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ON APPROXIMATION IN WEIGHTED SOBOLEV SPACES
AND SELF-ADJOINTNESS

ANDERS CARLSSON and VLADIMIR MAZ'YA

Abstract.

Necessary and sufficient conditions for approximation by test functionsin a type of weighted Sobolev
spaces are given. As an application a necessary condition for essential self-adjointness of a perturbed
Laplacian is proved. A lemma on the equivalence of two capacities is proved and used to obtain
criteria for closability, continuity and compactness of certain embeddings.

1. Introduction.

Let p € L),,.(RY) be a positive function, locally bounded away from zero. In [6] the
1

spectral properties of the operator A = — ;A on I?(p) with domain CZ (R") are

investigated. In particular it is proved that for N = 3 a necessary condition for
A to be essentially self-adjoint is that ]'p(x)dx = o0. In the present paper we
sharpen this result. This is done by giving necessary and sufficient conditions for
the density of test functions in a weighted Sobolev space.

For p = 1 we define I™?(R¥) as the set of distributions u on R" such that

m 1/p
wllm,p = < Y le"u(x)l”dx) < o0;
k

=1

here V*u denotes the vector (D*u),=y. 57 (RY) is the completion of CF(RY)
with respect to the I™” norm. Now let @ = RN be an open set and let u be
a nontrivial positive Radon measure on Q. We will study the space H};'P(Q),
defined as the completion of I?(u) N I™P(RN) n C% with respect to the norm

”u"m,p;u = "ullLP(u) + ”u“m,p;

here C§ = {ue C*(R"):suppu < Q}. The closure of C3 () in H}?() is de-
noted ﬁ';" (2). Note that if p < N then by Sobolev’s inequality the elements in
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. The elements in

S . N N
I’y can be identified with functions in I¥*, where p* = N P

1-7":"" (€2) are naturally identified with elements in i?. Note also that I'? < I

loc*

The theorem to be proved is the following. (See Section 2 for definitions of the
capacitites B,, , and H} ~™ used.)

THEOREM 1. Let u be a nontrivial positive Radon measure concentrated on
Q < R and let C denote B,, , for p > 1 and HY "™ for p = 1. Then

i) 1-7":""(9) = H}'?(Q) if either p 2 N or p < N and C(§°) = o0.

Suppose now that p < N and C(Q°) < co. Then I-T,’;'*”(Q) = H}'P(Q)if and only if

(i)) u(Q) = oo, when eitherm = N,p=1ormp > N,p > 1.

(iii) u(F°) = oo for every closed set F = R¥ satisfying C(F) < oo, when either

N
l<pSs—orm<N,p=1.
m
REMARK. When 1 <p <N, mp> N or 1 =p< N, m= N the condition
C(X) < oo is just a complicated way of saying that Q° should be bounded; see
21
Letting A be the operator above we can now prove the following theorem.

THEOREM 2. A necessary condition for the operator A to be essentially
self-adjoint is that [gp(x)dx = oo whenever F is a closed set such that By (F) < co.

PROOF. Suppose p does not satisfy the condition in the theorem. Then by
Theorem 1 and the Hahn-Banach theorem there is a function 0 + ue H}*(R")
such that

Ju(x)v(x)p(x)dx + fVu(x)-Vv(x) dx=0

for all ve H!2(R¥) o D(A), where 4 is the closure of 4. Thus

(v + Av)L2,) =0,
so ueD((I + A)*) = D(4*) and u + A*u = 0. Now suppose A = A*. Then
ue D(A) and hence

J [u(x)|? p(x)dx + j.IVu(x)Iz dx =0
which implies that 4 = 0. This contradiction shows that A is not self-adjoint.

2. Capacities.

We will denote different constants, not depending on the essential functions or
variables considered, by A. The ball with radius r and centered at x will be
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denoted by B(x,r). If x = 0 we will write only B(r). The annulus B(R)\ B(r) is
denoted by A(R,r).
We start by defining some convolution kernels needed.

