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ON PRINCIPAL GRAPHS AND WEAK DUALITY

UMA KRISHNAN* and V. S. SUNDER

Abstract.

The main result is that if a finite tree occurs as a principal graph of a subfactor N of a II, factor M of
index greater than 4, if the contragredient maps on the principal graphs are trivial, and if no vertex has
degree greater than 3, then the tree must contain a subgraph isomorphic to what is denoted by E{ in
[GHI] (and by T in this paper). The proof uses a notion that we call “weak duality” of graphs. The
result needed is that certain kinds of graphs can be weakly dual only to themselves. This paper also
contains a proof of the assertion that the distinguished vertex = of a principal graph is essentially
determined up to a parity-preserving automorphism of the bipartite graph.

1. Introduction.

This paper is devoted to a study of the properties of a pair (¢4, #) of pointed finite
bipartite graphs wich arise as a part of Ocneanu’s paragroup invariant of a finite
index subfactor. After setting up some notation and recalling some basic facts
about subfactors, we proceed to analyse the role of the distinguished vertex of the
graph ¥; in particular, we describe the extent of uniqueness of the vertex * up to
a graph automorphism. In the last section, we single out a property possessed by
a pair of principal graphs of a subfactor for which the contragredient maps are
trivial, which we term ‘weak duality’. The main result here is that if a pair of
graphs 4 and s are weakly dual, then % is necessarily isomorphic to J# if
% satisfies some conditions — at most triple points, no double bonds, and the
absence of two specific kinds of subgraphs. This is the technically complicated
part of the paper, although, when suitably combined with an observation by
Ocneanu, it leads fairly easily to a proof of what has been referred to, in the
Abstract, as the main result.

2. Notation and other preliminaries.

In this paper, we will be dealing with bipartite graphs. If ¢ is such a graph, its
vertex set V(%) admits a partition V(%) = 9°] | 4", the vertices of the former
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(resp., latter) being referred to as even (resp. odd) vertices. (We use the sym-
bol [ | here and elsewhere to indicate a disjoint union, and the even vertices of
% are written with a superscript 0 and odd vertices with superscript 1.) We shall
also find it convenient to encode the data of the graph ¢ by the matrix G with
rows (resp., columns) indexed by 4° (resp., 4!), with the (8°, £') entry equal to the
number of bonds joining the even vertex f° to the odd vertex &', Itisclear that the
adjacency matrix A(%), whose rows and columns are indexed by V(%) is given in

block form by
0 G
G 0]

It follows that the non-zero eigenvalues of A(¥) are precisely the numbers + 4,
where A2 is a non-zero eigenvalue of G'G; further, the restrictions of the Per-
ron-Frobenius eigenvector of A(%9) to 4! and %° are the Perron-Frobenius
eigenvector of G'G and a suitable (= |¢| ~') multiple of its image under G re-
spectively.

We now recall some basic facts concerning the principal graphs associated to
a finite-index inclusion N = M of I1, factors (usually assumed to be hyperfinite).
Most of these facts stem from one of three sources — the work of Jones, Ocneanu
and Popa — and we will not take the trouble of painstakingly ascribing each to
a specific author.

Let N = M be a pair of hyperfinite II, factors, with finite index. Then the basic
construction of Jones yields a canonical tower Nc M c M, cM,c...c
M, c ... and a semi-canonical tunnel M\ =Mo>M_=NoM_,>5M ;>
...>M_,>... In any case, the doubly indexed grid {4;,=M_, N M,
k,n = 0} is canonical. It is well-known that the inclusion data of this grid is
encoded, in a precise manner, by a pair {%, #} of bipartite graphs which satisfy
several conditions. (Recall that the subfactor N is said to have finite depth
precisely when either (equivalently both) of the principal graphs is (are) finite.)

3. The distinguished vertex *.

Any graph ¢ that arises as a principal graph is, in addition, a pointed connected
graph; i.e., it contains an even vertex — always denoted by *4 — which has the
distinguished feature of being an even vertex at which the Perron-Frobenius
eigenvector of the adjacency matrix A(%) is minimal. The content of the next
proposition is to note that the above “feature” determines the vertex essentially
uniquely. Although fairly straightforward, this proposition has been inciuded
here because the authors have not seen a proof of this in the literature.

PROPOSITION 1. Let % be a principal grph of a subfactor N < M, of finite depth.
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Then the vertex *4 is uniquely determined up to a “parity-preserving” automo-
rphism of the bipartite graph 4.

