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ABOUT CERTAIN SINGULAR KERNELS
K(x,y) = Ki(x — y)Kx(x + y)

TOMAS GODOY, LINDA SAAL and MARTA URCIUOLO!

§ 1. Introduction.

In this paper we give a solution to a problem about the [P-boundedness,
1 < p < o0, and the weak type 1-1 of certain singular integral operators. Here we
study operators of the form

(1.1) Tf(0) = fkl(é = Yk2(E + »)f(y)dy
Rn
for a wide class of functions k; and k,.

The case n = 1, p = 2, has been solved in [Ri-S] when k, is the Hilbert kernel
and k, satisfies

(12 - |k <c and |k'2(x)|gl—;l—, for some ¢ >0

The authors used strongly the L*-boundedness of the Hilbert transform and the
local Lipschitz condition (1.2).
Following this approach, we take k,(x) = ) 2/"¢;(2/x) where {¢;} .z is a fam-

ily of functions in L'(R") satisfying jEZ

(1.3) j(p,-(x)dx =0

and for some 0 < ¢ < 1

(1.4) jlij(x + h) — ¢j(x)ldx < c|hf*
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(1.5) J(l + IxI)lojx)ldx < ¢

with c independent of j. It is known that k,(x) is a tempered distribution and that

the operator of convolution by k, is bounded on I”(R"), 1 < p < 0. See for

example [Sa-U]. So we ask for suitable conditions about k, in order to obtain the

boundedness of the operator given by (1.1), for this kind of kernels k,.
Condition (1.2) leads us to consider functions k, satisfying

(1.6) Ikl < €
and for some 0 < 6 < 1, for all |h] < —%"—,

h o
(17 ksl + B) — ky(0)] < c( u )

The main result we obtain is the following.

THEOREM A. Let {@;} .z be a family of functions in L'(R") with compact support
contained in {xe R™ 27! < |x| £ 2} satisfying (1.3) and (1.4). Let k, be a function
satisfying (1.6) and (1.7). Then for f e [(R"), 1 < p < 0,

Tf(®) = lim Y o2 — yka(C + y) f(y)dy
(N, M)~>(-~w,0)J NSjsM
exists almost everywhere in R" and |Tf|, < c,|fll,. Moreover, if feS(R")
Kx: | Tf(x)| > A} S cA™ |\ f ||, for all A > O (weak type 1-1).

In §2 we give some preliminaries, in § 3 we prove Theorem A, in §4 we obtain
the same result replacing the hypothesis of compact support of ¢; by (1.5), and in
§ 5 we show some examples of kernels k, and k, that give rise to operators Tf asin
theorem A.

ACKNOWLEDGEMENTS. We are deeply indebted to Prof. Fulvio Ricci for sug-
gesting us this problem and for his fruitful comments.

§2. Preliminaries.

In this section we state some properties about the I*-boundedness and the weak
type 1-1 of certain singular integral operators and the maximal operators
associated. We set, for g: R* — C and je Z, g¥(x) = 2/"(2'x).

Let us consider a family of functions {¢;} ;. in L'(R") satisfying (1.3), (1.4) and
(1.5). It is not hard to see that if we take {0} }xcz and {44 }icz the Borel measures
with density ¢'5F and |@V)| respectively, then
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(&) — 0)] < c(2*1&)), keZ
&) < c2*1E) 7%, keZ

with ¢ asin(1.4) and (1.5). Moreover, the same conditions are satisfied by {0} }xcz-
Applying straightforward Theorem F in [D-R] we obtain the following results:
Forl<p<

2.1 Mf(x) = sup (lo®|*|f)(x) is bounded on LP(R")
22) K, f(x) = Z((p‘“’ * f)(x) is bounded on IP(R")
Moreover if supp ¢ < {x: |x| < 2¥*1}, then

(2.3) K% f(x) = sup

j

2 (@ )x)

ksj

is bounded on LP(R")

REMARK 2.4. We also observe that, for f € S(R"), the operators M, K; and
K% above defined, are of weak type 1-1. Indeed, with standard techniques we can
see that, for some ¢ > 0

5 y lo®(x + y) — o¥(x)|dx < ¢ forall yeR"
keZ
Ix1>12y|

See for example [G-St], [Sa-U]. So, the boundedness on L*R"), (2.5) and
theorem 2.4 in [C-W] imply the weak type 1-1 of K ;. The proofs of the weak type
(1-1) of M and K7 follow the same lines than those in the theorem last mentioned.

