FREE ARCHIMEDEAN I-GROUPS

DAO-RONG TON and KAI-YAO HE

Abstract.

In this paper we discuss the existence and description of the free archimedean l-group $\mathscr{F}_{\mathscr{A}r}([G,P])$ generated by a po-group [G,P], and give some properties of the free abelian l-group (the free archimedean l-group) \mathscr{A}_{α} of rank α .

We use the standard terminologies and notations of [1, 5, 9]. We assume that all groups considered will be abelian. The group operation of an l-group is written by additive notation. Let G be an l-group and $S \subseteq G$. We denote by [S] the l-subgroup of G generated by S. The convex l-subgroup generated by an element $g \in G$ is denoted by G(g). A po-group is a partially ordered group [G, P] where $P = \{x \in G | x \ge 0\}$ is the positive semigroup of G. P is said to be semi-group if $p \in P$ whenever $p \in G$ and $np \in P$ for some positive integer n. Let G and G be two po-groups. A map G from G into G is called a po-group homomorphism, if G is a group homomorphism and G is called a po-group isomorphism if G is an injection and G is also a po-group homomorphism. We use G and G for the natural numbers and the integers, respectively.

1. Sub-product Radical Class of Archimedean *l*-groups.

A family \mathscr{U} of l-groups is called a sub-product radical class, if it is closed under taking 1) l-subgroups, 2) joins of convex l-subgroups and 3) direct products. All our sub-product radical classes are always assumed to contain along with a given l-group all its l-isomorphic copies. Let \mathscr{U} be a sub-product radical class and G be an l-group. Then the join of all convex l-subgroups of G belonging to \mathscr{U} is the unique largest convex l-subgroup of G belonging to \mathscr{U} . It is denoted by $\mathscr{U}(G)$ and is called a sub-product radical of G. $\mathscr{U}(G)$ is a characteristic l-ideal of G.

An l-group G is said to be archimedean if it satisfies one of the following three equivalent conditions:

Received October 6, 1992.

- 1. For any $0 < a, b \in G$, there exists $n \in N$ such that $nb \le a$.
- 2. For all $a, b \in G$, if $nb \le a$ for all $n \in \mathbb{Z}$, then b = 0.
- 3. For all $a, b \in G$, if $nb \le a$ for all $n \in N$, then $b \le 0$.

Let G be an l-group. An element $a \in G$ is archimedean if $a \ge 0$ and if for all $0 < b \le a$, there exists $n \in N$ such that $nb \le a$ [12, 18]. Let P(G) be the set of all archimedean elements of G. An element $a \in G$ is said to be generally archimedean if the positive part a^+ and the negative part a^- are both archimedean. The following lemma is easy to show using [18].

LEMMA 1.1. Let G be an l-group and $g \in G$. Then the following are equivalent:

- (1) g is generally archimedean.
- (2) |g| is archimedean.
- (3) G(g) is archimedean.
- (4) G(|g|) is archimedean.

Let $\mathscr{A}r$ be the family of all archimedean l-groups. $\mathscr{A}r$ is a quasi-torsion class [13], that is, $\mathscr{A}r$ is closed under taking 1) convex l-subgroups, 2) joins of convex l-subgroups and 3) complete l-homomorphisms. It is clear that $\mathscr{A}r$ is closed under taking l-subgroups and direct products. So $\mathscr{A}r$ is a sub-product radical class. Let G be an l-group. Then there exists a unique largest archimedean l-subgroup of G, the $\mathscr{A}r$ radical $\mathscr{A}r(G)$. Clearly, G is archimedean if and only if $G = \mathscr{A}r(G)$. In [18] it was proved that the l-subgroup A(G) of G is the unique largest archimedean convex l-subgroup of G. In [12] J. Jakubik also proved the existence of such A(G). So we have $\mathscr{A}r(G) = [P(G)]$. By Theorem 1.3 of [5] $\mathscr{A}r(G)$ consists of the elements g = x - y where $x, y \in P(G)$ and $x \land y = 0$. In fact, $x = g^+$ and $y = g^-$. And so such g are generally archimedean. Conversely, if $g \in G$ is a generally archimedean element, then $g \in \mathscr{A}r(G)$. Thus Lemma 1.1 infers

LEMMA 1.2.
$$\mathscr{A}r(G) = [P(G)]$$

$$= \{g \in G \mid g \text{ is generally archimedean}\}$$

$$= \{g \in G \mid G(g) \text{ is archimedean}\}$$

$$= \{g \in G \mid G(g) \text{ is archimedean}\}$$

$$= \{g \in G \mid G(g) \text{ is archimedean}\}.$$

COROLLARY 1.3. The set of all generally archimedean elements of an l-group G is closed under the addition, inverse, met and join.

So we obtain a useful result.

PROPOSITION 1.4. Suppose that an l-group G has a set of generators which consists of generally archimedean elements. Then G is archimedean.

In what follows we will give an application of Proposition 1.4.