DEfFINITION 1. The Bessel kernels G,, the Riesz kernels I, and the truncated
Bessel kernels G,,; are defined by

Ga(&) = (1 + &)™,
L(x)=Ix"" 0<a<N
and
Gy;1(x) = 0(x) G,(x)

where e C3(B(1))* is an arbitrary but fixed function such that 6 = 1 on B(3).
For a = 1 we define

Ka = Il*Gu-‘l"

It is easy to see, analogously to the cases with Riesz or Bessel potentials, that,
for1 <p<N,LgP = {K,*f: fel?(RY)}.
Each of these kernels gives rise to corresponding capacities as follows.

DEFINITION 2. For E < RY and p > 1 we define
B, ,(E) = inf{|If|: fe %y, G,* f 2 L on E},
R, (E)=inf{|f}: fe,I,* f 2 1 on E}
Cup(E) = inf (|| £12: fe B2y, K, » f = 1 on E}
and
By p1 (E) = inf{If|12: f€%,, G+ f 2 1 on E}.
It is proved in [2] that B, , and R, , are finite simultaneously, although not
comparable, for 1 < p < %. It is not hard to see from that proof that C, , and

B, , are finite at the same time, for 1 < p < N. The set functions B, , and B, ,,
are comparable. See [4] for a proof of this fact. We will need the following lemma,
which, for technical convenience, is the reason for introducing the truncated
Bessel kernel.

LEMMA 1. Let p > 1. If F < R¥ is closed then
Ba,p;l(F) = mf{"f”: feLp+: CwaGa;l *f Z 1 on F}
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PrOOF. Wemay assume B, ., (F)finite. Let A, = B(1)and 4; = B(j + 1)\B())
for j = 1. It is proved in [2] that Z}“;lBa,,,(F N Aj) £ AB, ,(F). Hence

o)
n B, 1 (FN A;) < o0.
ji=1
Now choose fje I, such that || fjI|E <279 + B, ,,; (FN 4;) and G,;; * f; 2 1 on
aneighbourhood of F n A4;. This can be done since G,,; * f;is lower semicontinu-
ous. It is seen from the definition of B, ,;; that we may assume that supp f; = 4]
where we denote E' = {x:dist (x, E) < 1}. By astandard regularization we obtain

functions g;e C3(47)"* such that
lg;ls < AQR77 + By pii (F N 4))

and G,;; *g; 2 1 on F N A4;. Consequently, if weset g = ) =, g; for some M to
be specified later we get G,.; *g = 1 on F\ B(M). Also, since the sum defining g is
uniformly locally finite, G,,; * ge C* and

@ lglly = A4 .ZM lgil; = 4 Y, 277 + By pa(F 0 4))).
i

ji=M
Now let ¢ > 0. By (1) and (2) we get ||gll, < ¢ if M is large enough. By the same
argument as before with lower semicontinuity and regularization we can find
a function he CP(RM)* such that ||h||, < B, . (FNB(M))'"” + ¢ and G, *
hz 1 on F n B(M). Setting f = g + h we obtain | f||, < B, .1 (F)""* + 2¢ and
C®3G,,; *f = 1 on F. Since ¢ was arbitrary the lemma follows.

For p = 1 the appropriate capacities are Hausdorff capacities.

DEFINITION 3. Let 0 < d < N. Then for subsets E of RN we define
HY(E) = inf .Zl re
where the infimum is taken over all countable coverings ( )2 | B(x;,r;) = E, with

r; < p. For d < 0 we define Hi(E) = H)(E).

The following lemma is immediate except for (iii) which is (a variant of) the
well-known Frostman lemma.

LEMMA 2. Let 0 <d < N. Then

(i) H%(E) £ HY(E) £ AH’,(E) + A(H% (E))"“. In particular H® and H% are
finite at the same time.

(i) Y, Hi{(En A;) < AHY(E), where A;is as in the proof of Lemma 1.
j=0

(iii) H4(E)is comparable to sup {u(E): |u|(B(x,7)) < r%,r < 1, x e RN}, for Borel
sets E.
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The following lemma, partly proved by Adams [3], will give a substitute when
p = 1 for the potentials used when p > 1.

LEMMA 3. Let m be an integer, 0 <m < N. Then for closed sets F — RV,
HY~™(F) is comparable to

inf{[loll; + IV"¢ll;:9eC®, 0= ¢ £ 1, ¢ =1 on a neighbourhood of F}.