Proor. (In this proof and elsewhere, when we have to use the language of
hypergroups, we shall use the results as well as the terminology of [S] and [SV].)
If 4 is a hypergroup, the set %o, = {f€%:d; = 1} is a sub-group of the hyper-
group ¥, where of course, a+— d, denotes the dimension function of ¢ (which is
the unique “positive homomorphism” from the hypergroup ring Z% to R). Also
since the uniqueness of the dimension function implies that d; = d,, it follows
that

weYo=>1=d2=d,"d, =) Ca&ydd,=1+ Y <(a-&y)d,
ye¥ 1$ye9
and hence that (a-&,y> = Ofor 1 + ye%. In other words, a-& = 1. It is immedi-
ate that %o, is a group.

On the other hand, if the graph % is a principal graph, then in the terminology
of [SV], the set ¥ has the structure of a hypergroup which acts on the set *. If
aEe {4(‘(’,,, and if Ly and L,, respectively, denote the matrices (with respect to the
natural bases) of left multiplication by & on Z%° and Z%!, the already established
equationa - & = 1 implies that the matrices L, and L, are orthogonal matrices; as
these are non-negative integral matrices, they must be permutation matrices.
Hence, the map A+ f(4) = a- A defines a parity-preserving permutation of V(%)
such that f(1) = a, where 1 denotes the (unique) identity element of the hyper-
group %°.

To complete the proof, we need to verify that the map f defines an automo-
rphism of the graph %, i.e., G(B, &) = G(f(B), f(&)), for all Be ¥°, Ee 4. However,
we have G(B, &) = {f- 4, &), where A denotes the sum (with multiplicities taken
into account in case of multiple bonds) of the neighbours in %' of *4 (Where we
think of 4 as an element of Z%!). Hence,

G(f(B), f(O) =< B) A (2 &)) = (@ @) B-4,&) = G(B, <)

as desired.

ReMARK 2. Note that we have not proved that the distinguished vertex * is
determined uniquely up to an automorphism of the graph; what we have shown s
that once we have pre-determined the parity, then among the even vertices, the
vertex * is uniquely determined up to an automorphism. This prompts the
question: is it possible for a graph ¢ that arises as a principal graph to admit
vertices « and ¢ of different parity at both of which the Perron-Frobenius
eigenvector of the adjacency matrix A(%) assumes the minimal value, and yet
such that there is no (necessarily, parity reversing) automorphism which maps
o to £? (The graph A,, is a non-example.)
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ExampLE 3. We are grateful to Bhaskar Bagchi for this combinatorial example
which, besides being pretty, illustrates two different phenomena, viz., (i) there is
a bipartite graph ¥ at all of whose even vertices the Perron-Frobenius eigenvec-
tor takes on the same value and yet the automorphism group of 4 does not act
transitively on the set of even vertices; (hence by the above proposition % cannot
arise as a principal graph;) (ii) there is a second pointed bipartite graph 5# which
is not isomorphic to 4 although the two graphs are “weakly dual” — cf. Definition

(4).
6
Both the graphs 4, # have 15 = ( 2) odd vertices indexed by the 15 edges of

the complete graph K4. Each graph has 10 even vertices indexed by certain
subgraphs of K ¢ (isomorphic to C3 | | C; or Cg, where C, denotes a k-cycle — thus
Cg is a hexagon, etc.). In both graphs, an odd vertex is adjacent to an even vertex
precisely when the relevant edge belongs to the relevant subgraph.

. 6
The even vertices of # correspond to all the 10 = (( 3)> / 2 subgraphs of K

isomorphic to C;[ [ Cs.

The graph ¢ also has ten even vertices; these correspond to six subgraphs
isomorphic to C;]]C; and four subgraphs isomorphic to Ce. They are:
{1249)[1(356), (125)]](346), (136)]](245), (145]](236), (134)][](256),
(146)]__[ (235)} and {(123456), (126453), (156423), (153426)} — where we have used
the obvious notation (v;...v;) to denote the k-cycle that successively passes
through the vertices vy,..., .

