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A THEOREM OF GROTHENDIECK USING PICARD
GROUPS FOR THE ALGEBRAIST*

FREDERICK W. CALL

Abstract.

This is an application of a new algebraic reformulation of the Picard group pic(G) of a quasi-compact
subset G = X = Spec A for a commutative ring A. A torsion theoretic (algebraic) proof is given of A.
Grothendieck’s theorem that a complete intersection that is factorial in co-dimension 3 is factorial.
Our proof is along the lines of Grothendieck’s SGA2 proof, but eliminates the need for spectral
sequences and (formal) sheaf theory.

All torsion theoretic details are given in a lengthy appendix, including the proof of the long
standing conjecture that Q¢ = li_rp Qy for G quasi-compact and U open. This yields the interesting

result that restriction of an Ox-Module to a quasi-compact, generically closed subset does not require
the sheafification process.

One of A. Grothendieck’s theorems is that a complete intersection ring which is
locally a unique factorization domain (UFD) in codimension 3, is a UFD. This
conjecture of P. Samuel was proved about thirty years ago [9, Corollaire XI
3.14]. Grothendieck’s proof uses the “most sophisticated techniques of algebraic
geometry” [8, p. 3]. We provide in this paper a purely algebraic proof of this
purely algebraic theorem.

Such a proof, accessible to the pure algebraist is sorely needed. Our technique
is “merely” to translate Grothendieck’s proof into commutative algebra, using
torsion theory to finesse the material on formal schemes, and to avoid the
occasional spectral sequence. We have used this technique in [5] to find a simple
proof of the local Lichtenbaum-Hartshorne theorem. This illustrates again how
torsion theory can handle difficult algebraic geometry with relative ease. Of
course, some simplifications come by narrowing the focus of the highly complex
and general theory that [9] provides.

Many of the ideas of our proof parallel those in [9], and for comparison,
references to [9] are provided for those familiar with the algebraic geometry
language. Algebraists should find most interesting the three methods (Steps 1, 2,
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and 3) of “lifting” (modulo nilpotents or a regular element) or “extending”
a finitely generated module that is locally free on just a portion of spec A.

The difficult part of Grothendieck’s proof is the theorem that a complete
intersection (4, m) of dimension > 4 is parafactorial, i.e., depth 4 = 2 and the
Picard group Pic(U) of the punctured spectrum U = Spec A — mis trivial. This
leads to a study of a purely algebraic formulation, pic(G), where
G < X = Spec A. Our object is to define an abelian group pic(G) that agrees with
the algebraic geometers’ Pic(G, 0), the group of isomorphism classes of invert-
ible Os-Modules where O = 0|, yet is easy to manipulate and is analogous in
definition to the ring theorists’ Pic(4) (= Pic(X)), the group of isomorphism
classes of finitely generated, locally free A-modules of constant rank 1 (these are
just the (finitely generated) rank 1 projectives).

Formulations of pic(G) are being developed in the literature, e.g. [20, 19, 18, 6],
and we have provided a reworking in an extensive appendix (see Definition A-6
and the variations that follow) when G is quasi-compact. This includes the three
cases (1) when Spec A is noeetherian and G is arbitrary, (2) when A is arbitrary
and G is an intersection of quasi-compact opens, and (3) when A is a Krull
domain and G is the set of height 1 primes. We only show that pic(G) = Pic(G)for
case (2), and though our application is for 4 noetherian and G open, our pic(G) is
useful in the other cases as well. Part of our work shows that, in case (2), the
definition of M| does not require the sheafification process even though G may
not be open.

The proofs of the results in the Appendix and of the Grothendieck-Samuel
theorem will use the torsion functor 7 and the localization functor Qg;, as well as
some techniques from torsion theory, so we have included this needed material in
order to make the paper easier to read.

We hope this presentation will encourage other commutative ring theorists to
use torsion theory to explore algebraic geometry from the algebraic point of view.

The research for this paper was carried out at Queen’s University (Canada)
and the University of Michigan. Technical assistance in the preparation was
provided by Michigan State University. The author was a Visiting Scholar at
these three universities and thanks goes to their departments.

Thanks also to M. Hochster, E. Kani, M. Orzech, and the algebra group at
MSU for helpful discussions and patient listening. Special thanks to R. Heit-
mann who showed us how to prove the crucial Lemma A-3 (1) = (2) by another
method.

We need to discuss when a noetherian local ring is a unique factorization
domain (UFD). If a noetherian ring is already a domain, then it is a UFD if and
only if each height 1 prime is principal [15, Theorem 13.1]. Any localization of
a UFDis a UFD, and a noetherian UFD is a normal domain, i.e., noetherian and



A THEOREM OF GROTHENDIECK USING THE PICARD GROUPS FOR THE ... 163

integrally closed [15, 13.2 and 13.3]. We refer the reader to the Appendix (A-6,
A-7, A-11) for our module theoretic formulation of pic.
The following definition should be compared with [9, XI Proposition 3.5].

DEFINITION 1. A noetherian local ring (4, m) of dimension >2 is called paraf-
actorial if depth A = 2 and pic(U) = 0 where U = spec 4 — m.

The next item is useful in an induction proof.

ProposITION 2 [9, XI Corollaire 3.10]. A noetherian local ring (A, m) of dimen-
sion = 2 is a UFD if and only if A is parafactorial and A, is a UFD for all p £ m.

PROOF. (<=) Since 4, is a normal domain for each p % m, Serre’s criterion for
normality (R;) + (S,) is satisfied by A for the cases p + m [13, Theorem 23.8].
Dim A = 2, and depth A = 2 from the parafactorial property, covers the case
p = m. The normal ring A is then a finite direct product of normal domains [13,
Exercise 9.11] and, since it is local, A must be a domain. The result (A-13) is
applicable as a normal domain is Krull [13, Theorem 12.4].

(=>) Use (A-13) again.

LEMMA 3. Let ¢: A — B be a flat homomorphism of local rings such that ;,mB is
primary to the maximal ideal ym of B. Then dim A = dim B and depth 4 =
depth B. If dim B = 2 and B is parafactorial, so is A.

ProOOF. For flat local homomorphisms we have dimension and depth for-
mulas dim B = dim 4 + dim B/;mB and depth B = depth A + depth B/ ,mB
[13, Theorem 15.1 and Corollary to Theorem 23.3]. The first parts follow from
dim B/ymB = 0 = depth B/ ,mB.

Let U = spec A — 4m and U’ = spec B — ym. We use (A-11) for our descrip-
tion of pic(U): the group of isomorphism classes [[ M]]y of finitely generated
reflexive A-modules M, locally free rank 1 on U. Then by the flatness of
B,M ® 4 B is reflexive, [[M ® B]], €pic(U’) = 0, so M ® B = B. Faithful flat-
ness (M is finitely generated) and the Ext! condition will show M is projective,
hence free over the local ring A, of rank 1 (cf.,, [9, XI Lemme 3.6]).

Recall that a regular local ring R is a noetherian local ring (R, m) such that the
number of generators of a minimal generating set for m is equal to the dimension
of R. Regular local rings are UFD’s [ 13, Theorem 20.3]. If R is regular local, so is
R, for each p e spec R[ 13, Theorem 19.3]. A noetherian local ringis regular if and
only if its m-adic completion is regular [2, Proposition 11.24].

The next definition has been updated to include completions.

