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1. Introduction.

The order p of an entire function F € O(C") is classically defined as the infimum of
allnumbers a > Osuch that |F(z)| £ C,e'*!" for some constant C,. Given the order
the type o is then defined as the infimum of all numbers b > 0 such that
|F(z)| £ C,eb” for some constant C,. To make these notions dual in the sense of
convex analysis C. O. Kiselman has introduced the concept of relative order and
type, generalizing the classical order and type. This was first done in [1], but the
idea is more developed in [2]. There among others he considers an extension
problem for entire functions. Given two entire functions F and G in C", what size
can a disk D, = {weC; |w| <r} have such that there exists a holomorphic
function H in C" x D, satisfying certain growth conditions determined by F and
G on the sets C; = {(z,e)eC" x C; |w| = 1} and C, = {(z,w)eC" x C; |w| = ¢}
respectively? It turns out that the size of the disk is determined by the relative
order of G with respect to F. However using these disks we cannot let the growth
of H be controlled from both above and below on both of the sets C, and C,, nor
can we specify that both H(z, 1) = F(z) and H(z,e) = G(z). This paper is a con-
tinuation of that work. Instead of disks we consider annuli. In this way we can
extend F and G to H with H satisfying mainly the same growth conditions as
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above but now from both above and below on both of the sets C, and C,. (The
difference in the growth condition is an arbitrary ¢ > 0). It is equivalent also to
assume that H(z, 1) = F(z) and H(z, ) = G(z). The size of the annulus turns out to
be determined by both the relative order of F with respect to G and the relative
order of G with respect to F. More generally we consider extensions to logarith-
mically convex Reinhardt domains in C* x C™ and we see that all domains to
which we can extend the functions can be written in an explicit way.

I am sincerely grateful to my advisor Christer Kiselman for all help I have
received in the preparation of this manuscript.

2. Relative order and type.

The notion of relative order and type is introduced in Kiselman [1] and studied
in detail in [2]. We give here the definitions and some simple facts.

DEeFINITION 2.1. Let f,g: E - [ — o0, + o0] be two functions defined on a real
vector space E. We define the order of f relative to g as

order(f:g) = inf[a > 0; Ic,eR, Vx€E, f(x) < —(l;g(ax) + ¢

If g is convex and g(0) < + oo then the set above is an interval Jp, + o[ or
[p, + oo[, where 0 < p £ + 0.

DEFINITION 2.2. Let f, g be two functions as above. We then define the type of
f relative to g as

type(f:g) = inf[b > 0; 3c,eR, VxeE, f(x) £ bg(x) + ¢, ].

The set above is an interval Jo, + o[ or [0, + o[, where 0 £ ¢ £ + 00, if g is
bounded from below.

Let E* be the algebraic dual of the real vector space E and E’ a fixed linear
subspace of E*. We define the spaces #(E, E') and & (E', E) in the following way:
F(E,E") is the space of all functions from E to [ — oo, + co] which are convex,
lower semicontinuous for the weak topology o(E, E') and takes the value — oo
only for the constant function —oo. #(E', E) is defined similarly for functions
from E' to [ — o0, + 00] but with the weak star topology o(E’, E) instead.

Let f: E - [ — o0, + o0] be a function on the real vector space E. We define the
Fenchel transform of f by

@1 fO=sup-x~fx), EeF

xeE

We can apply the transformation twice getting
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2.2) J)=sup(E-x—f(E), xeE
¢eE’

A direct consequence of the definition is that we have fe#(E,E) and
feZF(E,E). Obviously the transform is dependent on the subspace E’ chosen.
Usually in a topological vector space one takes E’ as the topological dual of E.
For instance in R", where the topological dual is isomorphic to R", one takes E’ as
R". Some general properties of the Fenchel transform are f < f 7 = fand

2.3) f=sup[veF(E,E)v < f]

Thus 7 = fifand only if fe #(E, E'). For more information see Rockafellar [3].
There is a duality theorem connecting the relative order and type via the
Fenchel transform.

THEOREM 2.3 (Kiselman [2], Theorem 4.3). Let E be a real vector space and E'
a linear subspace of E*. Assume that f,ge #(E, E'). Then

order(g: f) = type(f :g) and type(g: f) = order(f :g).

3. Growth functions.
Let F be an entire function in C". We then define its growth function as
3.1 f(t) = sup[log|F(z); zeC", |z| £ €], teR.

We shall also have use for holomorphic functions H € O(C" x Q'), where Q' = C™
is a logarithmically convex Reinhardt domain. We will then define the partial
growth function of H by

(3.2) h,(t) = sup[log|H(z,w)|; ze C", |z| £ €], teR, we .

and also

(3.3)  h(t,s) = sup[log|H(z, w)j; (z, w)e C" x @, |z| < €, |wi| = €', Vi]
=sup[h,(t); |wi| =€, Vi=1,...,m], t,seR.

In view of Hadamard’s three-circle-theorem, all functions here considered are
convex in the variables t and s.

An open et in C"is a Reinhardt domainif (€'z,, .. ., e*"z,) belongs to the set for
allreal 8y,...,0,ifz = (zy,...,2,) does. A set S € C"is logarithmically convex if the
set {xe R" x = (log|z,],...,10g|z,]), for some z€ S} is convex.

If F and G are two entire functions, we define the order of F with respect to G as

(3.9 order(F: G) = order(f: g),
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where f and g are defined by (3.1). The order so defined is independent of the
norm, since if B; denotes the closed ball with respect to the norm j, then B; is
included in €*Bj, for some constant k;. Thus we have the estimate
fi(t) £ fj(t + k;j), where f; denotes the growth function with respect to the norm i.
The independence now follows from the following lemma.

LemMa 3.1. (Kiselman [2] Lemma 3.2). Let f, denote the translate of f: E —
[— o0, + 0] by the vector y: f,(x) = f(x — y). If one of f and g is convex and real
valued, then

order(f,:g) = order(f:g,) = order(f: g).
We can also define what we will call the refined growth function of F, as
(3.5) Jit) = sup[log|F(z);; zeC", |zi| = €],  teR™

Also this function is convex by Hadamard.