Both graphs share the following properties: (i) each odd vertex has degree 4 and
each even vertex has degree 6 (and hence the value of the Perron-Frobenius
eigenvector at a vertex depends only on the parity of the vertex); (ii) given any two
distinct odd vertices, the number of paths of length two which join them is 1 or
2 according as the corresponding edges (in K¢) share a common vertex or not.
These facts ensure that the graphs are weakly dual as asserted, provided the
distinguished vertices of both ¢ and J# are taken to be the same graph isomor-
phic to C5[ ] Cs.

Note now that the graph ¢ has two kinds of even vertices. We assert that any
automorphism of ¢ leaves invariant the set of all even vertices of either kind.
Since the Perron-Frobenius eigenvector is constant on the set of even vertices of
9, this example does indeed illustrate the claimed features. (In fact Aut(s#) is
isomorphic to S¢ while Aut(%) can be seen to be a group of order 48.)

To prove the assertion, first observe that ¢! is identified with the edges of K,
which in turn constitute the vertices of L(Kg)-the so-called line graph of K.
(Recall that two vertices are adjacent in the line graph L(K) precisely when the
corresponding edges in K have a vertex in common.) Suppose now that we are



ON PRINCIPAL GRAPHS AND WEAK DUALITY 53

given an automorphism o of 4; by property (i) above of G, the automorphism
o must preserve parity; so gl yields a self-map of the vertices of L(K); the fact
that ¢ has the property (ii) of the previous paragraph is seen to imply that this
map must preserve adjacency in the graph L(K), and is hence an automorphism
of L(K ). It is not hard to see that every automorphism of L(K ) is induced by an
automorphism of K. Thus, 6+ a|,,: yields a map from Aut(%) to Aut(K¢) = S,
which is clearly a monomorphism. Since no automorphism of K¢ can map
a subgraph of the form C5 | | C; onto a subgraph of the form Cg, the proof of the
assertion is complete.

4. Weak duality.

If two pointed bipartite graphs 4, # arise as the two principal graphs corre-
sponding to a finite-index subfactor, then the sets ¥°, #° of even vertices of the
two graphs are naturally equipped with involutions corresponding to the con-
tragredient mapping at the level of bimodules. We shall be concerned with
subfactors for which both these involutions are trivial; for brevity, we shall simply
say that the subfactor has trivial contragredient maps when this happens. For
such a subfactor —i.e., one with trivial contragredient maps — it follows from the
description of the grid {A, ,} discussed earlier, that the graphs ¥ and # are
“weakly dual” in the sense of the next definition.

DerFiNITION 4. Two pointed finite connected bipartite graphs (4, *4) and
(o, * ) are said to be “weakly dual” if the following conditions are satisfied:

(1) 9! = ¢

(2) G'(*g) = H'(*,) (i.e. the neighbours of * in ¢ and J# are the same).

(3) G'G(¢Y,n')y = H'H(E ") for all &', n' e %’ (i.e. the number of paths, of
length 2, between ¢! and 5! is the same in 4 and ).

(This would be the appropriate place to acknowledge our gratitude to Uffe
Haagerup for leading us to think along these lines; he had, in oral communica-
tion, pointed out that if the graph 4 “looks like an A, up to a certain distance from
*4”, 50 also must s — cf. Remark 7 (2).)

ReMARK. Note that when ¢ and ¢ are a pair of principal graphs, the
identification of the odd vertices in (1) is via the contragredient map 7. When the
contragredient map on the even vertices is nontrivial the graphs do not satisfy
condition (3), but they satisfy G'140G = H'T yoH.

We turn now to pairs of graphs which are not isomorphic but which are weakly
dual. The simplest known example comes from the principal graphs for the
inclusion N « M, when M is the crossed-product of N with a non-abelian group
of outer automorphisms of N. In this example, as is well-known, the graph 5 has
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multiple bonds while ¢ does not. An example of graphs without multiple bonds is
furnished by Example 3. Another such, but smaller, example is given below.

ExAMPLE 5. We begin by discussing a pair of graphs which are “almost”
weakly dual, but just fail to be so; nevertheless they have near relatives which do
furnish an example of a pair of graphs which are weakly dual but not isomorphic.
The non-example is discussed here mainly because of the key role these two
graphs play in Proposition 6.

(a) Consider the following pair of graphs, with even and odd vertices labelled
as indicated (fig. 1).

«; & «g g‘z «3 i'l P2
1 © 1
;; P' g:.
3 , .
& Ps
G=1 H=C,
Figure 1.

(Here and in the sequel, we write T to denote the “T-graph” each of whose arms
is two edges long. This graph is denoted by E{") in [GHJ], but we use the notation
T because it is more suggestive.)