DEFINITION 4. A (noetherian) local ring (4, m) is a complete intersection (c.i.) if
its m-adic completion A = R/(xy,...,x,), where R is a (complete) regular local
ring and x;,..., X, is an R-sequence.
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A (c.i.)is Gorenstein, hence Cohen-Macaulay [13, Theorems 21.3 and 18.1], so
depth 4 = dim A.

THEOREM 5 [9, Théoréme XI 3.13 (ii)]. Any complete intersection of dimen-
sion = 4 is parafactorial.

Proor. Weinductons. Ifs = 0, wemean A is regular. Then A is regular, hence
parafactorial by Proposition 2.

For s > 0, it is sufficient to consider the complete case, Lemma 3. We now
change notation. For the induction hypothesis, for a fixed s = 0, we suppose
every (c.i.) of dimension = 4 whose completion can be written as a regular local
ring mod a regular sequence of length sis parafactorial. Let 4 be a complete (c.i.)
of dimension = 4, 4; = A/tA where A = R/(xy,...,x,) is complete of dimen-
sion = 5, parafactorial by the induction hypothesis, and t is a non-zero-divisor of
A in the maximal ideal m of 4. We need to show pic(U,) = 0 where we denote by
U; the punctured spectrum of A4; = A/t'A (A; is also Cohen-Macaulay,
depth 4; = dim A; = 4, so the depth condition in the definition of parafactorial is
automatically satisfied for every i). We accomplish this in three steps.

Let U=specA—m, G=g(V(tA) —m)={pespec A|p < some qespec A4,
teq + m} < U. We have natural group homomorphisms

0 = pic(U) = pic(G) —2 lim pic(U;) —=2— pic(U,)
which we will discuss each in turn.

Step (1). First note that U\G = {p|dim 4/p = 1 and ¢ ¢ p}. This is because if
pe U\G then the principal ideal generated by ¢ in 4/p is primary to the maximal
ideal. By Krull’s principal ideal theorem [13, Theorem 13.5], dim A/p < 1.
Secondly, since A, is Cohen-Macaulay [13, Theorem 17.3 (iii)],
U 2 G =2 {pespec A|depth 4, < 1}. Thus, we may use (A-11) for our descrip-
tion of pic, and define the group homomorphism «; by o, ([[M]]y) =
[[M,]1c € pic(G) where M is a finitely generated reflexive 4-module, locally free
of rank 1 on U.

To show «, is surjective, let [[M]] € pic(G) where M is a finitely generated
reflexive A-mdule, locally free rank 1 on G. M is actually free on all of U, since
[[M]]y, € pic(U,) where U, is the punctured spectrum of 4, pe U\G. Thisis true
since U, € G and M is locally free on G (of course, 4, and U, satisfy the
hypothesis of (A-11) since dim 4, = 4 > 1). Since A is a regular local ring modulo
a regular sequence of length s, the same is true for 4, by earlier remarks. The
dimension of 4, = 4 and thus, by the induction hypothesis, 4, is parafactorial,
and pic(U,) = 0. We conclude that M, = A,, [[M]]y e pic(U), and it follows that
ay is surjective (compare with [9, XI Proposition 3.12 and X Exemple 2.1]).

Step (2). For the groups pic(G) and pic(U;) we use (A-6). The natural group
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homomorphisms, for j 2 i, n;;: pic(U;) - pic(U;) are defined by =n;;([(M;ly,) =
[M; ® A;]Ju,. These maps from an inverse system and the natural maps
pic(G) — pic(U;) factor through the m;;, hence we have a homomorphism
a,: pic(G) — lim pic(U;) given by a,([M]s) = ((M ® A;]v,)i>1. To show a, is

i

surjective, let ((M;]y )i» 1 € lim pic(U;). By the remarks at the end of (A-11) we can

assume the representative M; is a finitely generated A;-module and M; = Qy (M,)
(= M¥*). Furthermore, we fix isomorphisms, forj =i + 1,i 2 1, Qu(M; ® 4;) =
Qu,(M; ® A;) = M; where the first equality comes from (A-1j) and the second
from compatibility relations in the inverse limit. Set Q = Qy, for ease of notation,
and define, for j =i + 1, A-module maps ¢;;; M;—> M;® A; > O(M; ® 4;) =
M;. The obvious compositions give us an inverse system of maps between any
pair of the M;’s. M = lip M; is the module we want. To show this, we first claim

that the ¢’s satisfy the Mittag-Leffler condition which we proceed to prove (cf.,
[9,IX Théoréme 2.2]). These ¢’s fit into a large commutative diagram with many
maps.

“
M, x
= 1
(%) M, ~ OM,® A4;3) =
@ ‘;y 14 lT natlTl
> M, = OM;®4;) = QM ®A4,) =
-0 1 i1
M = QM,®4,) = QM;®4;) = M, ®A4,) = ...

In each column of isomorphisms, the top one is the chosen fixed one mentioned
earlier (thus the small triangles with the ¢’s commute by definition). The remain-
ing ones in the column are induced from these by tensoring with A; and applying
Q. The downward maps are the natural ones induced from the surjections
M @A, > M, ®A. The upward maps are induced from
M, ®A; 5 M, ® A;,,, and these are used to construct, for j > i, maps
Yji: M; > M;, i.e., the small triangles commute by the definition of the y’s. If we
can show that the squares commute (both kinds) then we can work along any
column to study the M;’s. But this is easy to establish;set N = My, N* = M, 4,
and letj =i + 1. We have a diagram

N®A; = QN* ®A4)®4; « N* ® 4;

(¥%) T1®t 11t T1®t
N® 4; ON*"®A)® A4 « N*® A4,

[
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The squares commute, the horizontal arrows are locally isomorphisms on U,
so when Q is applied to (**) we obtain the small squares in (), by (A-1c).

We are ready to extract information about the M;’s and ¢’s from (*) by working
along a column. First, the ¢’s and y’s yield, for any i and j, a long exact sequence
0— M, %> M,,; —%> M; - R'Q(M;) > R*Q(M;, ;) > ..., where we have de-
leted the subscripts on ¢ and ¥ for clarity. To obtain this sequence, let k > i + j
and set N = M,. The right exact sequence 0 - N ® A4; L N® Ai.j7N®
A;— 0 becomes exact locally at each pe U since N = M; is locally either zero or
free, and t is not a zero-divisor on A. By (A-1c), the kernel of the map marked ¢’ is
Jy-torsion (see the introduction to the Appendix for terminology). Replace
N ® A4, by its image K; and apply Q to the resulting short exact sequence to
obtain a long exact sequence. Since the class of Jy-torsion modules is closed
under the formation of injective envelopes when A is noetherian [6, Proposition
6.3 (6)] and Q@ kills this torsion class by (A-1c), it follows that
R"Q(N ® A;) —=— R"Q(K;),n = 0.Substituting the M;’s (and ¢’s and y’s) yields
the quoted long exact sequence.

