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THE NEVANLINNA MATRIX OF ENTIRE FUNCTIONS
ASSOCIATED WITH A SHIFTED INDETERMINATE
HAMBURGER MOMENT PROBLEM

HENRIK L. PEDERSEN

Abstract.

The shifted moment problem is introduced and its associated polynomials of the first and second kind
are calculated. The Nevanlinna matrix associated with the shifted problem is found and a one-to-one
correspondence between the solutions to the shifted problem and those to the original is given. It is
proved that any of the four functions in the Nevanlinna matrix associated with an indeterminate
moment problem belongs to a certain class of functions, introduced by Hamburger. A two-variable
analogue of this result is established and is applied to the r times shifted moment problem.

0. Introduction.

We consider a normalized Hamburger moment sequence (s,),» o and the asso-
ciated polynomials of the first and second kind, (Py ) > o and (Qy )k » 0, following the
notation of Akhiezer, [1]. The sequence (P),»o forms an orthonormal system
with respect to the inner product given by {x", x™) = j & X" ™dy(x), where pis any
measure from the set V = {u = 0|s, = [ x"du(x)Vn = 0} of solutions to the
moment problem. The P,’s are uniquely determined by the additional condition
that their leading coefficients are positive. The sequence (Qx)y» o is given by

o) = [ BO=E0 4y

where p is any measure from V.
The sequences (a;)> o0 and (b )iz o given by the formulas a;, = [ xPy(x)*dpu(x),
by = [ xPy(x)Py + 1(x)du(x) define the Jacobi-matrix

a by 0 O
J= bo a; bl 0

0 bl as b2
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associated with the moment problem. The matrix obtained from J by deleting the
first row and column is in fact still a Jacobi-matrix associated with a certain
normalized moment sequence (§,), > o. This is because of Favard’s theorem, cf. [1]
p. 5. The sequence (5,), o is called the shifted moment sequence.

The investigation of the shifted moment problem goes back to Sherman, [7],
using continued fractions.

In case of an indeterminate moment sequence, the series

© 1/2
(1) pe) = (kzo |Pk(z)|2>
© 1/2
@ a2) = ( ) IQk(z)P)
k=0

converge uniformly on compact subsets of the complex plane.
The so-called Nevanlinna matrix of entire functions, cf. [1] p. 55,

(5 %)

plays an important role in the parametrization of all solutions to the moment
problem. The functions are defined as follows:

46)= 2 § 0000

B = —1+2 3 00RO

) o
Cr)=1+ zkzo P(0)Qu(2)

D(z)=z kio P (0)P(2).

The objective of this paper is to express the Nevanlinna matrix associated with
the shifted moment problem in terms of the functions (3) in the Nevanlinna
matrix associated with the original moment problem. The functions 4 and C of
the original problem are given in terms of the functions B and D of the shifted
problem. This is applied to the interrelation between Nevanlinna matrices of
indeterminate moment problems and a certain class & of entire functions,
introduced by Hamburger [5]. A two-variable analogue of this interrelation is
established and applied to the r times shifted moment problem. A one-to-one
correspondence between the set of solutions to the shifted problem and V is
derived.
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The above description of 4 and C in terms of B and D of the shifted problem
can be used to obtain results on the growth of the functions (1), (2) and (3)
associated with an indeterminate moment problem, see Berg & Pedersen [3].

1. The shifted moment problem and its associated polynomials.

Suppose that (s,), o is @ normalized Hamburger moment sequence with asso-
ciated polynomials (P> 0 and (@ )k 0. Put

ay = gy
C)] Ek = bi+y
P(x) = boQx+1(x), k20
and consider the three-term recurrence relation
)] xYi=bYisy + @Y+ b1 Yoy, k21

The sequence (P),»o satisfies this recurrence relation with initial values
P,(x) = 1, P(x) = (x — do)/bo. Since the by’s are all strictly positive so are the bs.
Favard’s theorem then ensures the existence of a uniquely determined nor-
malized moment sequence (§,),»0 having the sequence (ﬁ,‘)kg o as associated
polynomials of the first kind. We denote by (Q"'k)k; o the associated polynomials of
the second kind. These can actually be determined in terms of the P,’s and Q,’s
and we have

LEMMA 1.1. The associated polynomials of the shifted moment problem (ﬁk)kgo
and (Qx)x s o are given by

ﬁk(x) = boQs+1(x)

6) ~ 1
Oi(x) = Py(x)Q+1(x) — 'B‘PH 1(x)-
0
ProoF. The polynomials (Qk)kgo also satisfy the recurrence relation (5) with
initial values Jo(x) = 0, 0,(x) = 1/b,. The two sequences (B,),» 0 and (Qy)i s o are
clearly linearly independent and so they form a basis of the space of solutions to
5).