PROOF. Suppose e C®, ¢ = 1 on a neighbourhood of F and | ¢}, + V™ol <
oo. If u is a positive measure supported by F then by [9, Sec. 1.4] we have
u(B(x,r m
u(F) = f(ﬂd# A sup —rmﬁ(llcolh + IV™oll1).

x;0<r=1

Taking the supremum over y with

we get by Lemma 2 (iii) that HY "™(F) < A(|l¢|l, + [[V"¢|,) which proves one
direction of the lemma.

To prove the other direction suppose first that F is compact. Cover F by balls
B(x;,r), r; £ 1,1 £1i < s, such that

N
Y riTm S HYTT(F) + e
i=1

where ¢ > 0. By Lemma 3.1 of [7] there are functions ;e C&(B(x;,2r)), 1 <
i <s, such that |D*y;] < A,r;1® and such that ¢ = Y ;_, ¥, satisfies ¢ = 1 on
a neighbourhood of F. We get

el + 1Vl = _i j (i) + [V™¥i(x))) dx

B(xi,2r;)
s
SAY (Y +r¥™) < AHY " (F) + Ae.
i=1

Since ¢ was arbitrary we are done in case F is compact.

For the general case we introduce a partition of unity 1 =Y 2 ,(,, where
0=<¢, £1,¢, = 1o0naneighbourhood of A4,,, supp{, = 45, and |V*¥{,| £ 4 for
1 < k < m. Here 4;and Ajare as in the proof of Lemma 1. Now choose functions
¢, corresponding to the sets F n 45, according to the construction for compact
sets in a way that

l@alls + IV*@ully < AHY™(F 1 A3,) + 277,
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where ¢ > 0. Letting ¢ = Y =, ¢, we obtain, using Leibniz’ rule, interpolation
and Lemma 2(ii),

lolly + 1VPelli =4 Y 3 | V¥o(x)ldx

n=0k=0 )
Adn

<45 [t + o0

S Y (HY™™(FnAy) +27")
n=0

<2+ A )Y HY"™(FnA,) =<2+ AHY ™(F).

n=0

Since ¢ was arbitrary the lemma follows.

3. Some Applications of Lemma 3.

We record here some generalizations, depending on Lemma 3, to the case p = 1
of some results in [9,Ch. 12]. As before let u be a positive Radon measure
concentrated on 2 = R" and let W, X and Y be the completions of C () with
respect to the norms

lully = ﬁu(x)l dx + fW'"u(xn dx

llullx = jlul du + ‘[IV"'u(X)I dx,

and

lully = jIV”u(X)I dx,

respectively. Then we have the following theorems.

THEOREM 3. Theidentity operator defined on CZ (22) and mapping L} (Q) into X is
closable if and only if u is absolutely continuous with respect to HY ~™.

THEOREM 4. The identity operator defined on C3 () and mapping W into L} (u) is
closable if and only if u is absolutely continuous with respect to HY ~™.

THEOREM 5. Let m < N. Then the identity operator defined on C{ () and
mapping Y into L} () is closable if and only if i is absolutely continuous with respect
to HY ™™,
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REMARK. Note that for m > N and for m = N respectively the above condi-
tion on absolute continuity is empty so the operators are always closable. In the
proof of Theorem 3 below “quasieverywhere” can be read “everywhere” in this
case.

For the proofs we will need two lemmas, proved in [5]. We give the proofs here
for the convenience of the reader. Recall that a function u is called H4-quasicon-
tinuous if it is defined H4-quasieverywhere and if for every ¢ > 0 there is an open
set G such that u|s. is continuous and H4(G) < e.

LEMMA 4. Suppose that u,e C3(2) and that |u,+y — u,|lw <47 ". Then u,
converges HY ~™-quasieverywhere to an HY ~™-quasicontinuous function.

PROOF. Let u be a positive Radon measure such that u(B(x,r)) < r¥ "™ for all
xeRM and all r < 1. Then by [9, Sec. 1.4] we have

‘[Iun+l - unl d/‘ =< A47",

By monotone convergence, di(x) = lim,_, , u,(x) exists a.e. [u]. Now, let
F = {x:ii(x) is defined}
and
E, = {xeF:|i(x) — u,(x)| 2 27"}.
Then, by part (iii) of Lemma 2, HY "™(F°) = 0. Also,

u(E,) = AZ”JIa —uldu<A27"

so HY "™, < A2 Let F, = U2 E,. Then HY "™(F,) £ A27* Thus, given
&> 0, we may choose k and an open set G, with HY "™(G,) < ¢ such that
F, u F® c G,. Since u, — il uniformly on Gj, the lemma is proved.