Now for the claimed Mittag-Leffler condition. Fixd = 1. We must show that
the images of the M;’s (i = d) in M, stabilize for all i sufficiently large. Use the
preceding long exact sequences to construct, for each j = 2, the commutative
diagrams

0 0
! l
M, = M,
vl l
0 - My 5 Moy —> M, (Jz2
vl o 1 I
0 - M1y - M, ~ M,
! !
R'QM;) = R'QM,)

Denote by c¢; = c;(d) the image of M;;in M, and byl = l,(d) the image of M,,, in
R'Q(M,). Conclude that cj,, S c; = My, I;_; = I, = R'Q(M,), and [;/I;_
cj/cj+1 by the snake lemma. It is clear that R! Q(M,,) = hm Ext (m/, M,,) =

H2(M,), from (A-1i) and the fact that the powers of the max1mal ideal m of A are
cofinal in the torsion filter Fy (see the introduction to the Appendix). By a stan-
dard change of rings formula [6, Theorem 7.2 (9)], the second local cohomology
H2(M;) = H? Ad(Md) By duality for the Gorenstein ring 4, [6, Proposition 7.10]
or [9, V Proposition 3.5], HZ . (M,) = Ext" *(M,, A;)* where x is the Matlis dual
Hom,,( ,E(44/mA,)) and n =dim 4 = dlm A;+ 1= 5. A quick check locally
gives that the finitely generated 4,-module Ext’ *(M,, ;) vanishes on U, since
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n — 3 = 1, hence is of finite length. Thus R*Q(M,) is also of finite length and the
I;’s stabilize, hence so do the c¢;’s, say to c(d), d = 1. This establishes the Mit-
tag-Leffler claim.

We have yet to prove that M = lim M; = lim c(d) has the required properties:

i -d

M is finitely generated as an A-module, locally free rank one on G, and
O(M ® A;) =~ M;. For the last item, apply lim to the family of short exact
sequences 0 = M;_ g = M;; — c¢(d) - 0 (for jJ>> 0) to obtain the exact se-
quence0 - M - M — ¢(d) —» 0(Mittag-Leffler is used here). The endomorphism
of M is just multiplication by ¢, a fact deduced from the diagonal map in the
diagrams (j = 2) above. All the ¢’s are locally surjective at each pe U so we have
QM) = Q(c(d)). Thus M, = Q(M,) = Q(c(d)) = Q(M/t'M) = Qu (M/t’M) for
each d. We now use [13, Theorem 8.4] to prove M is finitely generated. It is clear
from the definition of M = 1i£n c(d) that 0 = nker(M — c(d)) = nt*M so that

M is t-adically separated. Also, M/tM = c(1) = M, is finitely generated over the
(t-adically) complete ring A. Thus M is finitely generated. For local freeness on G,
let pe V(tA) — m. Then M, /t'M,, = c(d), = (M,), = A,/t°A,,d = 1. Nakayama’s
lemma and Krull’s intersection theorem nt?4, = 0 imply M, > 4,. We have
completed the proof that a, is surjective.

Step (3). Grothendieck quotes some (now) well-known theorems from alge-
braic geometry to prove the natural maps Pic(U; . ;) — Pic(U;) are isomorphisms
[9, XI Proposition 1.17], hence so is the projection a5 from the inverse limit to the
first coordinate. His argument is that the Picard group can be written as the first
Cech cohomology of a sheaf of units and that this is the same as the first
(Grothendieck) sheaf cohomology [ 10, Exercises 111 4.4 and 4.5]. Then Pic(U; 4+,)
and Pic(U;) fit into part of a long exact sequence obtained by modding out
a nilpotent ideal sheaf of order 2 [10, Exercise III 4.6]. Thus the kernel and
cokernel of Pic(U;, ) = Pic(U;) lie in first (respectively, second) cohomology
groups, which can be shifted to the local cohomology modules H2(¢'A/t'** A) and
H2(t'A/t'* 1 A), respectively. Since t'A/t'*'A =~ A/tA and depthA/tA =
dim A/tA = 4, these modules are zero, and Pic(U; ) = Pic(U;), for all i. This is
Grothendieck’s proof that a5 is surjective. If the reader accepts these ideas, then
he or she may continue to the main theorem.

However, for anyone who would like a “purely algebraic” proof of this
theorem, we provide directions.

First we need that a U-invertible module M can be determined by local data,
where U is the punctured spectrum of, say, any noetherian local ring (4, m). We
assume depth 4 = 2, M = Qy(M) = M**, and that M is U-invertible. From
(A-3), choose a finite covering of U = uD(f;) such that M, = Qp (M) =
Opir(A) = As,and leto;: M, —— A be these isomorphisms. For each i, j set



168 FREDERICK W. CALL

0ij=0:® A;; My, —=— As,. We identify (M), =M, =M, =
(My )y, Then for each x; € My, we have oi(x;)’ = 0;;(x;), where we use “”to denote
an image in a further localization. Also, for i < j, r;;:= 6y;0; ! is an automo-
rphism of Ay, 75 80 corresponds to a umt in A, Iy ie.,r;e A; 1S Theser;, i <j,
satisfy in A, r, the relations rjri 'ri; = 1. The point is that M can be recon-
structed (up to isomorphism) from the local data r;e Ay, i <j. We know
M = Qy(M)can be written [6, Theorem 5.1] as a kernel of a map which is part of

the commutative diagram

0->- M- (‘BiMf.' - ®i<.iMfifj
= | ®ai x| ®a;
0> K —> @Afi - (-BAfifj

where M is (isomorphic to) the kernel of the (standard) homomorphism that
sends (x;) € @ M, to the element of ® M, whose (i, j)-coordinate is x; — x;. K is
the kernel of the twist map that sends (a;) € @A/, to (r;;a; — aj)e DA, ;. How-
ever, if for this M we have another set of ¢;’s, i.e., of the form g;c; where c;e A},
corresponds to an automorphism, then the old local data (r;;) e [1Ay, ,, is related
to the new local data (s;;) by the formula (cjc; ™ ')(s;;) = (r;;). Conversely, given any
element (r;j)€Il;<; Ay, such that rj;r, = ri in A; r p,, the kernel K of the twist
map will be trivial on each D(f;) (we mean K, is a free A;-module; for example
K,, is generated by (1,r3,...,r;,"). By (A-3), K is U-invertible. Moreover,

K = Qu(K)since each 4, and A4, is stable under Oy and Qy is left exact, (A-1e)
and (A-1a). Furthermore, K is finitely generated, by the observation in (A-11). If
we also have any other element (s;j)eIl;<;Af,,, and (c;)eIl; Ay, such that

/=1

cjc;” 'si; = rij then sj;5} = sj, and the constructed kernel L of the twist map will

be 1somorphlc to K, as the next commutative diagram shows

0->K~- ®Afi - ®Afifj
:l@c.- ::l@i<j€§
0 - L @4, - @Ay,

All the above may be nicely summarized in terms of the first cohomology
group of a Cech complex. Consider the complex of multiplicative abelian groups
with (standard) coboundary homomorphisms [14, p. 72]:

] [
V> Tidy, — i< jAsy, — icj<iA i n =

where 6,((a;)) = (aja;™ "), 8,((a;;)) = (@ay ‘aj;). Then for each (finite) cover of
U = uD(Y;) there is a one-to-one correspondence between the elements of the
cohomology group C:=Kerd,/Imd; and those isomorphism classes
[[M]]epic(U) such that M, is a free A, -module for all i.

Next we show how to lift this data (cohomology) mod nilpotents. Note the
rather astonishing fact that if I is an ideal of a commutative ring 4, and I? = 0
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then there is an exact sequence 0 - I - 4™ — (4/1)* — 1 of abelian groups, in
which I has as its group structure its natural additive structure, and the other two
groups are multiplicative. The first map sends ae I to the unit 1 + a. For ease of
notation, we consider lifting a module from U, to U, where U, is the punctured
spectrum of 4; = A/I', i = 1,2. Let [M]epic(U,) and pick suitable elements
fi€ A such that ¢;: M, =(A,);, and U; = UD(f;A,) (hence U, = UD(f;4,)).
Then the ¢’s determine an element in the first cohomology group C, as described
above. We have a commutative diagram of abelian groups (and standard maps)
with columns that are exact and rows that are complexes.