§3. The Main Result.
Before beginning with the proof of Theorem A, we make the following

REMARK 3.1. Let {¢;};.; be a family of functions satisfying (1.3), (1.4) and
supp @; = {x: 27! < |x| £ 2}. Then,forre Z, f e [/(R"), 1 < p < oo, there exists

(3.2 S /)= lim Y oP(x) (€ — x)dx
(N, M)—»(—o,0)NSj=M
|xj>2r
for almost every £ e R"
Indeed, since supp 9% < {x:27/7! < |x| £ 27/*!}, we have that

S.f(§) = J SRS (€ — x)dx + Z B @P(0) (€ — x)dx
|x|>2r



ABOUT CERTAIN SINGULAR KERNELS K(x,y) = K{(x — y)K,(x +y) 101

Thus, for all re Z,

IS, £l = Mf(S) + KT /(&)
where M and KT are defined by (2.1) and (2.3) respectively.

REMARK 3.3. The last inequality of the previous remark, (2.1),(2.3) and remark
(2.4) imply that sup |S, f(£)| is bounded on IP(R"), 1 < p < o0, and for f e S(R") it

reZ

is of weak type 1-1.
The same results hold for

(3.4) $f)=  lim > f @) f(E — x)dx
M) (o) NSTEM )

Indeed, §, (&) = K, f(&) — S,f(¢) and we apply (2.2)
PRrOOF OF THEOREM A. For M, NeZ, N < M, feS(R") and ¢ € R", we set
Tamf(§) = Z <P}i)(f — k(& + y) f(y)dy
NsjsM

With a change of variables, we obtain

Tanf@) = Y | 0P(x0)k(28 — x)f(¢ — x)dx.

NSjsM

We fix [ = [(¢)e Z such that 2! £ |¢] < 2'*! and we decompose

B35  TwmfO= Y f+ ) J > J

N<jsM NSjzM NSjSM
[xl<2! 21<|x| 52143 x| >21+3

Since supp ¢¥ < {x: 2777 < |x| £ 27/* '}, the central sum is independent of
N and M, for |N| and |M]| large enough, and

S 6k2ll Mf(S)

) f PP (k228 — x) f(€ — x)dx
N§j§M21<|x'§21+3

where Mf is the maximal operator defined in (2.1). Furthermore (2.1) and remark
(2.4) imply

lim 2 J PP (k2 (28 — %) f(€ — x)dx
M= mmNSTEM S

is bounded on L”(R") and of weak type 1-1.
We now study the first sum of (3.5)
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)y PPk, (28 — x)f(E — x)dx

Nsj=sM
|x] = 2!

= X PP k228 — x) — k2291 (€ — x) dx

Nsj=M
Ix| = 2!

+ k(28 ) PP () f (€ — x)dx
NSjsM

Now

N f 9Pl k> 2E — x) — kxS (€ — 0l dx < ¢ Mf(x)

x| 2!

Indeed, since |x| < 2' < |¢| we apply (1.7) to obtain

. Z N loP(x) 1k2(2€ — x) — kx(2O)| 11 (& — x)| dx
siEM
) X\’
Sc Yy PG = ) 1f(€ —x)ldx
wism ) l4]

IIA

c X f 1) 2771 (& — %)l dx < ¢ Mf(8)

jz-l-1
Ix|=2!

So lim y PPX)[k2(2E — x) — k3(28)1f (€ — x)dx exists for
(N,M)= (-0, 0)NSjSM 52t

all £e R", moreover (2.1) and remark (2.4) imply that it is bounded on L?(R"),

1 < p < o0, and of weak type 1-1.

Now, if S} is as in (3.4),

lim k(2 } f PPX)f(€ — x)dx = kx(20)S,£ ()
(N,M)=(— 0, ©)

NsSjsM
Ix| 2!

and it is absolutely bounded by ||k, ||, sup|S, f(¢)|. From this and Remark 3.3 we

reZ
obtain the I”-boundedness, 1 < p < oo, and the weak type 1-1 of the above limit.
So the study of the first sum in (3.5) is completed.