If F and G are two entire functions in C", then order (f, : g,) with f,, g, defined by
(3.5)is in general larger than or equal to order(f : g), with f and g defined by (3.1),
since we can always take all t; = teR. On the other hand if for example
F(zy,z,) = Fy(z,)F,(z,) and G(z{,z,) = F,(z,)F,(z;), with order(F; : F,) > 1, we
get order(F: G) = 1, but order(f,:g,) > 1. But with the change of variables

z,_21+22 O St
1= \/’ H 2= ’
2 2

we get order(f,:g,) = 1 also for f,, g,. Thus we see that the relative order between
two refined growth functions is coordinate dependent.

If we take g as the exponential function g(¢) = ¢ and f as defined by (3.1), we
get the order of f relative to g as the classical order of F. We now take g, as the
convex function defined by g,(t) = e™**, t e R"and f, as defined by (3.5). Then we
have order(f:g) = order(f,:g,), since fi(ty,...,t,) < f(max);¢;) if we use the
norm |z| = max;|z;| in (3.1). Similarly we can define g(t) = ¢* and g,(t) = e? ™"
to retain the classical type.

4. Coefficient functions.

Let F be an entire function in C". We can then expand F in homogeneous
polynomials

@1) 3 e,

where P;is homogeneous of degree j. We define the norm of the polynomials P; as
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4.2) I1P;ll = sup |Py(z)l.
lzl=1
With this norm we define the coefficient function of F as
) —log|IPill,  jeN;
4.3 = ’
4.3) p(j) {+OO JeR\N;

Note that in this definition we set —log0 = + oo.

5. Properties of coefficient functions.

Let f,g: E - [— o0, + 0] be two functions on a real vector space E. We then
define the infimal convolution of f and g by

fOg(x) =inf[f(y) + g(x — y)], xeE;

where + is upper addition extending the usual addition to hold from
[— o0, +0]*to[—c0, 4+ ], so that (4 o) + (—00) = + c0. In the same man-
ner lower addition + is defined, so that (+ 00) + (—o0) = — o0. If we apply the
Fenchel transformation to an infimal convolution we get

.0 (fO9 =7+g

See also Rockafellar [3] concerning the infimal convolution.
Define the function K as

—log(l — é), 0;

Then we have the following theorem connecting the growth and coefficient
functions of an entire function.

THEOREM 5.1 (Kiselman [2], Theorem 6.1). Let F € O(C") be an entire function.
Let f and p be defined by (3.1) and (4.3) respectively. Then

(53) F<f<pPOK onR.

CoroLLARY 5.2 (Kiselman [2], Corollary 6.5). Let F, G be two entire functions
in C". Let f, g be their growth functions defined by (3.1) and p, q be their coefficient
functions defined by (4.3). Then

order(f : g) = order(p: §) = type(q: p).

Proor. This follows from Lemma 3.1 and Theorem 2.3. See Kiselman [2] for
the details.
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LEMMA 5.3. Let Fe O(C") and let p be its coefficient function defined by (4.3).
Then p(j), j € N, has faster growth than any linear function, or equivalently

p—(,])——>+oo asj — + oo.

PrOOF. Since F is entire, ||P;| R» >0 as j— + oo, for all R > 0. Taking
logarithms we get
jlogR — p(j)—» — 0 asj— + oo.

Since this holds for all positive R, the lemma follows.
It actually follows that

o0
Ll
since p(j) = + oo for all je R\N.

+ oo as |jl » + oo for jeR,

LEMMA 5.4. Let a: E - [ — 0, 4+ 0] be a function on a finite-dimensional real
vector space E which grows faster than any linear function:

a(x)
—= = 400 as |x| - +oo.
[x|
Then also
a(x)
—Wa + 00 as |x| - + oo.

Moreover if a is lower semicontinuous, then @ and & are determined by the set
M = {(x, a(x)); a(x) = d(x)}. That is, if ais redefined to + oo at all other points, then
d and & are unchanged.

Proor. To prove the first part of the lemma we just observe that the affine
functions are among the functions we take supremum of in (2.3). To prove the
second part let a,, be the function obtained from a by setting

a(x) if (x,a(x))e M;

(5.9 au(x) = {+ oo if (x,a(x)éM.

We will show that dy, = @. Thus also dy = d@. Obviously @, < 4. Pick some £€ E'.
By the growth condition and lower semicontinuity of a and the definition of the
Fenchel transform there exists an xe E such that d(f) = ¢-x — a(x). Since
d(x) 2 & x — d(x) = a(x) and @ < a, we conclude that x is such that (x, a(x)) e M,
which implies ay(x) = a(x). We get @y (&) = & x — ap(x) = &€ x — a(x) = a(¢).
Thus actually dy(&) = d(&). But £ was arbitrary so if follows that d,; = d.
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By Lemma 5.3, this holds in particular for a coefficient function, since by
definition a coefficient function is obviously lower semicontinuous.
6. Extension of entire functions.
Before we proceed with the main theorem we will need the following lemma.
LemMA 6.1 (Kiselman [2], Part of Theorem 7.2). If the problem

Find F: E x R—>]—o0, +0], such that

F(x,)) = fi(x), x€eE, j=0,1, where

fii E—]—0, +00], are convex and lower
semicontinuous for o(E, E'),

has a convex solution F which is finite at a point (0,t), 1 <t < + o0, then

order(fy: fo) S —

Now let o e R™ satisfy ) 7, «; = 1 and p e R\ {0} be a nonzero real number. We
consider hyperplanes H,, defined by

(6.1 H; = {xeR™ x-a = p}.

The set {H;},, consists of all hyperplanes containing p = (p,..., p) but not the
origin. The set {H}, is a set of parallel hyperplanes. In R, H; is just the point p.

Let S5 denote the closed halfspace which is bounded by H; and contains the
origin. More explicitly

(6.2) $* =

p

{xeR™ x-a < p} if p>0;
{xeR™ x-a = p} if p<O.