0 0 0
! ! !

e/, - ®i<j(1/12)f,~fj - ®i<j<k(1/12)f|‘fjfk -
1 1 1

H(A/Iz)fxi - H(A/Iz)fxifj - H(A/Iz);ifjfk -
!

/Dy, - IA/D5,, - TADf, - -
! 1
1 1 1

A diagram chase shows that the cohomology C, of the second row at the
second term maps onto our cohomology C, (of the third row at the second term),
if the first row is exact (as abelian groups or as 4-modules) at the third term.
Exactness occurs precisely when the local cohomology module H2(I/I?) = 0.

An explanation of this last remark is given in [ 17, Proposition 2.3, p. 78], or we
may see this in the following way. Let N be any module over a noetherian ring
A and first suppose the fs form a regular sequence. Then the complex
D,(N) =D,(A)®4N:0> N > ;N —> @i<ijifj—’"‘ S\ T —0 has
ith cohomology H(D'(N)) = lim Ext!(4/(f},..., fJ), N) = H.(N), since (1) the

Koszul complex K.(f},...,f’)is ; resolution of A/(fi,..., /) by free modules of
finite rank (the f/’s also form a regular sequence [13, Theorem 16.1]), (2) the
complex Hom(K.(f7,..., fJ), N)is chain isomorphic to K.(f, ..., f{) ® N,and (3)
lim K.(f{,..., f/)is D'(A) indexed in the reverse order. In case the f;’s do not form
—=J

an A-sequence, map the polynomial ring B = Z[ X}, ..., X,] to A by sending the
indeterminate X; to f;,, Then we have that H.(N)=Hy,  x,N)=
H(Dy(B) ® 5 N) = H{(D ((A) ® 4 N) = H(D;,(N)), even as modules.

Return to our application. In our case, N = I/1> = tA/t*A = A/tA (in general
I'/I'*! ~ A/tA) and we know HJ(A/tA) =0, so we can lift. Thus, given
[[M1] = [[K]]epic(U,) with K the kernel of a twist map defined by data
(ri)) e TI(A/tA)/,;, induced from M, we can construct, by the above, a kernel K

.....
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from some lifting (s;;) e T1(4/t*A);, 7, of (r;;), with [[K"]] € pic(U,), It remains to
show Q(K'/tK') = Q(K) = K. Thisiseasy:localizing the natural map K'/tK’ — K
at any of the f;’s will yield a surjection of rank one free modules, which must then
be an isomorphism. The conclusion follows from (A1-c). So we have that =, is
surjective, and in general each of the maps pic(U; + ;) — pic(U;)is surjective, hence
SO 1S a3.

This completes the proof that pic(U,) = 0 and the induction step.

REMARKS 6. (i) Grothendieck uses lim Pic(U ), the direct limit taken over all

open U, 2 G, instead of our pic(G).
(ii) His proof uses the Picard group of a formal scheme where we have used
lim pic(U;). These are frequently equal, in general [10, Exercise II 9.6]. The

methods of Step 2 are based on those of [9, IX §2].

(ii)) Grothendieck actually shows when a;, a,, and a5 are injective or bijective
using minimal hypothesis (see, for example, [8, Lemma 18.14]). This can be
translated to some extent as well using Q and methods similar to the above. For
example, in proving that o, o a; is injective, one uses the long exact sequence
0 - Q(M) = Q(M) = Q(M/t'M) — R*Q(M) — - - -, where the first map is multi-
plication by ¢, to show Q(M)/t'Q(M) = Q(M/t:M) for i >> 0. These ideas are left
to the reader to explore, as more complicated techniques need be developed first
(e.g., we found [1, §2] to be helpful).

Now for the main result [9, Corollaire XI 3.14].

THEOREM 7 (Grothendieck-Samuel). If A is a complete intersection and A, is
a UFD for all primes pespec A of height < 3, then A is a UFD.

Proor. We prove that each 4, is a UFD for all p e spec 4 by inducting on the
height of p. The cases ht(p) < 3 being trivial by hypothesis, assume ht(p) = 4, and
for all p" & p that 4, is a UFD. Let gespec A be minimal over pA. Then
p=qnA,A,— A,isflat, pA, is primary to gA4,. By Lemma 3,dim 4, > 4, and it
is clear that 4, is also a complete intersection. Theorem 5 gives that 4, is
parafactorial, hence so is 4, by Lemma 3. Thus A4, is a UFD from Proposition 2.

ExampLES 8. (1) The height condition in Theorem 5 and Theorem 7 cannot be
lowered. If A = k[X, Y, U, V],/(XY — UV), where m = (X, Y, U, V) and k is
afield, then A is a complete intersection of dimension 3, and A4, is regular, hence
a UFD, for ht(p) < 2 (at least one of the elements x, y, u, v € A becomes a unit in
A,). However, A is not a UFD since xy = uv (or the ideal of 4 generated by x and
u is a height one prime that is not principal), hence not parafactorial.

(2) In general, the complete intersection hypothesis cannot be replaced by
Gorenstein in Theorem 5 and Theorem 7. Let A = k[X;;],,/I, 1 £i< 3 and
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1 £j £ 3, where mis generated by all theindeterminates X;; and I is generated by
all the 2 x 2 minors of the (generic) 3 x 3 matrix [X;;]. A is Gorenstein and
ht(I) = gd(I) = (3 — 2 + 1)?> = 4[4, Corollary 8.9 and Theorem 2.5, respective-
ly]. Thus, dimA =9 —4 = 5. For p4 mA, A, is a regular local ring (same
argument as in (1)), hence a UFD. Let J be the ideal of A generated by x,,, x4,
x31. Then A/J = k[ Y;;],/I',1 <i<3and 1 <j < 2, where m' is generated by all
the (indeterminates) Y;; and I’ is generated by all the 2 x 2 minors of the 3 x 2
matrix [Y;]. Thus, ht(I)=gd(I)=(3-2+1)2—-2+1)=2 and
dimA/J =6 —2 =4,ie,ht(J)=5—4=1. A/J is Cohen-Macaulay [11, The-
orem 1] means depth A/J = dim A/J = 4 > 2, and A/J is locally regular on the
punctured spectrum, so by Serre’s criterion for normality A/J is a normal domain
and J is a height one prime of the normal domain A that is not principal. Hence
A is not a UFD and not parafactorial.

(3) In general, O(G) and Q;(A) may not agree when G is a quasi-compact (cf.
Theorem A-15). Let A = S™'Z where S = Z\(p) U(g), p and q distinct prime
numbers. Set m; = pA and m, = qA, G = {m,,m,}. Since G is discrete in the
induced topology, M(G) = M,,,1 x M,,, for any A-module M. But g(G) = X =
spec 4, s0 Qg(M) = Qx(M) = M. None-the-less, Pic(G) = pic(G) = 0.

Appendix.

It is in this appendix that we recall some facts from torsion theory and describe,
for any commutative ring A, a module-theoretic formulation of the Picard group
of a generically closed, quasi-compact subset of X = Spec A (the structure sheafis
that induced from the natural one Oy = 4 on X by restriction). This formulation
uses no sheaf theory and is reasonably easy to use in practice, so we consider
a more general case as well.

For the torsion theory preliminaries, let A be any commutative ring,
G < X = spec A, with generic closure g(G) = {ge X | q < p for some p € G}. De-
noteby Fg = {I = A|I & any pe G} the torsion filter corresponding to G (we may
assume that G is generically closed, i.e., G = g(G)). G is quasi-compact if and only
if F; contains a cofinal subset of finitely generated ideals [6, Theorem 3.3].