We now perform an analogous decomposition for the last sum in (3.5)
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> f PP ky(28 — x) (€ — x)dx
NSEM J

= NSZ J PPx)[k2(2E — x) — ky(& — X)]f(€ — x)dx
SjEM AT

+ Z J ‘P}”(x)kz(f —x)f(¢ — x)dx
N2j=M |x|>21+3

But |x| > 2'*3 implies |x — &] = |x| — |€] = 2|¢| and by (1.7),

) f loP 0l k(28 — x) = ky(& = ) f (€ — x)| dx

ol
<c Y o) £ (€ — Ol dx

NSjsM |5_xl"
Ix|>21+3
oo (18
Sc Y @G = | 1f(§ — x)ldx
Ngngll s ||

In the last inequality we use that |& — x| = 3|x| if |x| > 2'*3.
As before, this sum is bounded by

¢y 2 le:.':::i’(x» £€ — %)l dx
m20

which, in turn, is bounded by ¢ Mf(£).
Finally

im Y f PP (E — )11 — x)dx = Sy akafNE)
(N,M)—=(~w,0) NSjsSM x| > 21+ 3

with §;.5 as in (3.2). If fe L”(R") so does k,f and thus the I’-boundedness,
1 < p < o0, and the weak type 1-1 of the above limit follow from Remark 3.3.

§4.

In this paragraph we extend the result obtained in § 3, asking the family {¢;} ;.2 to
satisfy (1.3), (1.4) and (1.5). We need the following .

LEMMA 4.1. Let {¢;};cz be a family of functions in L'(R") satisfying (1.3), (1.4)
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and (1.5). Then, for 0 < a < b, there exists a finite constant c(b/a), depending only
on b/a and n such that

> J lo(x)| dx < c(b/a)
jeZ
/ a<|x|<b

PROOF. As an easy consequence of the Theorem 4, pag. 153 [St], we note that
there exist ¢ >1 and ¢ >0 such that for all jeZ, |¢;ll, =c. Since

l|l, = 27"~ 1@ | ;|| we have, by Holder’s inequality that

Y J lpP(x)dx <c Yy, 2MUIBr — g =14 = ¢(bja).

2i<a-1 2i<a-1
a<|x|<b
On the other hand,
jZ lpP(x)| dx = ,Z 27" |@(27%)| (27 |x1)°(2 x]) ~° dx
2i>ag-1 2i>g-1
a<|x|<b a<|x|<b
<a’? , > 2""’J|¢j(y)l Iy° dy
2i>a-1

being the last term bounded independently of a and b.
By personal communication, F. Ricci told us the following result.

LEMMA 4.2. Let K, be the tempered distribution given by K,(f) = . <o¥, >

jeZ

with @; satisfying (1.3), (1.4) and (1.5), where, as usual, (¢, > = J P9(x) f(x) dx.
Rn

Then K, can be decomposed as Y <Y, > where {Y;} ez is a family of functions
with compact support contained in {x: 2~' < |x| < 2}, and satisfying (1.3) and (1.4).

A slight modification of the proof of 4.2, gives us the following.

LEMMA 4.3. Let {@;};cz be a family of functions satisfying (1.3), (1.4) and (1.5).
Let k, be a function satisfying (1.6) and (1.7). Then there is a family of functions
{B;} jcz with compact support contained in {x: 2~ ' < |x| < 2} satisfying (1.3) and
(1.4) such that for each f € S(R") and (e R" — {0},

> | 0Pk (€ — x)f(E — x)dx = Y, J Bk — %) f(€ — x)dx

jeZ jeZ

Proor. Before dealing with the proof, we introduce some additional notation.



ABOUT CERTAIN SINGULAR KERNELS K(x,y) = K (x — y)K,(x + y) 105

Wesetfor ke Z, E, = {xe R™ 2* < |x| £ 2**1}, also for ge L''°°(R") we write

my(g) = |Ei| ™! f g and we define, for x€ R”, ®(x) = k,(2£ — x) f({ — x).

Ex
We give the proof in several steps.

Step1. Y, | |oP(x)|P(x) — my(®)|dx < 0.

J.1eZ
E:

Indeed, we pick re R such that 2" = |£|/8. Then

12r jeZ 12r jeZ
Ey

Y 2 | 1efex) —m(Pdx £ ¥ ¥ 2 PllLe, j 1@ (x)| dx
E:

Now, since f € S(R"), we have | ®||.»g,) < ¢2~ ! for some positive constant
¢. Then by lemma 4.1 the above sum converges.
On the other hand

DN |<p§"’(x)u¢(x) — my(®)| dx

1 <rsz

flfp ()| E,|™ 1Jl‘l’(x) P(t)| dt dx

1<r1el

< Y 2 sup [9(s) — ¢(1) J 0§ (x)] dx

1<r jeZs,teE;

Since 1 < rfor s,te E, we have [2¢ — s| = max {|¢],2|s — t|}. So we can apply
(1.7) to obtain

e
[k (28 — s) — k28 — 1) £ c—ls—fl—‘s < ¢2'%|¢| 7% for some positive constant c.