Now, the sequence (P + 1 )v = 0 is in fact a solution to (5) and therefore there exist
real numbers a(x), f(x) such that Py, (x) = a(x)Py(x) + B(x)0i(x), k = 0,1,2,....
In particular Pj(x) = a(x) and P,(x) = Py(x)boQ,(x) + B(x)/b,, giving us
B(x) = —b, so that

0,9 = Py(x)Qs1(x) — 31;1’,,+1(x>.
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REMARK. The above lemma is a special case of [2], Lemma 2.5, where the
associated polynomials of the “r times” shifted moment problem are considered.

2. The Nevanlinna matrix of the shifted problem.

Using the lemma above we are now able to compute the entire functions of the
shifted problem.

PROPOSITION 2.1. The shifted moment sequence (5,), > o is indeterminate exactly
when (s,)n» o is indeterminate, and the entire functions in the Nevanlinna matrix
associated with the shifted problem, as well as the function in (1) can be expressed as
follows:

p(z) = boq(2)
A(2) = by 2(D(z) — ao(z — ao)A(2) — (z — ao)C(2) + aoB(2))
(M B(z) = —C(2) — ao A(2)

C(z) = (z — ao)A(z) — B(z)
D(z) = b2 A(2).

PROOF. Since Py(x) = boQ, + 1(x), the two moment problems are indeterminate
simultaneously,cf. [1] p. 16 and p. 19. Using Lemma 1.1 and the formulas (1) and
(3) we get

0 - 1/2
pz) = ( Z |Pk(Z)|2> = boq(2),
K=0
D)= b2 Y Qrs 1000 1(2) = b2A(),
k=0

Bo)= —1+23 00RO
k=0

142 T (=00 1(0) — P s O)Qs41(2)
k=0

—C(2) — apA(2).
The functions € and 4 may be calculated similarly.

ReMARK. The function §(z) can also be calculated. By definition §(z) =
(2 010(@)*)!* so that
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b%)‘i(z)z = kZO Iz — a0)Qk+1(2) — Pk+1(z)|2

]

= aolg(e + P ~ 1= — ao) 3, QUIR

(2 - ao) f 0.(DP,(2).

Following the notation of Buchwalter & Cassier [4], p. 175 we obtain (z ¢ R)

G ao)(B(Z:f) +1)
z—1Z

b3d(2)* = Iz — aol*q(2)* + plz)* — 1

_ (Z—ay)(B(z,2) + 1)
Z—z

(z — a0)B(z,2) — (Z — ao)B(Z, 2)
z—3 ’

= |z — aol?q(2)* + plz)* +

Using the equality B(z, w) = B(w)C(z) — A(z)D(w), see [4], p. 177 we get
Im {(z — a0)(BE)C(2) — A@DE)}

Imz

b34(2)* = Iz — aol*q(2)* + p(2)* +

For z + w we have

B(z,w) + 1 B(w)C(z) A(z)D(w) + 1
w—z w—z ’

z Oi(2)P(w) =

and making w — z we get
kZO Qu(2)Pi(2) = B(2)C(z) — A(z)D'(2).

This implies the equality
b3d(x)* = (x — a0)*q(x)* + p(x)* — 1 — 2(x — ao)(B(x)C(x) — A(x)D'(x))

for xeR.

3. The Nevanlinna parametrization of the shifted problem.

When the sequence (s,),> o is indeterminate, we have the so-called Nevanlinna
parametrization of the set V of representing measures by means of the class 2 of
Pick-functions in the upper half-plane H*:

P={fel(H")|Imf =0}
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There is a one-to-one correspondence ¢ < u, between 2 U {00} and the set V
given by

)

J duo(t) _ A@e() = ) o\ g
R

z—t  B@e(z) - D(z)’
The solutions to the shifted problem can be described in terms of those to the
original problem; we have:

PROPOSITION 3.1. The transformation ¢ — —bk/@ — ay, = @* is a homeomor-
phism of P U {00} onto itself, and we have the following one-to-one correspondence
between the sets V and V:

~ -1
9) bé%’-‘i—(t}m*ao—qiz’-‘f(;—» .