Fg is a directed set under reverse inclusion so we can form, for any 4-module
M, the A-module Pz(M):= li_rp,eFG Hom(I, M). Let Qg(M):= Ps(Pg(M)) and

TeM):= {xe M|AnnxeFg} = lim;.;Hom(A4/I, M), the Js-torsion sub-

module of M. M is J g-torsion if 74(M) = M and J g-torsionfree if 75(M) = 0.
Note that M := M/J4(M) is T s-torsionfree. We summarize some facts about
J and @ in the following.

PROPOSITION A-1. (a) I and Qg are left exact idempotent functors [6,
Theorem 1.3 (1)].
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(b) There is a canonical map ¢$: M — Qg(M) whose kernel is T4(M) and
cokernel is the first cohomology R* T 4(M). Q¢(M) = {xe E(M) |3l € Fg, Ix = M}
where E(M) is the injective envelope of M [6, Theorem 1.3 (6') and (3)].

(¢) If o M — M’ is a homomorphism of A-modules, then & ® 4 A, is an isomor-
phism for each pe G if and only if keroa and coker o are I g-torsion, if and only if
Q6(®): Q(M) —— Qs(M') is an isomorphism. In particular, M, = Q4(M), for any
peG [6, Theorem 1.3 (4)].

(d) Q(A)is a commutative ring, Q(M) is a Q(A)-module, and Hom (M, Q(A)) =
Hom 4 (Q(M), Q(4)) = Homy4(Q(M), Q(A4)) for any Q = Q¢ [6, p. 10-11, Prop-
osition 4.1 (1) and (2)].

(€) If G = H then there is a unique map Qgz(M)— Qyu(M) compatible with
0% and % Thus Qy Q¢ = Qu = QQpn [6, Proposition 4.1 (2) and 4.5].

(f) Given a: M — N then N = Q¢(M) if and only if ker a and coker o are
T g-torsion, N is T g-torsionfree, and the natural map N = Hom(A4,N)—
Hom(I, N) is surjective for all I € Fg [6, Theorem 1.3 (5), Remarks (i) on p. 7, and
Proposition 1.5].

(8) If G and H are generically closed, quasi-compact subsets of spec A then
Q60u(M) = Qg~u(M). In particular, Q(M), = Qg nspec1,(M,) for any p e spec A
[6, Theorem A-6; or 19, Corollary 5.23].

(h) If A is a domain then Qg(A) = N e A, This follows easily from the descrip-
tion of Q(A) in terms of E(A) = K, the quotient field of A, given in (b) above.

(i) If A is a noetherian ring then Qg = P; for any subset G < spec A [6,
Proposition 6.3 (8)].

() If o:A—> B is a homomorphism of noetherian rings, G < spec A,
G =°p YG) < specB, and M is a B-module, then Qg(M) = Qg(M). This is
deduced by applying [6, Lemma 7.3 and Example 10.4] to part (b) above.

We first investigate the notion of invertibility on a subset of spec A for an
arbitrary commutative ring A.

DEFINITION A-2. Let G < spec A. An A-module M is called G-invertible if there
is a finitely generated submodule N < M such that for all pe G we have
A, =N, =M,

To show the needed equivalent conditions of G-invertible we use an idea of G.
Picavet [16]. Let G be a quasi-compact subset of X = spec A, M an A-module,
t an indeterminate over A and M. Set S¢ = {he€ A[t]| c(h)e Fg} where c(h) is the
ideal of A4 generated by the coefficients of the polynomial h. Let
G(M):= Sg *M[¢]. Then the natural composition A — A[t] — G(A)is a flat ring
homomorphism and G(M) = G(A4) ® , M so that G is an exact functor. If G = X,
write M(t) in place of X(M) (cf. [15, p. 17-18]). Each maximal ideal of G(A) is of
the form pG(A) where p is a (maximal) element of G [16, Lemma IV 11]. Then
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G(M),64y = M,(t), and G vanishes precisely on the class of 7 ;-torsion modules
since each maximal element of the quasi-compact set G is the contraction of
a maximal ideal of G(A4) [16, Proposition IV 3].

We are ready for the key lemma, a generalization of [6, Theorem 8.2]. Recall
that a topological space is quasi-noetherian [12] if it is quasi-compact and has
a quasi-compact open basis (closed under finite intersections).

LEMMA A-3. Let G be a quasi-compact subset of spec A. Then the following two
conditions on the A-module M are equivalent.

(1) M is G-invertible.

(2) a) There is a complex A" — A* - M — 0 which is exact at each pe G, and

b) M, = A, forall peG.

These imply:

(3) There is a finite covering of G = UG; by relatively open subsets G; with
Q6,(M) = 0, (A).

Conversely, if the G; can be chosen to be quasi-compact (e.g., if G is
quasi-noetherian) then (3) is equivalent to (1) and (2).

Proor. (1) < (2) G-invertible means that 2 (b) holds and there is a complex
A* — M — 0 that is exact at each pe G. So let K = ker(A4°* - M) and apply the
exact functor G to obtain an exact sequence 0 — G(K) — G(4)’ —» G(M) — 0.
From the above remarks, G(M) is a locally free rank one G(A)-module. It follows
from the flatness of G(A) that there is a finitely generated A-submodule L € K
such that G(K/L) = G(4) ® (K/L) = G(4) ® K/G(4)® L = 0,i.e.,K, = L, for
all pe G. Use this L to construct the desired complex 2 (a).

(1)=(3) If pegG, pick xe N that generates M at p, and map a rank one free
onto Ax = N < M. Since N is finitely generated and M is locally free on G, there
is a sufficiently small neighborhood G, = G n D(f) of p such that the composi-
tion A » N = M is locally an isomorphism at every g€ G,. This composition
induces the homomorphism Qg (A4) Qg (M) by (A-10).

(3)=(1) If peG; = G then M, = Qi(M), = Qi(A), = A, by (A-1c) where we
use the notation Q; in place of Qg,. So we have that M is locally free on G. To
construct asuitable N = M, let x be a generator of the cyclic Q;(4)-module Q(M).
The hypothesis that G; is quasi-compact implies that there is a finitely generated
ideal I € Fg, with Ix < M = Im(M — Q;(M)). Select a finitely generated A-sub-
module N; € M that maps onto Ix, (A-1b). This gives the diagram

NNeM

b

Ix € M < QM)

At each p e G;, all these maps become bijective so that N; generates M locally at
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each such p. The finitely generated submodule N = X N,, for the finite number of
modules N; so constructed, is the desired submodule.

COROLLARY A-4. If G is quasi-compact and M is G-invertible then, for each
pe G, we have Hom4(M, Qg(A4)), = Hom, (M,, Qg(4),) = A4,.

ProOF. Asin the end of the proof of [6, Theorem 8.2, p. 59-60] or [19, Lemma
5.28].

REMARK A-5. More generally, M can be locally of any (finite) constant rank on
G in (A-3) and (A-4).

We now come to our definition of the Picard group of a quasi-compact subset
pf the prime spectrum.