It is easily verified that the condition G'G = H'H is satisfied. Since every even
vertex in J# has degree 2 while none in ¢ does, clearly these two graphs cannot be
wealy dual (by condition (2)).

(b) Consider these graphs with labelling as indicated (fig. 2).

7
< | w3 & & pe ) 4
£,
& P 6
«% . ,
&, Ps
G=A, #T H=A,#C,

Figure 2.
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(Here and elsewhere, we use the symbol # to denote “connected sum”, whereby
we mean that a pair of vertices, one from each of the graphs in question, has been
identified; to be sure, there are several ways of forming such a connected sum.)
Again, the condition G'G = H'H is satisfied. While the vertices «J and B have the
same degree, what fails now is that the minimum value of the Perron-Frobenius
eigenvector of A(%) occurs not at a2 but at the vertices a3 and aj.

(c) Finally, the desired example comes from the following graphs, with labell-
ing as indicated (fig. 3).

G=Ag#T H=A4,#C,

Figure 3.

Here, it is the case that *4 = a2 and *, = p2.

(d) It goes without saying that by extending the A-part of the graphs more and
more, the graphs 4 and # generate a whole sequence of pairs of non-isomorphic
graphs — namely A4,, # T and A4,, # Cg — which are weakly dual.

We are now ready to prove the following proposition which gives some criteria
on a bipartite graph ¢ which ensure that the only graph, up to isomorphism,
which is weakly dual to ¢ is % itself. (Observe that in view of Example 5 (c), (d), the
conditions (3) and (4) in the proposition are almost necessary.)

PROPOSITION 6. Suppose % is a finite connected bipartite graph satisfying the
following conditions:

(1) no vertex of 4 has degree greater then 3;

(2) % does not have double bonds;

(3) % has no 6-cycles; and

(4) % has no subgraph isomorphic to T such that each of the vertices of degree 1 in
T is an even vertex in 9 whose degree in 9 is still 1.

Then the identification ' = ' extends to a graph isomorphism of 4 to X .

Before proceeding to the proof proper, we set up some notation. We shall use
the notation (¢o — &; — ... — &,)€9 to signify that &, &,,. . ., &, are vertices of
the graph % such that &;_; is adjacent to £;in% for 1 <i< n.
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The set of neighbours of « in % will be denoted by .47?. In the following, since
we shall be dealing with a pair of weakly dual graphs 4 and 5, which have the
with a pair of weakly dual graphs 4 and »#, which have the y 4, when « is an even
vertex of either ¥ or .

We shall also employ the following notation: for vertices &, 7 in ¥:

(i) the symbol %(&, n) will denote the set of common neighbours in ¢ of ¢ and 7,
ie. Y& =N AN? (note that, in the absence of double bonds,
|%(EY, 1Y) = G'G(¢, n'), whence |9(E?, £Y)| is the degree of £ in ;)

(ii) the symbol £¥(¢) will denote the set of degree one neighbours of £ in %; i.e.,
I8 = {Be N degg(B) = 1};

(iii) the symbol A will denote the set of triple points (i.e., vertices of degree 3) in
%% suppose A = {A%,49,...,40},1 = 0.

Proor. It is not hard to see that the above conditions (1), (2) and (4) of the
proposition imply the conditions (1'), (2') and (4') below. (To be precise, condi-
tions (1) and (2) are together equivalent to conditions (1') and (2'); while condition
(4)is equivalent to (4').) What we shall prove is that conditions (1'), (2'), (3) and (4')
suffice to ensure the validity of the conclusion of the Proposition. (We have,
however, chosen to state the proposition as we have, since we fell that this
formulation is more “visual” and easier to verify.)

1) (G'G)(EL, &) < 3, for all ¢! in 91

(2)) for all f%e %° deg(f°) < 3; and

(4) for all A°€ A there exists o€ A0 such that £¥(¢L) = 6.

In the proof we would have occasion to use the following condition (3') which
can be seen to be implied by (3).

(3) If 2 = {0}, w}, w}} is a subset of ¥* such that between any two vertices in
Q thereis a path of length 2in %, i.e., (G'G)(w}, w}) + Ofor i # j, then, Q is the set
of neighbours of some triple point in %, i.e., 2 = 40 for some A° € A.

We break the proof, which is somewhat involved, into the following steps.