2. Free Archimedean I-group Generated by a po-group.

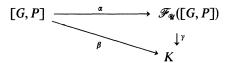
A partial l-group G is a set with partial operations corresponding to the usual l-group operations . , -1, 1, \vee and \wedge such that whenever the operations are defined for elements of G then the l-group laws are satisfied. Suppose [G, P] is a po-group. Then G has implicit partial operations \vee and \wedge as determined by the partial order. That is,

$$x \lor y = y \lor x = y$$
 if and only if $x \le y$ and $x \land y = y \land x = x$ if and only if $x \le y$.

Using these two partial lattice operations together with the full group operations, G can be considered as a partial l-group. Thus we have the following definition as a special case of the \mathcal{U} -free algebra generated by a partial algebra.

DEFINITION 2.1. Let \mathscr{U} be a class of *l*-groups and [G, P] be a po-group. The *l*-group $\mathscr{F}_{\mathscr{U}}([G, P])$ is called the \mathscr{U} -free *l*-group generated by [G, P] (or \mathscr{U} -free *l*-group over [G, P]) if the following conditions are satisfied:

- (1) $\mathscr{F}_{\mathscr{U}}(\lceil G, P \rceil) \in \mathscr{U};$
- (2) there exists an injective po-group isomorphism $\alpha: G \to \mathscr{F}_{\mathscr{U}}([G, P])$ such that $\alpha(G)$ generates $\mathscr{F}_{\mathscr{U}}([G, P])$ as an *l*-group;
- (3) if $K \in \mathcal{U}$ and $\beta: G \to K$ is a po-group homomorphism, then there exists an l-homomorphism $\gamma: \mathscr{F}_{\mathcal{U}}([G, P]) \to K$ such that $\gamma \alpha = \beta$.



The classes of *l*-groups which will be referred to are $\mathcal{A}r$ and the following:

- \mathcal{L} , the class of all l-groups,
- \mathcal{A} , the class of all abelian *l*-groups.
- \mathcal{L} , \mathcal{A} and $\mathcal{A}r$ are all sub-product radical classes of l-groups.

In 1963 and 1965, E. C. Weinberg initially considered the \mathscr{A} -free l-group generated by a po-group [G, P]. He has given a necessary and sufficient condition for existence and a simple description of $\mathscr{F}_{\mathscr{A}}([G, P])$ as follows:

Proposition 2.2. [17, 18]. Let [G, P] be a torsion-free abelian po-group.

- (1) There exists an \mathcal{A} -free l-group $\mathscr{F}_{\mathcal{A}}([G,P])$ generated by [G,P] if and only if there exists a po-group isomorphism of [G,P] into an abelian l-group, if and only if P is semi-closed.
 - (2) Let $\mathcal P$ be the set of all total orders T of G such that $P\subseteq T$. Then $\mathcal F_{\mathscr A}([G,P])$ is

the sublattice of the direct product $\prod_{T \in \mathscr{P}} [G, T]$ which is generated by the long constants $\langle g \rangle$ $(g \in G)$.

The elements of $\mathcal{F}_{\mathcal{A}}([G, P])$ have the form

$$x = \bigvee_{i \in I} \bigwedge_{j \in J} \langle x_{ij} \rangle$$

where I and J are both finite and $x_{ij} \in G$ ($i \in I, j \in J$).

In 1970, P. Conrad generalized Weiberg's result.

Proposition 2.3 [6]. Let [G, P] be a torsion-free po-group.

- (1) There exists an \mathcal{L} -free l-group $\mathcal{F}_{\mathcal{L}}([G,P])$ generated by [G,P] if and only if there exists a po-group isomorphism of [G,P] into an l-group, if and only if P is the intersection of right orders on G.
- (2) Suppose that $P = \bigcap_{\lambda \in A} P_{\lambda}$ where $\{P_{\lambda} | \lambda \in A\}$ is the set of all right orders of G such that $P_{\lambda} \supseteq P$. If G_{λ} is G with one such right order, then denote by $A(G_{\lambda})$ the l-group of order preserving permutations of G_{λ} . Each $x \in G$ corresponds to an element ρ_x of $A(G_{\lambda})$ defined by $\rho_x g = g + x$. Then $\mathscr{F}_{\mathscr{L}}([G, P])$ is the sublattice of the direct product $\prod_{\lambda \in A} A(G_{\lambda})$ which is generated by the long constants $\langle g \rangle (g \in G)$.

In this section we will discuss the $\mathcal{A}r$ -free l-group $\mathcal{F}_{\mathcal{A}r}([G,P])$ generated by a po-group [G,P]. Because $\mathcal{A}r$ is a sub-product radical class of l-groups, by Grätzer's existence theorem on a free algebra generated by a partial algebra (see Theorem 28.2 of [10]) we have

THEOREM 2.4. There exists an Ar-free l-group $\mathcal{F}_{Ar}([G,P])$ generated by a po-group [G,P] if and only if [G,P] is po-group isomorphic into an archimedean l-group.