DEFINITION A-6. Let G be a quasi-compact subset of spec A. We shall say that
two A-modules M and M’ are G-equivalent (M ~ g M') if there is another module
L, and maps ¢: M = L and ¢": M’ — L such that for all peG, 9o ® A, M, - L,
and ¢’ ® A,: M, - L,areisomorphisms. G-equivalence is indeed an equivalence
relation since M ~ ¢ M’ if and only if Qg(M) = Qs(M’), by (A-Ic) (or, to check
transitivity, use the pushout L, ® L,/{¢}(x) — ¢5(x)| xe M’}). We use [M]; or
just [M] to denote the equivalence class.

Let pic(G) = {[M]¢|M is a G-invertible A-module}. That pic(G) is a set
follows from the mapping M — I1,.¢ M, = I14, since M is G-equivalent to its
image in the last module. The picard group of G is pic(G) with addition
[MJ¢ + [My]g =[M; ®,M,];, identity [A];, and inverse —[M]g =
[Hom(M, Qs(A))]¢. The verification of inverse requires special handling, but the
other properties are straightforward and left to the reader.

First Hom(M, Q4(A)) is locally free rank one on G, by (A-4). We can replace
G by its generic closure without loss of generality. Since M is assumed
G-invertible, there is a (finite) cover of G = UG; by sets G; such that
Qi(M) = Qi(A) (see (A-3)). We may assume that the G; are quasi-compact since
G is now quasi-noetherian. If M — Q4(A) is any A-linear homomorphism then
there is induced a homomorphism Q;(A4) = QM) — Qi(Qs(A4)) = Qi(A4), by
(A-1le). This mapping yields the commutative diagram, for each pe G,,

Hom(M, Q¢(4)), — Hom(Q:i(M), Qi(4)),
| =|
Hom(M,,, QG(A)p) — Hom(Qi(A)p’ Ql(A)p)

The right hand vertical map is an isomorphism since Q;(M) is a free
Qi(A)-module and from (A-1d); the left hand from (A-4); the bottom from
peG; < G, Qi(M) = Qi(A), and (A-1c and e). This proves Q;(Hom(M, Qs(A4))
— 04(Qi(A)) = Q«(A)is an isomorphism. Since G is quasi-noetherian, it follows
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that Hom(M, Qg(A4)) is G-invertible, (A-3). The natural homomorphism
M ® ,4Hom(M, Qg(A)) = Qg(A) ~¢ A is locally an isomorphism at each pe G,
thus [Hom(M, Q(A))]; is an inverse of [M]g.

We should remark that an alternative formulation of Qg(4) is
{g/he G(A)|g = Za;t', h = Tb;t', b(g/h) = a;/1 for all i} for any quasi-compact
G [6, Theorem A-7], but we do not exploit this representation here.

Observe that pic is natural in that given a ring homomorphism ¢: 4 — B and
quasi-compact subsets G < spec A, G’ < spec B, G 2 “p(G’) then there exists
a natural group homomorphism pic(G) — pic(G’) given by sending [M]; to
[M®,B]g-

Here are some variations of the above definition of pic that under certain
hypotheses may be more suitable.

VARIATION A-7. The representative Qq(M)e [M]g is uniquely determined up
toisomorphism. Thus it is clear we can use isomorphism classes [[ M]] where M is
G-invertible and M = Q;(M), (A-la). The identity is then [[Qg(4)]],
[[M1] + [[M.]] = [[Qe(M; ® M,)]], but the inverse remains
[[Hom(M, Qs(A))1], by [6, Proposition 4.1 (3)]. In this case, the group
homomorphism pic(G) — pic(G’) mentioned above sends [[M]] to

[[Q¢(M ® 4 B)]].

VARIATION A-8. Intheinverse, we could have replaced Qg(A4)by A = 4/T 4(A)
by doing the following complicated maneuver: first choose a finitely generated
N < M that demonstrates M is G-invertible; then show Hom (N, A) is G-invert-
ible and G-equivalent to Hom (M, Q(A)), where we denote Q by Q. For the latter,
set T =Q(A)/A, a Tgstorsion module, (A-1b). In the exact sequence
0 - Hom(N, A) - Hom(N, Q(A)) » Hom(N, T), the last term is Js-torsion
since N is finitely generated, so the first two terms are G-equivalent. But the
middle term is isomorphic to Hom(Q(N), Q(A4)) = Hom(Q(M),Q(4)) =
Hom(M, Q(A)), (A-1c and d). Demonstrating Hom(N, 4) is G-invertible is easy
now, for it amounts to proving the following: if @,;: M — Qs(M) is the canonical
map and Q;(M) is G-invertible, so is M. But from the quasi-compactness of G,
there is a finitely generated I € Fg with IN = M, from which we can construct the
necessary submodule of M.

VARIATION A-9. If T = J;(A) is bounded, i.e., if there is an ideal I € Fg such
that IT = 0, then we may use [Hom(N, A)] for the inverse. For then we have an
exact sequence 0 - Hom(N, T) - Hom (N, A) - Hom(N, 4) — Ext!(N, T), with
Ext'(N, T) being J4-torsion (it’s killed by I) for i = 0, 1. Thus, Hom(N, 4) and
Hom(N, A) are G-equivalent.

While this variation includes the case when A4 is a domain, it also is true that we
may use [Hom(M, Qs(A4))]¢ where Q(A) = N ,.cA4,, by (A-1h). A Krull domain,
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for example, is particularly nice if G = {pespecA|ht(p) =1}, for then
Qq(4) = A.

VARIATION A-10. If A4 is noetherian, then we need only use the finitely gener-
ated M in our equivalence classes, with inverse —[M]; = [Hom(M, A)];. This
is because the natural homomorphism M ® Hom 4(M, A) —» A is an isomor-
phism locally at each pe G (for any G < spec A) when M is finitely generated and
locally free rank one on G. Of course, Hom (M, A) is finitely generated locally free
rank one, too. Our pic is then defined without any reference to Q, for any subset
G < spec A.

VARIATION A-11. If A is noetherian and G contains those primes p such that
depth A, <1 (but otherwise arbitrary) then we have the classical situation:
isomorphism classes [[ M]] of finitely generated, reflexive A-modules which are
locally free rank one on G. This happens because each representative of the
isomorphism class in (A-7) is of this form, due to the relations
Hom(N, Qg(A4)) = Hom(M, Q¢(4)),  Q¢(M) = Hom(Hom(M, Q(4)), Q6(A))
(checked locally on G and use [6, Proposition 4.1 (3)]), and 4 = Q¢(A), which we
prove in the next proposition. The addition is then [[M,]] + [[M,]] =
[[(M; ® M,)**]], the identity is [[ A]], and inverse is —[[M]] = [[M*]] where
the dualis Hom 4 ( , 4). Also, the natural group homomorphism pic(G) — pic(G’)
(with both G and G’ satisfying the depth hypothesis) sends [[M]] to
[[(M ® B)**]] where the dual is Homg( , B).

If the double dual proves awkward in an application, we note that (A-6) could
also be used, with the additional knowledge that every element in the equivalence
class [M]; is finitely generated and that Qgs(M) = M** whenever M is
G-invertible.

PROPOSITION A-12. Let A be a noetherian ring, M an A-module. Let H < G be
two generically closed subsets of spec A such that for all pe G\H either M, = 0 or
0 + M, is finitely generated and depth M, = 2. Then Qg(M) = Qu(M).