Step 1. ## has no double bonds.

Reason: H'H(, EY) = G'G(EY,¢Y) < 3for all (e @,

Step 2. Each vertex in J# has degree at most 3.

Reason: For the same reason as in Step 1, this is clear for the odd vertices.
Suppose, now, that there is an even vertex §° in #° such that deg(6°) = 4.

Case (1). There is an even vertex 6° in #° such that deg(5°) > 4. Then 6° has
at least five neighbours, i, &3, &35, &4, and &5. The path (&} —6° —¢)) in
H# ensures that G'G(¢, ', ¢}) = H'H(¢} ,¢}) # Oforalliandj. By (3'), for any choice
of distinct i,j and k, {£}, £}, &4} = Ao for some A%€ 4, ie. each &} is adjacent to

4
(( 2) = )6 distinct triple points in ¢, which contradicts (1).
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Case(2). Suppose there is an even vertex 6° in #°° such that deg(6°) = 4. Then
6° has four neighbours &1, &3, &}, and £}. By the same reasoning as above, for
distincti,jand k, {£}, £}, &3} = Ao for some A° € A. So there are 4 triple points 49,
43,43, A4in @ such that ;0 = {£}:j + i}. Let &' be the induced subgraph of % on
the vertices {¢j: 1 < j < 4} U {4%: 1 £ i < 4}. Sinceeach A and ¢} has degree 3in
@', the conditions (1) and (2) imply that ¢’ is a connected component of %, and
hence ¥’ = % by the assumed connectedness of %.

Since % and # are weakly dual, we have the following:

() o' = {€1,85, 83,84}

(i) H'H(EL, &) = 2for 1 Si4j <4,

(i) HH(ELE) =3 for 1 <i < 4.

We proceed to deduce that there must exist another even vertex 6 # 6° of degree
4in # such that A0 = A = {£]' &} &Y &4}

By (ii) there are unique even vertices xg., distinct from 6° such that
(&} — k% — &}) are in #. Then for any & and j # i, we have (£} — §°), and
(¢! — x}),arein 9. Butdeg(&}) < 3. Therefore for each i, kj = 3 for somej + k.
Now (&} — k) = ki — &4)isin #. But k%, is the unique vertex other than 6° such
that (¢} — Kk — &p)isin #. So kf; = k§, = k%, which is then a vertex of degree at
least three. Hence each &} is connected to a x? + 6° such that deg(x?) = 3. We
now show that all the x? are the same.

Now, for 1 £i,j < 4, we see that,

W2 Hogl = LAl + [ Hoel = 1He 0 Al
23+3—|# =2

Let1<i#j <4 Thenthereexist 1 <k # [ < 4suchthat,életon .
Then since H#(&}, &) > {6% k2, k9} and 6° + &P, k7, the property (ii), stated
above, implies that k) = k.

So there does indeed exist 69 + 6°e#°, such that deg(69) =4, and
N = {8 & & L)

By (iii) there must exist even vertices 82, 83, B3, B2 in #°, such that (£,' — B?)
are in # and deg B0 = 1.

Thus the graphs ¢ and # are fully determined. Observe that all the even
vertices of 4 (42,1 £ i < 4) have degree 3, while the even vertices of # have
degree either 4 (deg(6°) = deg(6%) = 4) or 1 (deg(B?) = 1 for all i). So there can be
no choice of *4 and *, such that @'(xg) = H#"'(* ).

This completes the proof of Step 2.

Let A = {ul, p3,...,u2}, m = 0, be the set of triple points in #°°.

Consider the following partition of the sets of even vertices of 4 and # respect-
ively, obtained by considering the degrees of the even vertices:
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= I #%¢) I @& nN\nlla

,:xegl {l n le@t
&t
x0= 11 #7¢H 1 e n\mlla.
:lex’l {lél,’;e:lfl

To establish that ¢ is isomorphic to 4, it is enough to set up bijections
between the corresponding components of the above partition for 4° and #7°,
which preserve neighbours —i.e., if f* #° — %° is the resulting “grand bijection”,
then N0 = N for all a® in 5#°.

Step 3. In order that there exist a bijection between ¢° and #° as in the
preceding sentence, it is necessary and sufficient that the following conditions (A)
— equivalently (A") — and (B) are satisfied:

(A) There is a bijection f: # + A so that A, = A, for all pin .