Now define the logarithmically convex Reinhardt domain wj, by
(6.3) w} = {weC"; (log|wy|, log|w,,...,log|w,|) eint §}}.
This is the smallest open set ' which satisfies

intS% = {xe R™ x = (log|wi|,...,log |w,|) for some we Q'}.

There is also a largest open set which satisfies this property. We will denote this
set by 7. We then have
6.3) Q= wyu By

where J = {i: pa; = 0} and B the union of all sets ITw}, where IT is a projection
which takes some of the components with index in the set J to zero. That is, Qf is
the interior of the closure of w}. The definition of Qj just says thatif m = 1 and
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p > 0 then we add the origin to w; and if m = 2 that if some component w; of
we wj, can be arbitrarily small with the other components having fixed values
then we add to wj images of all points in w}, with w; projected to zero. If there are
more such components we go on recursively. For instance if p=1 and

1 1 ) . .
o= (;,,;) then € contains all points we C™ with some component

w; = 0, whereas o, contains none. This is why we introduce the extension (6.3).
We want to fill in unnecessary boundaries.

Define 5% , = §% , = R™. Then (6.3) and (6.3’) can be used to define w} and
Q7 also for p = — o0, + 00, if we let 0- c0 = 0 in the definition of J. We have
o* o = 0%, = (C\{0})", for all a. If o; = O for all i then Q% _, = C™, but there is
no o such that Q* = C™ since some a; must be positive. For instance
QL9 = C2 but Q4.2 = (C\{0}) x C.

THEOREM 6.2. Let F,G e (O(C") be two transcendental entire functions. Define
their growth functions f, g by (3.1) respectively. Let A, peR, a, fe R™ satisfy
0<A<1=Zp<+o,andy a; =) P; = 1. Define the domain

Q={(z,weC" x C"we nQ4}

where ' = Ii—l—,(—oo SA<0),p = —p_i—f’(l < p' £ +o)and Q, Q5 are
defined by (6.3'). Then the following conditions are equivalent:
(a) order(G:F) < p;

order(F:G) < jll_;

(b) For each ¢ > 0 (or equivalently some ¢ > 0) there exists an H € O(R2) such that

f£h,OK+e¢ h,f0OK+e |w=1Vi=1,..,m
g=h,0O0K+e¢ h,<gl0K+e |wl=¢ Vi=1,...,m,

where h,, is defined by (3.2) and K by (5.2),
(b') The condition (b) holds together with the extra assumption

H(z,1) = F(z), H(z,e) = G(2),
wherel =(1,...,1)and e = (e, ..., e) (m times).
(c) There exists an H € O(Q) such that
order(f:h(-,0)) = order(h(-,0): f) = 1,
order(g:h(-,1)) = order(h(-,1):g9) = 1.
where h(-,) is defined by (3.3).
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(¢') The condition (c) holds together with the extra assumption
H(z,1) = F(2), H(z,e) = G(2).
(The conditions are equivalent also for polynomials if condition (c) is altered to
order(f: h(-,0)) = order(h(-,0): f) = 0,
order(g:h(-,1)) = order(h(-,1):g) =

In this case condition (a) is equivalent with order(G: F) = order(F:G) = 0.)
If He 0(Q) satisfies condition (b) or (b') for some ¢ > 0 then it also satisfies
condition (c) or (¢') respectively.

ProOF. Note first that sometimes Q% N Q8. = w}, N ¥, Thatis, if sign(x;) = 1
when sign(f;) = 0. For instance when m = 1 this is always the case:

Q= {(z,w)eC" x C;e* < |w| < e’}

and w is never zero even if I’ = — co.

(a)implies (b'). Make the expansions F(z) = ) %, Pi(z)and G(z) = .72, Q,(2),
asin (4.1). Let p and q be the coefficient functions of F and G defined by (4.3)
respectively. Put

i) w2 Sl

e

(6.4) H(z,w) =

where 9,7’ € Z™ are multi-indices satisfying Y 7, y; = Y ;v , 7; = 1. Moreover, we
choose all y; nonnegative. That is y; = d; for some k = 1,...,m, with J; as the
Kronecker delta. Some o; must be positive and we choose y; positive for thisiand

- . . 1
all the others nonpositive. In this way the functions w—w” and Wi - are

holomorphic in 25 N Q4. We have as usual w’ = wj'... wh". The multi-indices
u;,v;€ Z™ are chosen such that pj; = vj; = 0, if p(j) = + oo, which occurs if and
only if §(j) = + oo, since we are demanding finite order. (Recall Corollary 5.2).
Otherwise we take u;; as the integer part of o; min(5(j) — §(j) — N,0) and v;; as
the integer part of ; max(p(j) — 4((j) + N + m,0). For clarity:

(5 =n()"

2 N
The function Ey(¢) = (1 — é)exp(é + —62— +... +%>, N=12,..1is a so
called Weierstrass function. We have Ey(1) =0, so that H(z,1) = F(z),

H(z,e) = G(z). It can be shown (Rudin [4]), that for |{| < 1
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(6.5) 11— Ex() S 181

The integer N is chosen such that e "N < ¢.
When |w;| = 1,i = 1,...,m, we make the estimates

I,jW“j - EN(%Z‘> PjW‘” 1 - EN( y)
1 w\" 1 )
Ey W Q;j e Ey W exp| —q()) — ;Vﬁ

< 2exp(—q(j) + 4(j) — B(j) — N) < 2exp(—N — p(j)),

using Y ;v;; 2 p(J) — 4() + N, q(j) 2 §()) and (6.5).
When |w;| = e, i = 1,...,m, we make the estimates

Ey <w7y) Pwh| = |Ey (WTY) exp ( EDY /"ir')

< 2exp(—p(j) + P(j) — 4(j) — N) < 2exp(—N — §())),
using Y ; i < p(j) — §(j) — N, p 2 P and (6.5). We also have

ofe) (a2 ()

The partial coefficient function r,, of H is

1 wy M j "
Ex(1/e) [E"<T)P"W +E”< )Q’< )]

By the triangle inequality and (6.5), we have

(6.6) 1Pl <e™™"1|IP;|l and

6.7)

(6.8)

(6.9) 1Q;1l < e M 1]1Q;ll.