LEMMA 5. Suppose that u is H%-quasicontinuous and that E = {x:u(x) % 0} is
a Borel set with |E| = 0. Then H4(E) = 0.

PrOOF. Suppose that HY(E) = ¢ > 0. There is an open set G with H4(G) < ¢
such that u|g. is continuous. We do not specify ¢ here because the choice of it
depends on a certain constant, appearing later in the proof. However, ¢ is a fixed
positive number less than c.

Let K <« E\G be a compact set such that H4(K)>c —¢ and set K, =

{x:dist x,K) = —1-} By Lemma 2, part (iii), we can choose measures y, sup-
n

ported by K, such that
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up LB g
x;0<r<i1
and p,(K,) = H{(K,).

Define ¢,(x) = n" ¢(nx), where ¢ e CF(B(1)) is a function such that 0 < ¢ < A
and [¢ = 1. Set v, = ¢, * y,. Then we have

G * pa(y) = f(b..(y — )dp,(t) £ An”u..<B(y, %)) < AnVTl

Thus, for r £ %

v_,,(gr;(_x)l <AV i< A

1
For;_s_rglwehave

va(B(x,71)) 1
"

IIA

XB(x.r)(Y) J¢n(y - t) dﬂn(t) dy

»

XB(x,r) * ¢n(t) d#n(t)

R

»

XB(x,r +§)(t) dﬂn(t)

IIA

AN

Y

ﬂn<B(x,r + d%)) s
()

wp 2a(BC1)

x;0<r=<1 rd

IIA
b

Thus we obtain
< A
Also,

va(RY) = J f Gnlx — y) dpa(y) dx

= fj¢n(x =) dx dﬂ’n()’)

= u,(K,) = H‘i (K»)

2 Hi(K)zc—e
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Let K¥ = suppv,. Then, since |E| = 0, we get
HYKX\E)Z A", (E) = A" 'v,(RY) 2 A7} (c — o).

Now we are in the position to specify & take any positive ¢ satisfying
A~ !(c — &) > &. Then we obtain

HY(K}\E) > H{(G).

Hence there are points x, € K} n E° n G°. We may assume that x, converges to
. . . 2
some point x,. Since x,€ K} there are points y,e K such that |x, — y,| <—.
n
Then y, — xq, s0 in particular x, € K. By the continuity of u on G° we obtain that
0 = u(x,) = u(x,) + 0. From this contradiction we conclude that H4(E) = 0 and
the lemma is proved.

PRrROOF OF THEOREM 3. We start with the sufficiency part. Suppose {u,} =
CX(Q) is a Cauchy sequence in X, converging to zero in I!(2). Then D*u,
converges in ! () for |« = m and since obviously D*u, — 0 as distributions we
get D*u, = 0 in L}(Q). Hence, passing to a subsequence, we may assume that u,
converges HY “™-quasieverywhere by Lemma 4. Also, by Lemma 5 we get that,
HY ~™-quasieverywhere, u, — 0. Thus u, — 0 a.e [4], and since {u,} is a Cauchy
sequence in I}(u) we obtain u, — 0 in X.

For the necessity part suppose F = Q is a compact set satisfying HY "™(F) = 0
and u(F) > 0. Let G, o F be shrinking open sets such that HY “™(G,) — 0 and
WG, \F)— 0 as n— oo. Then, by Lemma 3, we can find ¢, CJ(Q) such that
¢, =1o0n G, and

l@alls + IV @ully = 0.

Moreover, by construction, ¢, — 0 uniformly outside every neighbourhood of
F and there is a compact set K = Qsuch thatsupp ¢, < K foralln. Nowlete > 0
and choose n so that u(G,\ F) < ¢/4. Then, for j and k large enough,

& €
Jlfp; — oldp < J loj — ouldu + 20(G\F) < 5 + > ==
2

K\Gn

Hence {¢,} is a Cauchy sequence in X, converging to zero in L'(2). However,
since

"(pn”L‘(u) g #(F) > 0’

we cannot have ¢, — 0 in X. This proves the necessity part.
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The proofs of Theorems 4 and 5 follow the same lines as in [9, Sec. 12.4],
making use of the proof of Theorem 3.