(A’) For any three element subset A4 of %', |{Aled: N =
N =l € M: Ko = A},

(B) £ = |#* (") for all &' in ¥,

Reason: The necessity of the conditions (A) and (B) is easy to see, as is the
equivalence of the conditions (A) and (A’). (One way of seeing that (A) < (A') is by
appealing to the “marriage lemma”.)

As for sufficiency, suppose the conditions (A’) and (B) are met. Note that
19(E4,nY)| = G'G(EY,n') = H'H(E ') = |#(EL, nY)|; on the other hand, the con-
dition (A’) implies that, for all £%, ' in %', we have the equality

A eA: (& — A —nY)ed}| = (e d: (&' — ) —nMex}l.
Therefore, for all £%, ! in 9!, we have
19 n'N\A| = | A, n")\ A,

which establishes a bijection between the vertices of degree two connecting ¢!
and ' in ¢ and . This completes the proof of Step 3.

Hence, in order to complete the proof of the proposition, we only need to verify
the validity of (A") and (B). The proof of (A’) will be achieved in Steps 4 and 5, while
Step 6 will prove (B).

Step 4. For /" = {&}, &5, &} < 9 [{A% e A Npo = Y| 2 [{u® € 4
Ny = N}

Reason : We consider three cases according to the number of triple points
u®e A such that & = A4, 40, (Which cannot exceed 3 since the odd vertices can
have degree at most 3, in either graph).

Case (i). Let /" = Ao for some u°e .#. Then G'G(¢},¢&}) = H'H(E!,EH £ 0
for all i, j. By (3') A0 = A0 for some A% A.
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Case (ii). Suppose there exist ul,ude# such that u+ u$ and
N0 = N0 = A. By (i) above, there exists A7 € 4 such that A0 = A0 = 4.
Since there are at least two triple points in # each of whose set of neighbours
equals A, G'G(&},&)) = H'H(],&}) 2 2. Therefore, there exist k{; % A9 in ¢°,
such that (&! — k{; — &J) are in ¢ for all distinct i and j.

If all the «{s were distinct, (£} — k7, — &5 — k93 — &3 — k3, — £1) would
from a 6-cycle in 4. Therefore for some j + k, k{j = k), which then is a triple
point, 13, in °, such that A0 = A"

Case (iii). Suppose there exist three distinct points u, u3, uJ € .# such that
N, = A for all i. By (i) above there exists 19 € A such that 4/ PL=Ho=N
Since there are three triple points in 5 each of whose set of neighbours equals A",
we have H'H(&},£3) = 3. So there exist distinct «3, k9, distinct from A%, such that
(&1 — ) — &), (&1 — K5 — &) arein 4. Now G'G(¢, ', &3) = 3 and Deg(¢)) < 3.
Therefore (£} — x§ — &}) and (£] — k2 — &}) are in %. So we have {49,13 = «9,
A3 = K9} € A such that Ao = 4.

Step 5. End of proof of (A").

For all (' e%!

1 1%L = ¢.§‘,,. 19 — {A e A: (A7 — ENe )| + 17N

and,

@ e = gi‘éﬂl &) — {ple A () — E e} + |FX(E.
(Reason: While |4(£!,n')| counts the number of even vertices B° such that
(&' — B° — n')isin %, the first summation on the right side counts such vertices of

degree two precisely once and vertices of degree three twice.)
If £! is such that |#®EY)| = 0, then

19N = X 190 — {4/ eA: (A — ¢ e %}l and

nt$&!
|# (e = g IAE ) — {ud e M: () — ENe Y| + |F*(E
nt ¢!
Now [%(&", &Y = |H#(E, &Y, and |9(E, n")| = 1#(E 0.

Therefore,
AP e A: (A — ENe )l = W) e M: (1) — E)e A} — 17X ().
And hence,
A eA:(x) — EYe g} < l{uPe : (1 — EHe ).
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So, we have,
02 (A2 — EYe S} — [{u0 e M: (u — e )|
=|{AeAeN ol — {uleM:E e}
= Y ({Aet: N =N} —{ped: Vo = N}

PEY3
= 0 (since each term in the sum is positive by Step 4 above)

Hence each term in the sum is zero, i.e.,
{AeAd: N =N} =[{puleM:Npo= N}

for all /* = %!, containing an element ¢! such that |.#F¥(¢')| = 0.