Proor. If we do not have an isomorphism locally at each pe G, choose a pe G
of smallest height where M, = Q¢(M), + Qu(M), = Qy(M,), H' = H nspec 4,
by (A-1g). By (A-1g and c), we can enlarge H' to be the punctured spectrum of 4,,
by the choice of p, so we are reduced to the case of a local ring (4, m),
U = spec A — m, 0 + M finitely generated of depth = 2, and M =+ Qy(M). But
depth M > 0implies Hom(4/m, M) = 0,s0 M = M. Inregards to (A-1b), we see,
for a non-zero-divisor aem on M, that Hom(4/m, E(M)/M) = Ext(4/m, M) =~
Hom(A/m, M/aM) = 0, since depth M = 2. Thus Qy(M)/M = Ty(E(M)/M) =
0, a contradiction.

We try our formulation of pic on a known result for Krull domains.
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Let H, = {pespecA|ht(p) = 1}. Recall that a domain A is Krull if (i)
A = Npey, Ap, (i) foreach pe H,y, A, is a principalideal domain (i.e., 4,isa DVR),
and (i) each 0 # a € A is contained in only finitely many elements of H;. Itis clear
that H, is a (quasi-)noetherian space.

PROPOSITION A-13. Let A be a Krull domain, X = spec A. Suppose G < X is
quasi-compact and contains H,. Then

(1) pic(X) < pic(G) < pic(H,).

(2) Ais a UFD if and only if pic(H;) = 0.

(3) Ifeach element in H is finitely generated and if A, is a UFD for eachpe G
then pic(G) = pic(H,).

ProoF. (1) Set H = H,. There are natural group homomorphisms pic(X) —
pic(G) — pic(H) given by restricting the equivalence relations to smaller sets. So
to prove injectivity, let [M]g; € pic(G). If [M ]y = [A]4 € pic(H) then Qy(M) =~
Qu(A) = N,egA, = A since A is Krull, (A-1b). We check that the natural map
M — Qy(M) is locally an isomorphism at each pe G 2 H, using M, = A4, in the
commutative diagram

M, = A4,

‘o LN
QH(M)p = QH(Mp) = QH(Ap) = QH’(Ap)a

where we have used (A-1g), and have put H':= H nspec A4,, the set of height one
primes of the Krull domain 4,. Then M ~Qu(M) = A and our maps are
injective.

(2) Now suppose pic(H) = 0and pis any height one prime. For Ato bea UFD
we need to show [8, Proposition 6.1] that p is principal (i.e., free rank one). It is
easy to see from the above two defining properties (ii) and (iii) of a Krull domain
that p is H-invertible, so that pic(H) = 0 implies Qy(p) = Qn(A4) = A. But [6,
Lemma 8.9(2)] saysforany I = A that Qu(I)is the intersection of all the symbolic
powers (containing I) of height one primes. In particular Qy(p) = p, hence p is
principal for each pe H and A4 is a UFD.

Conversely, if A is a UFD, let [[M]]epic(H) (we use (A-7) here) with
M = Qu(M). Then M embeds in I, .y M, = T1 4,, a torsionfree (usual) module
over the domain A. So M is isomorphic to a non-zero A-submodule
I € My, = K, the quotient field of A. I 0 implies I "l x40, (A-4). If
04 xel !thenI = xI < A so we may assume M is isomorphic to an ideal I of
AwithI = Qg(I) = np!™. Now it is true in any domain that a symbolic power of
a principal prime p; is an ordinary power, and since there are no containment
relations among the p;’s, their intersections will agree with their products, so I is
principal, i.e., rank one free, and pic(H) = 0.

(3) If A, is a UFD for all geG, and peH is finitely generated then p is
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G-invertible and [ p]; € pic(G) maps to [p]y € pic(H). On the other hand, we have
seen earlier that each equivalence class in pic(H) has a representative
I = Qy(I) = np{™, pic H. But Oy (®;p™) = Qu(IIp}) = np{™ = I (check lo-
cally on H using A-1c)) so that pic(H) is generated by the classes of height one
primes and our map is surjective.

The reader may prove that indeed pic(H,)is just the divisor class group of A, the
group of divisorial fractional ideals modulo the subgroup of principal fractional
ideals. Also, pic(X) (= Pic(4)) is just the ideal class group of A, the invertible
fractional ideals modulo the principal’s. For these results the following are useful:
if I*40 then I** 1171, if I is not the quotient field K of A then
I =5 Qu() = I**ifand onlyif I = "', I =~ Jif and only if I = xJ for some
0+ xeK; Qy is the identity functor so M ® M* —=» A whenever M is
X-invertible (= rank one projective).

Our next goal is to show that, with sufficient hypothesis on G =€ X = spec A4,
pic(G) is isomorphic to the algebraic geometers’ Pic(G), the group of isomor-
phism classes of invertible (= locally free rank one) Oz-Modules, where (); is the
natural structure sheaf Oy on X restricted down to G. There is a discussion of this
in [19, Proposition 7.10], but a different approach (sheaf theoretic) to pic(G) is
used. Some of our ideas are from [19], but our method of proofis different in that
we first prove an important conjectured result, a generalization of [19, 5.25].

LEMMA A-14. If G is a quasi-compact subset of X = spec A then for each
A-module M we have Qg(M) = lim Q(M), where the direct limit (with the natural

restriction maps of (A-le)) is taken over all open subsets U of X containing G.
Furthermore, these isomorphisms are compatible with the restriction maps
Q6(M) - Q¢(M) for all quasi-compact G and G’ with G 2 G'.

ProoF. We need only use the quasi-compact open U 2 G in the direct limit as
they form a cofinal subset. The natural maps ¢@b: M — Quy(M) induce
@: M — lim Qy(M). We need, by (A-1f), that ker ¢ and coker ¢ are J ;-torsion.

This follows from (A-1c) since for each pe G < U, M, - Qy(M),, is an isomor-
phism, so that ¢ ® A, is an isomorphism, too.
We also need that this direct limit is 7 ;-torsionfree. Let [x] € lim Qy(M), and

I =(ay,...,a,)eF; a finitely generated ideal such that I[x]=0 (G is
quasi-compact). Then each g;x maps to zero in the direct limit, hence to zero in
some Qy (M), U; 2 G. Thus Ix = 0 in Qy(M), V = nU,. Since I € Fy < Fy and
Qv(M) is always Jy-torsionfree, x = 0 and we have proved this part.

It remains to prove that for any I € Fz, a homomorphism f: I — li_r;l Qu(M) lifts

to A. We can assume I = (ay,...,a,) is finitely generated. Map a free module 4"
onto I with kernel K < A". Since I is U-invertible, U = D(I), apply (A-3) to find
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a finitely generated L < K such that K/L is 7 y-torsion (or prove this directly).
Now lift the f(a;)’s to x;’s in a common Qy(M), Vopenand G < V < U. Then the
images of a finite generating set for Lin Q\(M) will map to zero in the direct limit.
Replacing V by a sufficiently smaller open set containing G, we can assume
L maps to zero in Qy(M), hence the images of K and K/L are the same in Q,(M).
However, K/L is Jy-torsion, hence Jy-torsion, while Q, (M) is 7 -torsionfree.
Thus K/L (hence K) maps to zero in Q,(M). Deduce from this that f factors
through some f": I - @, (M).ButI € F, < Fy, so by the lifting property of Q, (M)
there is a lifting of f’ to A from which is obtained the desired lifting f” of f.

K © 4 —» _Ic4
;- /

i I ! s

K/L % Q,(M) - 1im Qy(M)

To show compatibility of our isomorphisms with the restriction maps, for
G = G’ quasi-compact, look at the diagram

Qe(M) —=> lim Qy(M)

U26
N7
! M !
I\
Qs (M) — 1i_1:ﬂ Qv(M)
V26

which has commutative triangles. Since Hom(M, Q¢.(M)) = Hom(Q4(M),
Qs (M)) by (A-1d), the square commutes.