Using Lemma 3 we can also obtain necessary and sufficient conditions for
continuity and compactness of the embedding of X into the Sobolev space
W*4(RM). To state these theorems we need first some definitions. Let m < N.
Then a set F < B(x,r) is called (m, 1)-unessential if

HY-™(F) < ™,
where y is a sufficiently small constant, depending only on m and N. Form = N
only the empty set is called (m, 1)-unessential.
Let #(Q) be the family of all balls B(x, r) such that B(x,r)\Q is (m, 1)-unessen-
tial. Then we define

D, 1(1, Q) = sup {r; B(x,r) e (), inf u(B(x,r)\ F) < r' ™™},

where the infimum is taken over all (m, 1)-unessential closed sets F = B(x,r). We
then have the following theorems.

THEOREM 6. Let 0 S k<m, 1 <g<owandm — k> N(1 — 1/q). Then
lully + IV*ully < Allullx
for all ue C3() if and only if there are positive constants r and a such that
UB((x,N\F) 2 a

for all balls B(x,r)e #(Q) and all (m, 1)-unessential sets F < B(x,r). The best
constant A is comparable to

Dm~NA-tomay (DK 1},
where D = Dy, ;(u, Q).

THEOREM 7. Let 0 <k<m, 1 £g<owand m—k > N(1 — 1/q). Then X is
compactly embedded into W*(R™) if and only if D,, (1, €) < co and

lim Dm,l(ﬂa Q\E—(R_)) =0.

R—w

The proofs of these theorems are the same as those of the corresponding
theorems for p > 1in [9, Sec. 12.2-12.3], relying now on Lemma 3 of the present

paper.
4. Proof of Theorem 1.

We will need some basic results on the function spaces L7 and Lj?. We state first
a well-known lemma of Hardy type.
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LEMMA 6. (i) If 1 < p < N and ue L’;?(R") then
u(x)”
|x|?
(i) Ifp > N and ue L} '*(R") then
14
"‘I(’;Z' x < A( J u(o)lP dx + J IVu(x)I"dx).

B(1)¢ B(1)

(iti) If p = N and ue I}'P(RN) then

(Ix]log |x|)P ( f lu(x)I” dx + Jqu(x)l dX)

B(2)c B(2)

——dx < A JWu(x)I"dx

A proof of essentially the following decomposition lemma can be found in
Lizorkin [8].

LEMMA 7. Let 1 £ p < N. Then for each ue I™P(RY) there is a unique constant
¢ such that u — ce CyP(R").

We turn now to the proof of Theorem 1, divided into four cases starting with
the main one.

N .
Thecasel < p £ Lorp= 1,m < N. We start by proving the sufficiency part.

Suppose that u satisfies the condition in the theorem. We will show then that
Co nH'P < L. Letue C3 n Hy'P and suppose that ¢ + 0, where u — ce [g”.
We can assume that ¢ > 0. Let

F = {x:lu(x)—cl g%}

and suppose first that p > 1. Then u — ¢ can be written u — ¢ = K, * f where
feI and we get

c 27
Cop(F) = Cm,p<{x2 Kn*1fl2 3}) == /117 < oo.
If p = 1 then in the same way as in the proof of Lemma 3

HY-"(F)< 4 f IV™(u(x) — c)| dx < 0.

. ¢
On the other hand, since |u| = 5 on F¢, we have
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u(F) << > jlulpdu < o0.

This contradicts the condition on u so ¢ = 0. It follows that ue L§P. Note that
since & = F we must have ¢ = 0if C(Q°) = oo, without using any condition on u.