12¢ — sl

Then we can write
|D(s) — D(1)] = |k2(2 — 9)f (€ — x) — k228 — ) f(E — 1)
S k228 — ) — kx(28 = OIS € — D+ 1/(E — ) — f(€ — D k2(2€ — 1)
21870 e + 2" 21V o k2l

and we can apply again lemma 4.1 to obtain the statement of step 1.
Step 2. For jkeZ, let ¢;, be the function defined by ¢;, = ¢@;xs, —

|Ed™ "2, J(p ; where xg, is the characteristic function of the set E,. Then there is

Ex
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a family of functions {9;};cz with compact support contained in
{x:27! < |x| £2} and satisfying (1.3) and (1.4) such that ) (¢}, ®) =

JkeZ
z <90)

jeZ
Indeed, since

(4.4) <o @) = j PPN P(x) — my_ (P)) dx

Ex-j

the double sum ) ((p}{",‘, @5 is absolutely convergent by step 1 and we can
Jj.keZ
rearrange it to obtain

Z <(p] k’ Z Z <(py,)ka¢>=;<'9(ll)’¢>

j.kezZ 1 j-k=1
where 3,(x) = Z (P?' l)(x)XEo(x)'
j-k=1

It is not hard to see that the family {3,},., satisfies (1.3) and (1.4). This
completes the proof of step 2.
Step 3. We define for jeZ Aj(x)= ) |E|™* jwj(t)dt X, (x) then there is

keZ
Ex

a family of functions {n,};.; with compact support contained in
{x:271 £ |x| £ 2} satisfying (1.3) and (1.4) such that

Y A8y =Y (), @)
jezZ JjeZ
Indeed, we set a,(x) = |E,| ™! xe,(x) and ¢, = f(p,-. Then for each je Z
Ex

< Cjk“fcﬁ, d5> = Z J‘ (pj(x)dx {Ok-1 — Ok, D)
N<ksM

sks N+1SksM
Ix| s 2%

+ f @j(x)dx {af}, &) — J @,(x) dx {af), )
xjg2M+1 |x 2N
Since lim (g, #) = 0and ¢;€e L'(R"), the last two terms go to zero as M — + 0

$—* 0

and N > —o0. Now 64_; — 0, = (6_; — 0o) ™.

So (A9, > =) J pj(x)dx{a_1 — a0)V 7, ®).
keZ

|x| < 2%
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We observe that ), I O (X)dx (-1 — a¢)?, tP}‘ < o0. Indeed
kl|ﬂ§lk
Z J\ (pl+k(x) dx| = Z I (P1+k(X) dx
k20 s ar Kz 0 D

=y2® j XI? @14 x(x)| dx < 00
k20
Ix| <2k

by (1.5). And, by Holder’s inequality,

Z f [@r+x(x) dx < Z 2k"“_1/q)w:_l/q loiexlly < o
k<0 k<0

|x| < 2k

where w, denotes the measure of the n-dimensional unit sphere. Then

)

k1

J‘ Qra(x)dx{(o_{ — 00)“), P>

Ix| = 2%

(3o -oone) o)

The convergence of the last sum is a consequence of (4.4) and of the statement
in Step 1. Then we can write

= C;K(a—l —00)", )|

< ZK(U—l - UO)XEk)(“, P)| < 0.
k1

S 9,8y =T j 0, dx (01 — 500N, B5 = T (n, @
jeZ ik jeZ
|x| < 2k

where 1, = Z J @j(x)dx (o, — 6o). A computation shows that {ni}iez
—k+j=1
|x| < 2k

is a family of functions, with compact support contained in {x: 27! < |x| < 2},
satisfying (1.3) and (1.4). Two complete the proof we write Y {(¢{,®) =
jeZ
Y 90, @) + ) (n, D).
jez jeZ
Then we have the following.

THEOREM B. Let {,};.z be a family of functions in L'(R") satisfying (1.3), (1.4)
and (1.5). Let k, be a function satisfying (1.6) and (1.7). Then, for feLP(R"),
1<p< oo,
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Tf() = lim Y 22— y)kaE + y) () dy
(N.M)= (-0, 0)J NSj=M

exists almost everywhere in R" and ||Tf |, < c, |l fll,. Moreover, if feS(R")
Hox: | Tf(x)| > A} S c A7 1| flly for all A > 0 (weak type 1-1).

§5.
In this paragraph we give some applications of the results before obtained.