rw(j) = —log

Y
(6.10) —log(l +e ¥ 1) — log( Ey (WT) Pyw*
1 w\" )
+ || En (;7) 9; (:) ) < ru(Ji)
and
w7
6.11) r,(j) £ —log(1 —e V") —log EN(—;—> P;whi

wG)e() |

When |w;| = 1,i = 1,...,m, we have by our estimates (6.6), (6.7) and since p = p




EXTENSION OF ENTIRE FUNCTIONS WITH CONTROLLED GROWTH 83

(6.12)  —log(l+e 1) —log(1 + e ¥7' +2¢7") + B(j) < r(j),

which implies p(j) — e N < r,(j), hence taking the Fenchel transformation
®
7, < P + €2~ N (Recall the general rule p = p.)
For j such that p(j) = p(j), we also have

6.13)  ru(j) = —log(l —e™™7") —log(l —e "' —2e") + j(j),

which implies r,,(j) < p(j) + eV, for jsatisfying p(j) = p(j). Define py, from p by
(5.4). Thenr,, < py + €27V, hence py < 7, + €. But by Lemma 5.4 f, = p,
soitfollows that j — e M < 7,,. Sofar,wehave j — €2 N <7, < p + >V, thus
finally by Theorem 5.1

614 f<POK<F,+00K=7,0K+e<h,0K +¢,
h,<F, OK<S@+eOK=pOK+e<fOK +¢

when |w;| = 1, forall i = 1,...,m, since we chose €2 ™" < ¢.
When |w;| = e,i = 1,...,m, we have similarily using (6.10), (6.8),(6.9)and g = §

615  —log(l +e ™Y —loge ™ + 1+ e ¥ Y+ 4(j) £ (),

which implies §(j) — 2~ ¥ < r,(j), hence taking the Fenchel transformation
7, < 4+ e~ ~. For j such that ¢(j) = §(j), we get from (6.11), (6.8) and (6.9)

(6.16)  ru(j) = —log(l —e """ —log(l —e "' —2e7N) + §()),

which implies r,,(j) < §(j) + e* ¥, for j satisfying q(j) = §(j). Define g, from q by
(5.4). Then r,, < qp + €27, hence gy < 7, + €2~ ~. But by Lemma 5.4 §, = 4,
soit follows that§ — e2 ¥ < 7,.Sofar,wehave§ — e2 ¥ <7, < § + €V, thus
finally by Theorem 5.1

6.17) ¢g=<h,OK+e¢ h,<g0OK+ge |wl=e i=1,..m

We now have to show that H is holomorphic in Q. Directly after the definition
of H in (6.4) we have chosen y and y' so that w—w” and w 1/w"" becomes
holomorphic in Q. Since the Weierstrass functions are entire these do not cause
any trouble. Apart from the Weierstrass functions we show that the first part of
the series defining H converges locally uniformly in C* x 5. and that the second
part converges locally uniformly in C* x Qﬁ,. Then we can conclude that the
whole of the series defining H actually converges locally uniformly in Q.

It simplifies the argument to show the convergence just in C* x w} and
C" x f. respectively. By our choice of 4 and v it is then clear that we have locally
uniform convergence also in C" x Q5. and C" x Q.. This is because we have no
negative exponents on components of w which may be zero. For instance ifa;; < 0
then sup;,, [W"| < +co0 on compact subsets of (C\{0})'"* x {0} x (C\{0O})™~*
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< B, since then w*/ becomes zero for uj; > 0. If a; = 0 then w*/ does not depend
on w;.
The first part of the series converges locally uniformly in C* x w?, if

(6.18) | Pjll Rir*s = |P;| RI ] r#* >0 asj— + oo,

i=1
uniformly for all R,0 £ R £ R; < + o0 and for all r € R% such that
(6.19) (logr,,...,logr,) €S, S is compact and S < int S%,,

since every r; is bounded from below on compact subsets of w}.. Taking logar-
ithms, this is equivalent to

Z;"= 1 Hjilogri — p()j)
J
with r; as above. From the definition of u;, we have p(j) — N < §(j), when y; is

nonzero. When y; = 0, we have convergence independently of re R"} , by Lemma
5.3. For p; not equal to zero

(6.20)

— —o0 asj— 4w,

(621) Zi=1tilogri—pl) T afl) — §0) + 0()logr: — 50)
J J

since p = p. We will now use Corollary 5.2 to make estimates. We have
4 £ bp + ¢y, for b > 1/4, since type(qd:p) = order(f:g) < 1/A. The expression
above is linear in §(j). Thus, we only need to estimate it on the endpoints of the
possible values of §(j). Since §(j) has a bound from above and since y; is zero
when §(j) is less than p(j) — N, the expression cannot be larger than the value for
4(j) < B(j) — N, or §(j) = bp(j) + ;. On the bound when §(j) < p(j) — N we
have u; = 0 and this case we have already considered. On the bound when
4(j) = bp(j) + c, the expression above is equal to

271 a(BU) — bp(j) + O(1))logri — B(j)
J

_ [ = b)Y alogr; — 115(j) + O(maxlogr))

J

(6.22)

—o0 asj— +oo,

1 1 S
1-b 1b-1

locally uniformly for (logry,...,logr,)eS;., where b’ >

A
o1 ', by Lemma 5.3 and 5.4. (Recall that b > 1/4 = 1.) For each compact
subset S of the interior of S5, there exist b, b’, such that § < S§. < int §%.. Thus we

see that the first part of the series converges locally uniformly in C* x w%. and by
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our discussion above we can conclude that we have locally uniform convergence
in C" x Q5.

In the same way we see that the second part of (6.4) converges locally uniformly
in C" x wh.. We want

623) 1ol R(f) = IQIR ] (%) 20 asj- +o0;

i=1

Taking logarithms, this is equivalent to

T .

Z'i"=1 vjilog (’g) —4q0)
J

We have p < ag + c,, for a > p, since type(p: §) = order(g: f) < p. For v; not
to be equal to zero, we must have p(j) > §(j) — N — m. In this case

(6.24)

— —00 asj— + oo;

L7 valog (—’5) —a) T BG0) - §0) + O(1) log (’;) ~ d0)
< .

