). The identities (1}~(3) and (8) give

w(a, b) = ab[a, b]
= x*y*[x, y10x, y, x10x, v, ¥1[x, y, %, y1x*y* [y, x1[x, y, X1 [x, y, X, y]*ab
= X*y°[x, y, X2 x*y*[x, y, X1[x, 3, Y19s %, 3, X1 = x*yx*[x, y, y1 [, %, , X]
= xy[x%, y10% 3, Y11 %, 3, X]
Since [x2, y] = [x, y]*[x, y, x] we have, by (16),
w(a, b) = xy[y, x]1[x, y, x][x, y, Y1y, %, %, ]

Thus, it is enough to prove that the last product of commutators equals 1. To do
this we use (2), (3), (10) and (11). We have

1= [yz’ x2] = [y, x2]2[y, xza 1=, x]z[ya X, x])z[[xs 1y, x, X], y]
= [y, x1[x, y, x1[x, y, y1[y, %, x, ¥],
which completes the proof of the theorem.

COROLLARY. Inthe normal product Z3Z, of the cyclic group Z y by the group Z ,
of all its automorphisms (i.e. the group Ss) all equations (1)<3) are fulfilled. This
gives another proof of a result from [5].
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