But, by (4), every .4, has an element &} with |.#%(¢))| = 0. If 4" + A, forany 4,
there is no triple point in ¥ whose set of neighbours equals .#” and so, by Step 4,
there is no such triple point in J# either. So we have (A’).

Step 6. Proof of (B).

By (A’) we know that for any ¢! in !

(et (G — EYed)l = T (et Hp =)
H gt
Y Kwed: Vo =N}
FETH

= e d: (1 — e}

Therefore by comparing (1) and (2) we have
l£2EN] = 2%
The proof of the proposition is finally complete.

RemARK 7. (1) Each of the graphs A,, D, and E, satisfies the four hypotheses of
the last proposition. (For n > 8, we write E, = A,_g # Eg, where the *’s of the
two graphs are identified.)

(2) For a bipartite graph %, there is a natural induced metric on V(¥%). For each
integer n = 0, write 9o, = {*}, ¥, = A7 U {*}, etc.) It is clear that if ¥ and
S are weakly dual, so are %,,; and #,,;. In particular, we recapture Haagerup’s
observation: if 4 and J# are the principal graphs of a finite-index subfactor and if
Gy = An+1, then 5, = A, , for even n. (To be sure, it must be verified that the
contragredient map is trivial on the even vertices; but for this it is enough to note
that for all n the set %3, ,; — %y is invariant under the involution of the even
vertices.) The above statement is also valid for odd n; this follows from the case of
even n and the connectedness of the principal graphs.

(3) Itis tempting to call the subgraph conditions —cf. (3) and (4) of Proposition
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6 — a “double of a star-triangle” relation; more precisely, is there more than just
a superficial similarity between the two notions?

We now recall the following observation made by Ocneanu (see [K] for the
statement and [OK] for a proof).

OBSERVATION 8. Suppose a graph ¥ satisfies the following conditions:
(1) ¢ does not contain a subgraph isomorphic to Cy;
(2) % contains a triple point; and

Tl’f:l)l 1”t(1;sII nT)tzr.)ossible to construct a commuting square of the following form:
c &€ »
Y Ugt
4 & B

In particular, there does not exist a finite depth subfactor N = M with trivial
contragredient maps, both of whose principal graphs are .

The above observation, in conjunction with the preceding proposition, has the
following interesting consequence.

THEOREM 9. Let N = M be a pair of 11, factors such that [M: N] > 4. Assume
that the subfactor N has trivial contragredient maps. If one of the associated
principal graphs % is a finite tree, each of whose vertices has degree at most three,
then % contains a subgraph isomorphic to T such that the vertices of degree one in
T are even vertices of degree one in 9.

PRrROOF. Suppose now that a graph ¥ arises as in the statement of the theorem.
The hypothesis ensures that ¥ satisfies conditions (1), (2) and (3) of Proposition 6,
as well as conditions (1) and (3) of Observation 8. Since ||G|| > 2, the graph 4 is
not A, for any n. Since ¥ is assumed to have at most triple points, it follows that
4 also satisfies condition (2) of Observation 8.

On the other hand, it must be obvious that a finite graph cannot arise as
a principal graph of a subfactor with trivial contragredient maps, if it satisfies
conditions (1)~(4) of Proposition 6 as well as conditions (1}+3) of Observation 8.

Hence it must be the case that % violates condition (4) of Proposition 6, and the
proof is complete.

REMARK 10. The hypothesis about trivial contragredient maps is essential. It
has been shown by Haagerup (in an unpublished manuscript) that there exists
a subfactor whose principal graphs are as shown below, where the non-trivial
contragredient mapping in the graph ¢ is indicated by the dotted line (fig. 4).
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Figure 4.

The above theorem shows that no T-graph —i.e., a graph with a unique vertex
of degree 3, with all other vertices of degree at most two — with norm greater than
2 can arise as a principal graph of a subfactor with trivial contragredient maps.

We conclude by describing some more graphs which cannot arise as a princi-
pal graph of a subfactor with trivial contragredient maps, as these are trees which
satisfy condition (4) of Proposition 6 (and which have norm greater than 2 and
have no vertex of degree greater than 3):

(i) any version of a connected sum of 4,, n = 2 and Eg in which a vertex of
degree one from A, has been identified with one of the vertices of degree one in Eg
or one of their degree two neighbours (fig. 5);

S

AN
S 4

Figure 5.

(ii) the Cayley tree and many other subgraphs of the Bethe lattice (fig. 6).
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Figure 6.
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