J J

since g = 4. This is an expression linear in p(j). We have convergence indepen-
dently of reR™ on the bound putting p(j) = §(j) — N — m, when v; = 0, by
Lemma 5.3. On the upper bound for (jj), that is 5(j) = ag(j) + c,, the expression
above is equal to

(6.25)

71 Bad(j) — 4(j) + O(1)) logr; — ag(j)
J

_ [a—1))r  Bilogr: — ald(j) + O(max|logr)

J

(6.26)

—0o0 asj— +oo,

a 4 ,
a1 - p-1_ "
But S8 < int S%.. By a discussion similar to that for the first part we can conclude
that the second part of the series defining H converges locally uniformly in
C" x Qg'. (The Weierstrass function is an exception. It is holomorphic in Q%.).

locally uniformly for (logr,,...,logr,)e S, where a’ <

REMARK. It can be shown that if v; had not been put to zero for p(j) less than
G — N — m then the domain of convergence of the second part of the series
defining H had been only C" x Q4. n Q4. A similar statement holds for the first
part.

(b) implies (c) and (b’) implies (¢'). Pick some ¢ > 0. By condition (b) there exists
a holomorphic function H e 0(Q) satisfying
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6.27) h)S fOK@® +e=flt+ 1)+ K(—1) + ¢,
fO=h,OK@t+e<h,(t+1)+K(—1)+e¢

when |w;| = 1 for all i. If also condition (b’) holds one can take a function
satisfying

(6.28) H(z,1) = F(2), H(z,¢) = G(2).

The estimates still hold if we take the supremum over w. Using Lemma 3.1, we
get order(h(-,0): f) < 1 and order(f: h(:,0)) < 1. In general the following prop-
erty holds

1, if F is not a polynomial;
6.2 . =
(629) order(f:/) {0, if F is a polynomial,

asis perhaps easiest seen by Corollary 5.2 and Lemma 5.3. By submultiplicativity
when F is not a polynomial

(6.30) 1 = order(f: f) < order(f: h(-,0)) order(h(-,0): ) £ 1,

so that all orders are 1. If F is a polynomial the only possibilities for the order are
0 or + oo and the latter is excluded by the estimates above.

In a similar manner, we get order(g: h(-,1)) = order(h(-,1):g) = 1, when G is
not a polynomial. Otherwise 0.

(c) implies (a). We use Lemma 6.1 on the convex function h(-,-). The lemma
implies, since h(0, p’ — §) < + oo for all § > 0, that

(6.31) order(h(-,1):h(-,0)) < 1 =p.
With a change of variables s+— 1 — s, we get from the other side
1-X
- 0): h(- <-— -
(6.32) order(h(-,0):h(-,1)) < -1 -1 1/A.

By submultiplicativity
order(g: f) < order(g: h(-, 1)) order (h(-, 1): h(-,0)) order(h(-,0): ) < p;

order(f:g) < order(f: h(-,0))order(h(-,0): h(-,1))order(h(-,1):9) < i—

If F and G are polynomials both orders will be zero.
(¢') implies (c) and (b") implies (b) obviously, so we are done.

REMARK. We see that condition (b) actually is two conditions. We will refer to
these as condition (b) holds for every ¢ > 0 or condition (b) holds for some ¢ > 0
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respectively. Note also that the conditions in Theorem 6.2 are independent of
o and B, for if some of the conditions in Theorem 6.2 holds for «, € R™, with
Z o = Z B: = 1, then condition (a) holds. Since condition (a) is independent of a,
B the condition also holds for some other o, f, Y of =) i = 1.

THEOREM 6.3. Let F, G € O(C") be two entire functions and € < C™ a logarith-
mically convex Reinhardt domain such that condition (c) holds in Theorem 6.2 for
Q=0C"x Q. If order(F:G) > 1, then @ < 5. n Qﬂ, for some a, B R™ and for

some A' = -1 and p' = p P ] such that p and A satisfies condition (a). If
order(F:G) < 1 then @ < QF..
Proof. Put

(6.33) S’ = {xeR™ x = (log|w,|,...,log|w,|) for some we Q'}.

Then S’ is an open convex set and its intersection with the line t+— (t,.. ., ) is the
line segment (t,...,t), A’ <t < p’ for some A’ and p’ satisfying —o0 < A’ < 0and
1 <p £ +o00. Thus by convexity and since S’ contains the origin
S’ c int S5 N S, for some «, B R™ satisfying Y. o«; = ) f; = 1, with 5%, S%. de-
fined by (6.2). Moreover if H e 0(Q) = O(C" x Q')isa holomorphic function, then
the function h(-,) defined by (3.3) satisfies

’

(6.34) order(h(~,1):h(-,0))§p,p_ 1
and

-1
(6.35) order(h(",0): h(-, 1) < “——.

If H also satisfies condition (c) then by submultiplicativity

’

order(g: f) < order(g: h(-, 1)) order(h(:, 1): h(-,0)) order (h(:,0): f) < Ld

p—1 :
order(f:g) < order(f:h(-,0))order(h(-,0): h(-,1)) order(h(:,1):g9) < ! ;, A .
Thus
(6.36) order(G:F) < g _, =P
A—-1 1

order(F:G) £

P
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p , A
p—1’ A= A—1
and also as we see condition (a) in Theorem 6.2. But if condition (a) holds for
p and A we can extend F and G to C* x Q3 n Q4. Thus since S’ is contained in
8% Sh. all we have to do now is to check the points in @' for which some
component w; = 0. The set of i for which this can happen is the set of i for which
the component x; in x € S3. N S%, with the other components given fixed values is
unbounded from below. If A’ and p’ are finite this is exactly the set of i for which
Aa; 20 and p'f; 2 0. By the definition of Q3 and Q¢ we conclude that
Q < Q5 n Qb if X and p’ are finite. If p’ = + oo we just choose all B; positive so
that Q% _ = C™ butif ' = — oo there is no o such that Q* | = C™. The best we
cando s to choose a; = d;;for some j. Then % , = {we C™; w; + 0}. Thisis why
we need the condition order(F: G) > 1, hence A’ > — 0, to conclude that there

p

for some p and A satisfying 0 < A< 1,1 <p< +00,p =

A
exist A, p, « and B such that @ < Q3 N Q% for X' = -1 p = p
A and p satisfying condition (a).