REMARK 5.1. Let k; = Q(x)/|x|", with  a homogeneous function of degree

zero satisfying f Q(x)dx = 0, and, for some ¢ > 0,

Sn—-1

f 2(gx) — Q(x)| dx = clgl’
sn-1

for all g in So(n). Here | | denotes a smooth distance to the identity. Let k, be
a function satisfying (1.6) and (1.7). Then the operator given by

Tf(&) = p.v. f ki(& — y)ka& + ) f(y)dy

Rn

is bounded on I”(R"), 1 < p < o0, and of weak type 1-1.

Indeed, if we define @o(x) = ki(x)Xg (x), then ky(x)= Y 27" o(2x),
supp @o < {xeR™ 27! <|x] £2} and it satisfies (1.3). In order to apply
Theorem A it only remains to check the L'-Holder condition (1.4). We must
estimate

1Q0x — h)/ Ix — hI" — Q(x)/ |xI"| dx

2715ix-h|s2
2-Tgixl=2

+ J |Q(x — h)/|x — h"| dx

2-1g(x-h|s2
fe:lxl s 2= ulx: x| 22}

+ J + |Q20x)/ |x|"| dx

2-15|x|<2
(x:lx—hls2-TYu{x:|x—h|22)

The second and third integrals are similar. We study the last one. We can
assume |h| < 1/4, since for |h| = 1/4
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Jl%(x + h) — @o(x)ldx = 2 {l@olls < clhl® l@olly

Now, for |x — h| £ 27, we have |x| £ 2! + |h| and for |x — h| = 2 we have
|x| = 2 — |h|. Then

1)/ |xI"dx = J 1)/ |xI" dx

2-1<ix|=2 2-1s5ix|<
(x:lx—h|=2-Tyu{x:|x—h| 22} |x—hl<2

+ J 1R/ |xI"dx < c ||y |Al

A change to polar coordinates gives us the last bound. It remains to treat the first
integral.

12(x — )/ |x — hI" — Q(x)/ |x["| dx

2-1<|x—h|s2
-1

—hls
Sixls2

2
< f |Q(x — k) — Q(x)| [x — h|""dx

2-1<|x-h|g2
2-T§|xl§2

+ J 10| Ix — A ™" — |x| " dx

2-15|x—h|s2

2-Tx|x| 52

We note that ||x —h|™" —|x|™"| < |H] ), <:> [x/* " |p" %" tix — b "
0sks=n-1
then J Q)| ||x — h|~" — |x| ""|dx < c|h] | €] ;. On the other hand, the

2-1g|x—h| 2
2-Tx5|x|=2

change of variable z = x — h gives us

|2(x — h) — Q(x)||x — h| " "dx = J |2(z + h) — Q(2)| |z| "dz
2-15|x—h|s2 2-1g|z|=2
2-Txx|22

ForzeR"we set z = z'r with z’e€ S" ! and r = 0, we also set a = h/r. Then the

last integral can be written | r7! ( f 12" + o) — Q(2')] dz') dr.
2-1<5r52
Sn-1

Now we apply lemma 5 of [C-W-Z] to obtain, for a small enough,
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lgl < lal

J 12 + @) — Q)| dz < sup f 1Q(gu) — Q)| dz’ < clof* = c |hlr
Sn-1t Sn-1

Remark 5.1 follows from this last inequality.

REMARK 5.2. Let k,(x) bea C'(R" — {0}) function such that, for some constant
¢ > 0andforall x e R"|k,(x)| < cand |Vk,(x)| < c|x| ™ !. Thenit iseasy to see that
k, satisfies (1.7) for all 6 < 1. For example k, being homogeneous of degree 0 and
smooth out of the origin. A less restrictive condition for K, is given by the
following remark.

REMARK 5.3. Let {{/;} .2 be a family of measurable functions on R? satisfying

(i) Supp y; = {xeR™ 27! < |x| £2}.

(ii) There exist ¢ > 0 and 0 < 6 < 1 such that |y ;(x + h) — y;(x)| < c|h|® for
almost all xe R"

By (i) and (i)  j€ L*(R") and |||, < ¢, so if we define ky(x) = Y ¥;(2'x), we

- jeZ
have that k, € L*(R") and satisfies (1.7). Indeed |k,(x + h) — k,(x)| < ¢ Y, 2°|h)°.
jeZ
If |h| < |x|/2 and either 2/ or 2/(x + h) belongs to supp ¥}, then 2/ < ¢/|x|. The
result follows since for each h and x fixed, at most six terms are involved.
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