Now let nrpe CP(B(2R))satisfy 0 < ng < 1,ng = 1 on B(R)and |V*5z| £ AR ¥
for k < m. Then for R = 1 we get

llu — ungllz,, = A > JIV"u(x)Ip IVi(1 — nR)(o)l” dx

I+ks

||/\

ll/\
] M 3

=m

jV"u(x)]”dx+A > R J [V*u(x)|P dx
N i

A(2R,R)

<4y J IVku(x)Pdx + AR™? J [u(x)|? dx.
k=t B(R)*© A(2R,R)

Thus ngu — u in *? as R — oo by Lemma 6 (i). Also

Jlnxu —ufPdu < J |ul” dp— 0
B(R)©

as R — oo since ue H}P(Q). It follows that ueﬁ,’j""(Q), ie. CoNHPP(Q) <
H™?(Q) and hence H™?(Q) = H™?(Q).

We now turn to the necessity part. Suppose that Hj"?(Q) = I?":"" (©2) and that
Fis a closed set such that B,, ,(F) < oo and u(F°) < co where now p > 1. Assume
also that B,, ,(€2°) < co. Then there is an open set G o Q° such that B,,,,,,(G) < 0.
By Lemma 1 we can find fel?, such that G, ; * feC® and G, ,;*f =1 on
F U G. Now let T be a smooth function on R, such that T(t) = 1 if t = 1 and
Sup;»o|t* "1 T®(t)] < oo for 0 < k < m. Then by the truncation theorem in [1]
(it works also for the truncated kernel) there is a function geI? such that
TO(Gm;l *f) = Gm;l *g and ”g“p = A”f”p We set u=1-— Gm;l *g. Then
ue Cy n L"? but, by Lemma 7, u ¢ I’g? since G,,,; * g € L;P. Moreover

Jlul" dp = J‘ ulPdp = p(F°) < 0

by the assumption on F, so ue H,’:’-”(Q)\ﬁ,’:"”(ﬂ). This contradiction shows that
1 must satisfy the condition in the theorem.
For p = 1 we use instead u = 1 — ¢ where ¢ is the function constructed in
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Lemma 3, satisfying ¢ = 1 on a neighbourhood of F U G. Since [|g(x)|dx +
ﬂV"‘ o(x)|dx < oo it follows easily, using the multiplier 7z above, that p e [
Hence u¢ﬁ,’:"1(Q). But ||uldu < u(F°) < oo so ue H*' and we have again
obtained a contradiction.

The case 1 <p <N, mp> N or1=p<N,m2=N. For the sufficiency we
again decompose u = v + ¢ where ve L§?. Using Sobolev’s inequality

. 1/p* i/p
sup Jv| < A( J [v(y)IP dy) + A( j VTo(y)IP dy)
B(x,1)

B(x,1) B(x,1)

for every x € R¥, we see that v(x) — 0 uniformly as |x| — co. Thus, if ¢ & 0, we can
lc|

find R such that |v| < EX on B(R)°. Then, if u is not finite,

Jlul"du > ('-;l) W(B(RY) =

and we have a contradiction. Thus ¢ = 0 and we can proceed as in the first case,
again using Lemma 6(i). Note that if Q¢ is unbounded it follows immediately that
¢ = 0, without any condition on p, since v = ¢ on Q°.

For the necessity we observe that if Q° is bounded then there is u € Cg such that
u(x) =1 for large |x|. Then ueI™P\Iy? since u¢ I¥*. If pu is finite we get
ue H';"’(Q)\ﬁ,’:‘"’(Q) and we are done.

The case p > N is proved as above, now invoking Lemma 6 (ii).

The case p = N is proved by Lemma 6 (iii), this time using the multiplier

1 R?
=y| ——log—
nr(x) x(log R0 ™ >

where y is a smooth function satisfying x(t) = 0 for t < ;and x(¢) = 1 fort > 3.
This completes the proof.

REMARK. The-same question of density of test functions can be asked about
the more general norm

lull = llull Lo + k; IV¥ull

wherem = | = 2. Incaselp = N approximation is always possible. This is proved
in the same way as in this paper, using only somewhat different Hardy in-
equalitites. In the general case it is easy to give an implicit necessary and sufficient
condition. Namely, with obvious notation, Hy™? = H.™ if and only if
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ue HY™? Pe P,_I,Jlu —PPdpy<o0=P=0.

However, it is not clear whether this condition can be stated in a more transpar-
ent way in the spirit of Theorem 1, for example in terms of polynomial capacities;
cfr [9, Ch. 10].
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