The obvious counterexample of Theorem 6.3 for order(F:G) £ 1 is when
F = G. However if f(t) > g 0 K(t) for some ¢ then condition (b’) cannot be
satisfied for all ¢ > 0 using a function H holomorphicin C" x Q& withall §; > 0
by the maximum modulus principle. This follows since then the polydisk with
radii e” is contained in Q%., so that (t, s)— h(t, s) is increasing in se ] — o0, p'[. If
condition (b’) is fulfilled for some ¢ > 0 then h(t,0) = f(¢t) and h(t,1) < g O
K(t) + ¢, which leads to a contradiction if 0 < ¢ < f(t) — g O K(t). Thus even if
order (F: G) £ 1it might happen that the function H must have a pole for some
w; = 0. To be precise either ' is contained in % N QFf, or there is a constant
A such that AF, G cannot be extended to C” x €’ fulfilling condition (b) or (b").

PROPOSITION 6.4. Let F and G be two entire functions and let p, q be their
coefficient functions respectively. For each ¢ > 0 in condition (b) or (b’) in Theorem
6.2, we can choose a holomorphic function H in Q = C" x C™ which is rational in
the we C™ variable if § and § are finite in the same set and p — § is bounded there.
This is not possible if f — g O K or g — f O K is unbounded from above.

Proor. Recall the definition of H in (6.4). We can approximate the Weier-
strass functions by polynomials, since we made estimates only on compact sets.
Recalling the definitions of x4 and v in (6.4) we conclude that we can choose
H rational in the w variable if § and § are finite in the same set and § — § is
bounded there. We will see later in Proposition 6.6 that they must be finite in the
same set if condition (b) is to hold. If on the other hand H is rational in the w e C™
variable then there exists a polynomial P in C™ such that PH can be extended to
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an entire function in C" x C™. (We regard P as constant in the first n variables).
But |P] is bounded on the set of we C™ such that |w;] = e and we can choose P(1)
nonzero. Thus if H satisfies condition (b’) for some ¢ >0 and f — g0 K is
unbounded from above we get a contradiction by the maximum modulus
theorem in the same manner as in the paragraph proceeding Theorem 6.3. After

. 1 1
a change of variables (zy,...,2,, Wy,...,Wn)—| 24,...,2,,—,...,—— ] We can
W, Wm

apply the result on the case when g — f OJ K is unbounded.

REMARK. The first part of the proposition is also true for condition (c) and (')
since if H satisfies condition (b) or (b’) for some ¢ > 0 then it also satisfies
condition (c) or (c') respectively.

We can get bounds for the coefficient functions from the growth functions.
Assume that f (DK < g+ CorgOK £ f + D. Then the following estimates
hold by Theorem 5.1.

(6.37) §O0K2g=2fOK-C2pO0K-C
or
(6.38) FOK2f2gO0K-D2gOK-D

Using (5.1) and since none of the functions §, § or K attains — oo wegetf + C = §
or § + D = p. That is, we can estimate p — § from above or below. However we
cannot have both f (1K < g + Cand g O K £ f+ D at the same time if F and
G are transcendental. On the other hand if |f — g| < C then we can make
estimates as above to get |§ — §| < C — K. Itiseasy to calculate K and it is done
in Kiselman [2], where also the estimates log(t + 1) < —K@) Zlog(t + 1) + 1
are obtained. We see that in this case the function H can have logarithmic growth
in the powers of the we C™ variable. Taking C = 0 we see that this should be
possible to improve.

Let us call a logarithmically convex Reinhardt domain Q' < C™a k', p’-domain
if inf[t;(e',...,e)eQ] = X' <0, sup[t;(€,...,e)eQ] = p' > 0 and the comple-
ment of Q' contains {we C™w; = 0} for some i = 1,...,m, which is always the
case when ' > —oo. Then Q' = Q5 N Q& for some o, € R™ and the following
proposition holds.

PROPOSITION 6.5. Each condition in Theorem 6.2 is equivalent with the same
condition using w = C" x @, Q < C™ a (4, p')-domain instead of Q = {(z,w)e
C"x C"wes nQb}.

Proor. If we examine the proof that (b), (b’) implies (c), (¢') implies (a) in
Theorem 6.2 we see that this works also for a (A’ p)-domain. Thus if some
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condition holds for w then condition (a) will hold and from this we can conclude
that the same condition holds for Q. The other implication is trivial.

Thus we have found all finite-dimensional logarithmically convex Reinhardt
domains to which we can extend in the way of Theorem 6.2 without putting any
extra conditions on F and G.

REMARK. It is clear that it is enough for w to contain a (1, p’)-domain and be
contained in one to satisfy Proposition 6.5.

A theorem like Theorem 6.2 can not hold if F is a polynomial when G is not, or
vice versa, as seen by the following proposition.

PROPOSITION 6.6. Let F, G e O(C") satisfy condition (a) or (b) in Theorem 6.2.
Expand F and G in homogeneous polynomials. Then F(z) = Y Y_,, Pj(z), where
Py, Py # 0, if and only if G(2) = Y- 5 Q,(2), Qo O # 0. Also F@) = Y2 o P2,
where Py, % 0, if and only if G(z) = Z}”: uQ;(2), On +0.

ProOOF. We have already noted in the proof of Theorem 6.2 that condition (a)
would be violated otherwise. If we examine the proof that (b’) implies (¢’) implies
(a), we see that (b) implies (a) regardless of if F and G are both polynomials or not.
7. Extension of entire functions, refined case.

If we instead expand F € O(C") in a Taylor series

(7.1) Fz)=) Az, zeC' keN~
k

where k is a multi-index, we define the refined coefficient function of F as

a(k)={-—log|AkL ke N™

(1.2) o ke RN

Similar connections hold between the refined growth and coefficient functions,
as between the ordinary growth and coefficient functions. Define K, by
(7.3) Ky() =K() + ...+ K(), LeR,
with K defined by (5.2). Then we have the following theorem.