Recall that a quasi-compact, generically closed subset of spec A is always the
image of the (reverse) spec map “¢p of some flat ring homomorphism ¢: 4 — B,
and conversely. Since these subsets form a basis of the closed sets of the flat
topology [7, Theorem 2.2], we shall refer to them as the flat subsets of spec A.
A flat subset G of spec A4 is quasi-noetherian since subsets of the form GN U
where U is a quasi-compact open subset of spec A4 is again quasi-compact.

For an arbitrary commutative ring 4, let @ = Oy = A denote the natural
structure sheaf of rings on X = Spec 4, and, for an A-module M, let M be the
0-Module canonically associated to M. Let G = Spec A. Recall that the defini-
tion of the restriction sheaf ;:= 0] and the Oz-Module Mg involve direct
limits of sections over open U 2 G to define a presheaf, followed by the sheafifica-
tion process [10, p. 65 and Proposition-Definition II 1.2].

THEOREM A-15. Let G be a flat subset of X = Spec A, M an A-module. Then, in
the definition of Og and M|g, the sheafification process is not needed. More
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precisely, the presheaf assignment Gy 1— lim {M(U) |Go = U open < X} defined

on the basis of all flat relatively open subsets G, of G is, in fact, a sheaf on this basis,
with M|g(G N U) = li}_n {Q6~v,M)|Gn Uy = GN U, U, quasi-compact open

c X} for any open U < X. In particular, M(G):= M|s(G) = Q6(M) and
0(G):= 04(G) = Q;(A), and these isomorphisms commute with restrictions.

Proor. For a discussion of (pre)sheaves on a basis, see [ 14, p. 32-34]. If U, is
a quasi-compact open subset of X then, if G is flat, Go =GN U, is
a quasi-compact relatively open subset of G. By [6, Theorem 5.1; or 19, Proposi-
tion 5.16] and (A-14), the assignment G, Qg (M) defines our above stated
presheaf (on the basis of quasi-compact relatively open subsets G, of G) for the
sheaf M|;. But this presheaf is actually a sheaf on this basis, as we now show.

(1) If Go = UG;, Gy € G, and x € Qg (M) is such that x is zero in Qg (M) for
each i, then x e N,7,(Q¢,(M)) = T (Qg,(M)) = 0, (A-1b and e). This establishes
uniqueness.

(2) Let Gy = UG;, where G, and the G; are flat relatively open subsets of G, and
let {x;}, x;€ Q¢ (M), be a family of elements that agree on overlaps G;n G;. We
want to find an x € Qg (M) that will agree with the x;’s (x is unique by part (1)). We
can assume the G; are of the form G n D(f)), f;€ 4,and argue asin [6, Theorem A-2,
p. 105] using this refined cover of G, (just as in that proof, one needs to use part (1)
again to show that the chosen x agrees with the x;’s on the original cover {G;}).

The compatibility follows from the facts (a) the presheaf defines the sheaf, (b) it
is true for all quasi-compact open U < X, and (c) the last item in (A-14).

REMARKS A-16. Itis not known if M|g = Q¢(M) when G is not quasi-compact,
even if G is open in X. Nor has the case where G is not generically closed been
studied in the literature (see Example 8.3 before the Appendix). Also, there still
remains the question of whether M|g(G N U) = Qg,.u(M) when G is flat and U is
any open subset of X.

PRrOPOSITION A-17. Let G bi a flat subset of Spec A, and & an invertible
Og-module on G. Then ¥ =~ £(G)|g, and for each x = pe G we have the stalk
% = ZL(G),.

Proor. Our aim is to define the local maps of sections over a typical flat
relatively open subset Gy < G. First choose a cover of G of flat relatively open
subsets G; such that |, = O, (from the definition of an invertible sheaf). We
have a commutative diagram, since . is a sheaf,

0-» 206G - @LG) - LGingG)

(*) 1 ! !
0 - Z(Go) » DL(GoNG) » BL(GoNGinGy)
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Now the commutative diagram (use (A-15))

Z(Gy) = (€] = Qgl(A4)
! ! i)
L(GoNnGy) = O(GoN G) =Qgync,(A4)

yields upon application of Q, that Qg (£(G;)) = £(Go N G;), by (A-1g). Similar-
ly, Q6,(Z(GinG))) = L(Go N G;n Gj). From (*), (A-15), and these isomor-
phisms, we conclude that ,?TC)(GO) = Q6,(Z(G)) — £L(G,). These maps will
define an isomorphism .?T'G) —» & of sheaves (on a basis) if we show they are
compatible with restrictions. To see this, let G, 2 G},. Then the commutative
diagram

I

Z(G) - Z(Go)

I |
£(G) - Z(Go)

induces

Z(G) - Z(Go)
\ !
Q6,(£(06)
I | l
Q6,(£(06)
! \
Z(6) - Z(Go)

We have just shown the upper and lower triangles are commutative, and the
left side is (A-1e), so the right hand trapezoid is commutative, by (A-1d), whence
the sheaf isomorphism is established.

Now take stalks at x = pe G to show #(G), = Z,.

THEOREM A-18. Let G be a flat subset of X = Spec A. Then pic(G) =~
Pic(G, O;).

Proor. If & is an invertible ¢;-Module then (A-15) and (A-17) tell us that
06(Z(G)) = Z(G). Itis also clear that if & =~ &’ then £(G) = £'(G). Thus, if we
use (A-7), the map Pic(G) — pic(G) = {[[M]]|M = Qs(M), M is G-invertible}
given by [[.#]] goes to [[.£(G)]] is well defined provided we show that .#(G)is
G-invertible. Cover G = UG;, G; = Gn D(f), fi€ A, so that L|g, = Og,. Then
06,(Z(G) = Z(G)) = 0(G;) = Qg,(A), by (A-15)and (A-17). From (A-3), we have
that #(G) is G-invertible.

To see that the map is bijective, define a map in the reverse direction by sending
the isomorphism class [[M]] to [[M|g]] € Pic(G); of course, M is G-invertible A
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and M = Qg4(M). M| is, indeed, an invertible sheaf since, for a suitable covering
of G = UG;, we have Q¢ (M) = Qg (A), by (A-3). Hence, the canonical homomor-
phism M — Qg (M) induces the isomorphism M lg, — QG':(JM)lci =~
QGF:("A)|Gi = /TlG', = (0g,and M| is an invertible sheaf. These maps are inverses
of each other since ¥ =~ _?F(UG)lg by (A-17), and M|4(G) = Qg(M) = M, by (A-15).

Our mappings are group homomorphisms. To see this, let [[£]],
[[Z’1] € Pic(G) and consider the morphism of preschemes to the sheafification
L Qo L. The homomorphism over the set G is then
ZL(G) ®o6) £ (G) = (£ ® £')(G). We claim this homomorphism of 4-modulus
is locally an isomorphism at each p = x € G. It induces the commutative diagram

Z(6), R, £L'(G), = (ZL(6) Qo) £'(G), = (£ ® L)(G),
1= |

2 ®o,. Z; - (£ ® L)

The vertical maps are isomorphisms from (A-17), the lower one an isomor-
phism since a presheaf and its sheafification have the same stalks [10, p. 64].
From these isomorphisms, for each pe G, we conclude Q4;(#(G) ® 4 £'(G)) =
0:(Z ® Z)G)) = (£ ® £')(G) since £ ® &' is an invertible sheaf on G.
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