PROOF. Since —1/pe? whenever ¢ e ?\{0}, ¢+ @* is easily seen to be
a homeomorphism. Using (8) and Proposition 2.1 we get

p2 | D) _ po A2)e(z) — C(2)
°lz—t  "°B)e@z) — D(z)

_ (2= ao)(A(2)(@09(2) + b) + C2)e(2)) — D(z)e(2) — Blz)(@o(z) + bg)
A(2)(@o0(2) + b3) + C(2)o(z)

o (A(z)(b 20(2)"! + ag) + C(z) !
~ET T\ BE(b2eE) T + a0) + D)

,.__(j_dg)

4. On Hamburger’s class o7 of entire functions.

The Nevanlinna matrix and the so-called Nevanlinna-extremal solutions (i.e. the
subset {u,|teR U {o0}} of V) are closely interrelated. There has been made
attempts to characterize these solutions in terms of entire functions, see [1],
p. 161 ff. and [5] p. 515 (the result is partly wrong, see [6]).

Hamburger introduced a certain class o of entire functions. An entire function
f belongs to this class if it is real, if it has infinitely many zeros (4,), ; all of which
are real and simple, and if the following relations hold

k
n

S'Gn)

< oo foreach keN,

1 S 1
f@ ,.; J'On)z — 4n)

for zeC\{A,|n=1}.
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It is proved in [1] p. 165 that any combination tB — D, teRu {0} (= B if
t = o0) belongs to the class &, but nothing is stated about the natural question
whether the “numerator” functions t4 — C occuring in the Nevanlinna par-
ametrization (8) also belong to this class .o/.

PROPOSITION 4.1. For any te R L {00} the function tA — C belongs to <. In
particular A, B, C, D belong to <.

PrOOF. Using the formulas for B and D in Proposition 2.1 we get that

t+ag

(10) tA(z) — C(t) = b2

D(z) + B(2).

Applying the theorem in [1] p. 165 to the shifted moment problem we get that the
righthand side of (10) belongs to the class ./, and so does the “numerator”
function t4 — C.

5. A class of entire functions of two variables.

We denote by &/, the class of entire functions F of two complex variables such

that
VueR: (v— F(u,v))e o/
(D VveR: (u— F(u,v)) e of

Itis possible to define four entire functions of two complex variables associated
with an indeterminate moment problem, see [4], p. 175. These functions general-
ize the functions in the Nevanlinna matrix and in terms of those they may be
written as follows, see [4], p. 177.

A(u,v) = A(v)C(u) — Au)C(v)
B(u,v) = B(v)C(u) — A(u)D(v)
C(u,v) = A(v)D(u) — B(u)C(v)
D(u,v) = B(v)D(u) — B(u)D(v)

12

PROPOSITION 5.1. The two-variable entire functions A, B, C and D belong to the
class sf,.

Proor. The above equations (12), the fact that A(z)D(z) — B(z)C(z) = 1 and
Proposition 4.1 yield the resuit.

We shall now compute the two-variable functions associated with the r times
shifted moment problem. To do this we need some notation. We define 4; = 4,
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A, =(Ay)",..., A, = (A,-,)" and similarly for the other functions B, C and D. We
also put, for k = 0,

by 2(“ —a)v—a) —by 2(“ — a) ““bk_z(v — @) bk—z

_ u—a 0 -1 0
Mi(u,0) = — —1 0 0
b2 0 0 0

With this notation we can formulate:

PROPOSITION 5.2. Letr 2 1. Then,

A, A

B, B
(13) C =M_M_,....-M;M,

D, \D

PrOOF. A computation as in the proof of Proposition 2.1 (or simply (12) and
Proposition 2.1) gives

A(u,v) = by %((u — ao)(v — ao)A(u,v) — (u — ao)B(u,v) — (v — ag)C(u,v) + D(u,v))
Bu,v) = (u — ag)A(u,v) — C(u,v)

C(u,v) = (v — ao)A(u,v) — B(u,v)

D(u,v) = b2 A(u,v).

This can be written more compactly as

Ay
B,
C,
D,

OO W

Then (13) follows by induction.
By Proposition 5.1 we see:
COROLLARY 5.3. The four coordinates of the vector

A
B
C
D

Mr—er—Z.---'MlMO

belong to the class ;.
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REMARK. Proposition 5.2 generalizes Proposition 2.1 and Corollary 5.3 gen-
eralizes Proposition 4.1. I wish to thank the referee for suggesting the class .o/,
and these generalizations.

REMARK. Most of the results of this paper were presented in my Masters
Thesis written under the guidence of Christian Berg, University of Copenhagen,
January 1991.
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