THEOREM 7.1 (Kiselman [2], Theorem 6.6). Let F be an entire function in C".,
Define a, f, by (7.2), (3.5) respectively and K, by (7.3). Then

a<f,<alK, onR"

COROLLARY 7.2. Let F, G be two entire functions in C". Let f,, g, be defined by
(3.5) and a,b by (1.2), with F, G respectively. Then
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(7.4) order(f,:g,) = order(a:b) = type(b:4).

Proor. This follows from Lemma 3.1 and Theorem 2.3 in the same way as in
Corollary 5.2.

LeEMMA 7.3. Let F € O(C") be an entire function and a be its refined coefficient
function defined by (7.2). Then

aty
Ik

where |k| = Y7_ |k;l = Y-, k;.

ProoF. Since F is entire

- + 00 as k| - + oo,

|4l [T R —0 as |k| - + oo,

=1

for all Re R",. Hence taking logarithms

M=

k;log R, — a(k) » — 0 as |k| = + 0.
1

1

From the definition of a this actually holds for ke R". Thus we can apply
Lemma 5.4 on a refined coefficient function since by definition it is obviously
lower semicontinuous.

Define the convex functions

(71.5)  h,(t) = sup[log|H(z,w)|; ze C", |z;| £ €], teR", weQ < C™

and

(7.6)  h(t,s) = sup[log|H(z,w)|; ze C", we 2 z;] < €", |w;| = €', Vi]

z,w

= sup[h,(t); lw;| =€, Vi=1,...,m], teR", seR;

Then in complete analogy with Theorem 6.2, we have

THEOREM 7.4. Let F,Ge O(C") be two transcendental entire functions. Define
their refined growth functionsf,, g, by (3.5) respectively. Let A, p € R, a, B € R™ satisfy
0<As1Zp<+owandy o =) B;=1. Define the domain

Q= {(z,weC" x C", we ;. nQ4}
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A
defined by (6.3'). Then the following conditions are equivalent:

(a) order(g,: f;) < p;

A
where A’ = —:—T,(-—oo <A <0),p =p_e_1—’(1 <p = +oo)andQ§,,Qf;, are

order(f,:g,) < -;—;

(b) Foreache > 0(or equivalently some ¢ > 0) there exists an H € O(2), such that

[<h,0OK,+¢ h, 20K, +¢, wi| =1, Vi=1,...,m;
9, <h, 0K, +¢ h,<g, 0K, +¢, wi| =e, Vi=1,...,m,

where h,, is defined by (7.5) and K,, by (7.3),
(b’) The condition (b) holds with the extra assumption

H(z,1) = F(z) and H(z,e) = G(2);
where 1 =(1,...,1) and e = (e,...,e). (m times).
() There exists an H € O(Q), such that
order(f,:h(-,0)) = order(h(-,0): f,) = 1;
order(g,: h(-,1)) = order(h(-,1):g,) = 1,

where h(-,") is defined by (7.6).
() The condition (c) holds with the extra assumption

H(z,1) = F(z) and H(z,e) = G(2).
(If F and G are polynomials the theorem still holds if condition (c) is altered to
order(f,:h(:,0)) = order(h(-,0): f;) = 0;
order(g,: h(-,1)) = order(h(:,1):g,) = 0.

In this case condition (a) is equivalent with order(f,:g,) = order(g,: f,) = 0.)
If a holomorphic function H e O(Q) satisfies condition (b) or (b') for some ¢ > 0
then it also satisfies condition (c) or (') respectively.

ProOF. Make the expansions

F)= Y Az G@)= Y Bz

keN™ keNn

Let a and b be the refined coefficient functions of F and G respectively. This time
in the proof that (a) implies (b’) we use the function H defined by
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a H(z,w)=;l[EN< ; ) Y A we +E~< > Y Bt ( )]
EN<'-—) keN™ keN™

e

with the same definitions of N, Ey, y and y’ as in the proof of Theorem 6.2. The
multi-indices j, v, € Z™ are chosen such that p,; = v,; = 0, if d(k) = + oo, which
occurs if and only if g(k) + o0, since we are demanding finite order. (Recall
Corollary 7.2). Otherwise we take y; as the mtegcr part of o;min(d(k) —
g(k) N,0) and v,; as the integer part of ; max(d(k) — b(k) + N + m,0). We get
the partial refined coefficient function c,, of H as

1 w\ o 1 0
Ex(1/e) ( )A"W +E"(w )B"(e) ]

By the triangle inequality and (6.5), we have
Vk
Ex (—1—) B, (1) ) < culb)
w e

Y
(L"_) Ao +
e

¥
Ey (L) Ay
e
1 w \'
w e

The estimates are now the same as those in Theorem 6.2. When |w;| = 1, we get
d—e? " ¥<e¢, by (7.9) and estimates like (6.6) and (6.7), which implies
é,<d+e* M For keN" such that a(k)=d(k), we get by (7.10)
c(k) < d(k) + ¢*~. Hence using Lemma 5.4 we get d < é,, + e~ ~, so we have
d—¢<¢,<d+ eusing e’V < ¢ Finally by Theorem 7.1

ﬁédDKnéawDKn+8§thKn+69 |W1I=1a
h,<é,0K,d0K,+es UK, +¢  |wil=1

(7.8) ¢ k) = —log|—=——

(7.9) —log(1 +e V1 — log< Ex

and

(7.10) cu(k) £ —log(l —e ¥ 1) —log

When |w;| = e we get using (7.9), (7.10) and similar estimates as in (6.8), (6.9),
5—s§6w§5+s.Hence

9. <b0K, <6, 0K, +e<h, DK, +e  wl=¢
h,<é,0K,<b0OK,+e<g, 0K, +¢ |wl=¢
To show that H is holomorphic in Q, we now show that

|| R¥r#x = | Ay n RK H 0  as k|- +oo,

i=1
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uniformly for all Re R",0 £ R, £ R’ < + o0 and for all re R" such that
(logry,...,logr,)€Ss, Sis compact and S < int S5..

Taking logarithms, this is equivalent to

Z:'"= 1 Wi logr; — a(k) N

(7.11) i

— 0 as |k| - + 0.

By Corollary 7.2 we have b < déd + c4,ford > 1/4,50 as in the proof of Theorem
6.2 we can make estimates

Z?’L 1 Wi logr; — a(k)

(7.12) i
= max<_ alk) 27, (@K — dak) + Ol)logr: - 5(k)>
= max<~ a|§<l;) , S d)ZE'Ll o;logr; ‘I‘kll]a(k) + O(max |10gril))

and the last expression tends to — oo locally uniformly on S3. as |k| — + oo for

d >

=4 > A’ by Lemma 7.3 and Lemma 5.4.

Also we can show that
. r Vi n " m ri Vki
B R*| =) =IBJIIRF]II(—=) -0 aslk— +oo,
€ =1 i=1 \ €
uniformly for all Re R"%, 0 < R, £ R’ < + o0 and for all r € R such that
(logry,...,logr,)€S, S is compact and S < int S5..

The proofs that (b) implies (c) and (b’) implies (c’) are similar to those of
Theorem 6.2 and omitted. Also the proof that (c) implies (a) is similar and
omitted. We have the trivial implications (c’) implies (c) and (b’) implies (¢'), so we
are done.

We have some similar statements as those following Theorem 6.2.
COROLLARY 7.5. The conditions in Theorem 7.4 are independent of a and .

THEOREM 7.6. Let F, G e O(C") be two entire functions and Q' = C™ be a logar-
ithmically convex Reinhardt domain such that condition (c) holds in Theorem 7.4
for @ =C" x . If order(f,:g,) 2 1, then & < Q5 Q% for some a, e R™ and
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for some A’ = and p' = such that p and A satisfies condition (a). If

A p
A—1 p—1
order(f,:9,) < 1then Q' < 5.

Also in the refined case it is necessary to have Q' = 5 n Q5. to ensure the
possibility to extend all functions with specified orders to C" x Q'.

PROPOSITION 7.7. Let F and G be two entire functions and let a, b be their refined
coefficient functions respectively. For each ¢ > 0 in condition (b) or (b’) in Theorem
7.4, we can choose a holomorphic function H in Q < C" x C™ which is rational in
the we C™ variable if G and b are finite in the same set and & — b is bounded there.
This is not possible if f, — g, (1 K, or g, — f, 11 K,, is unbounded from above.

ProposITION 7.8. Each condition in Theorem 7.4 is equivalent with the same
condition using = C™ x @, @& < C™ a (X, p')-domain instead of Q2 = {(z,w)e
C"x C™weQ; N8},

PrOPOSITION 7.9. Let F, G e O(C") satisfy condition (a) or (b) in Theorem 7.4.
Expand F, G in Taylor series
F(Z) = Z A,‘zk, G(Z) = Z Bka.
keNn keNm™

Let C(F) denote the convex hull of those ke N* for which A, % 0 and define C(G)
similarly. Then C(F) = C(G).

PrROOF. Letdom(d) = {xeR";d(x) < + oo} be the effective domain of 4, where
a is the refined coefficient function of F. If b is the refined coefficient function of
G then by Corollary 7.2 we must have dom(d) = dom(ﬁ), if condition (a) is to
hold. Now C(F) = dom(d) < cl C(F) holds in general and we will see that actual-
ly dom(d) = C(F). Define for je N

a(k)a ki _—<: j’ Vl’
+ o0 otherwise;

(7.13) a;k) = {

and let C(a;) denote the convex hull of dom(a;). Then C(a;)is a subset of C(F) and
is closed since it is finitely generated. Now take a point x e cl C(F)\C(F) and an
arbitrary number M € R. Then x ¢ C(a;). Since C(a;) is closed and a; is bounded
from below there exists a non-vertical hyperplane P; = {(y,z)eR" x R;
z =¢;y + ¢;} passing through (x, M) and also satisfying &;-k + ¢; < a;(k) for
each k. Since by Lemma 7.3 a has faster growth than any linear function we can
take P;,; = P; = P for all j = N, for some number N and some hyperplane P.
Now a; — a pointwise, so by (2.3) and since M was arbitrary we conclude that
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d(x) = + oo. This shows that condition (a) implies C(F) = C(G). Also (b) implies
(a) regardless of the expansions of F and G.
8. Transformation of the relative order.

In Theorem 6.2 the correspondence between the maximum size of the domain
Q2 and the relative orders is complete when order(F : G), order(G:F) > 1 orif F,
G are polynomials. This is not always the case, but we will see that it is possible to
transform the orders. Assume that F, G e O(C") are transcendental and that I,
k are integers. We define the mapping g;: C" — C"by g/(z) = (z},...,z}) and make
the transformations

@.1) Fu(z) = F(oi(2))
Gul(2) = G(ox(2))"

We have |o,(2)| = |z|', with the norm |z| = max; |z;|, which is the norm we will now
use to determine the growth function of Fj,

(8.2) Su(t) = sup[log|Fyu(2);; ze C", |z| < €']
= sup[log|F(o(2))"; ze C", |z| < €]
= sup[klog|F(z); 2’ € C", |2| £ €"]

= kf (It),

f being the growth function of F. Similarily g,,(t) = lg(kt). We can now see the
effect of the transformation on the relative order:

1
Sul®) zgn(at) + Cqs

W) S glak) + <.

) ka
< gl —
&< g( , s) + s
Thus
(8.3) order(Fy.: Gy) = %order (F:G)
and similarly

(8.4) order(Gy;: Fy) = %order(G :F).
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This gives the invariance

8.5) order(Fy: Gy;) order(Gy, : Fy,) = order(F: G)order(G: F) = 1.

If we have strict inequality there are numbers k, /€ N such that both
order (Fy,: Gyy), order(Gy,: Fy,) > 1.

Otherwise we can get the orders arbitrarily close to one.
These transformations also work on the refined growth functions.
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