Now suppose that a po-group [G,P] is po-group isomorphic into an archimedean l-group $[F',F'^+]$ with the po-group isomorphism δ . Thus [G,P] must be torsion-free abelian and semi-closed. By Proposition 2.2(1) there exists the \mathscr{A} -free l-group $\mathscr{F}_{\mathscr{A}}([G,P])$ generated by [G,P] with the po-group isomorphism α of [G,P] into $\mathscr{F}_{\mathscr{A}}([G,P])$. By definition 2.1 there exists an l-homomorphism γ from $\mathscr{F}_{\mathscr{A}}([G,P])$ into F' such that $\gamma\alpha=\beta$. Let $D=\{F_{\lambda}|\lambda\in\Lambda\}$ be the set of all archimedean l-homomorphism images of $\mathscr{F}_{\mathscr{A}}([G,P])$ with the l-homomorphism β_{λ} . Thus $\gamma\mathscr{F}_{\mathscr{A}}([G,P])\in D$ and D is not empty. For each $\lambda\in\Lambda$, $\gamma_{\lambda}\alpha$ is a po-group homomorphism of [G,P] into F_{λ} . The direct product $\prod_{\lambda\in\Lambda} F_{\lambda}$ is an archimedean

l-group. Let π be the natural map of the po-group G

$$[F', F'^{+}] \xrightarrow{\sigma} \mathscr{F}_{\mathscr{A}}([G, P])$$

$$[G, P] \xrightarrow{\pi} F \subseteq \prod_{\lambda \in \Lambda} F_{\lambda}$$

$$[L, L^{+}]$$

onto the subgroup G' of long constants of $\prod_{\lambda \in \Lambda} F_{\lambda}$. That is, $\pi(g) = (\cdots, \gamma_{\lambda}\alpha(g), \cdots)$ for $g \in G$. Because $\gamma \alpha = \delta$ is a po-group isomorphism, π is a po-group isomorphism of G onto G'. Let F be the sublattice of $\prod_{\lambda \in \Lambda} F_{\lambda}$ generated by G'. For each $g \in G$, let $g' = \pi(g)$ denote the long constant of G'. Since $\prod_{\lambda \in \Lambda} F_{\lambda}$ is a distributive lattice, the sublattice generated by all g' is

$$F = \left\{ \bigvee_{i \in I} \bigwedge_{j \in J} g'_{ij} | g_{ij} \in G, I \text{ and } J \text{ finite} \right\}.$$

Suppose that β is a po-group homomorphism of [G, P] into an archimedean l-group $[L, L^+]$. Then there exists an l-homomorphism γ' of $\mathscr{F}_{\mathscr{A}}([G, P])$ into $[L, L^+]$ such that $\gamma'\alpha = \beta$. So $\gamma'\mathscr{F}_{\mathscr{A}}([G, P]) \in D$. Now we extend β to F as follows:

$$\beta^* \left(\bigvee_{i \in I} \bigwedge_{j \in J} g'_{ij} \right) = \bigvee_{i \in I} \bigwedge_{j \in J} \beta(g_{ij}).$$

To see that β^* is well defined, suppose that

$$\bigvee \bigwedge_{i \in I} \beta(g_{ij}) \neq \bigvee_{m \in M} \bigwedge_{n \in N} \beta(h_{mn}).$$

Then we have

$$\bigvee \bigwedge_{i \in I} \bigvee_{j \in J} \bigvee_{m \in M} \beta(g_{ij} - h_{mf(m)}) \neq 0$$

in $[L, L^+]$. Because $\gamma' \mathscr{F}_{\mathscr{A}}([G, P]) \in D$,

$$\bigvee_{i \in I} \bigwedge_{j \in J} \bigvee_{m \in M} \bigvee_{f \in N^M} \beta(g'_{ij} - h'_{mf(m)}) \neq 0$$

in F. That is, we have

$$\bigvee \bigwedge_{i \in I} g'_{ij} + \bigvee_{m \in M} \bigwedge_{n \in N} h'_{mn}$$

in F. Therefore β^* is single valued.

That β^* is a lattice homomorphism is an immediate consequence of the fact that L is a distributive lattice. Now consider $g = \bigvee_{i \in I} \bigwedge_{j \in J} g'_{ij}$ and $h = \bigvee_{m \in M} \bigwedge_{n \in N} h'_{mn}$ in F.

$$\beta^*(g-h) = \bigvee_{i \in I} \bigwedge_{j \in J} \bigvee_{m \in M} (g_{ij} - h_{mf(m)})'$$

$$= \bigvee_{i \in I} \bigwedge_{j \in J} \bigvee_{m \in M} \beta(g_{ij} - h_{mf(m)})$$

$$= \bigvee_{i \in I} \bigwedge_{j \in J} \beta(g_{ij}) - \bigvee_{m \in M} \bigwedge_{n \in N} \beta(h_{mn})$$

$$= \beta^*(g) - \beta^*(h).$$

Hence β^* is an *l*-homomorphism of F into L and $\beta^*\pi = \beta$. The above discussion proves the following theorem.

THEOREM 2.5. Suppose that a po-group [G,P] is po-group isomorphic into an archimedean l-group. Then the $\mathcal{A}r$ -free l-group $\mathcal{F}_{\mathcal{A}r}([G,P])$ generated by [G,P] is the sublattice F of the direct product $\prod_{\lambda \in \Lambda} F_{\lambda}$ which is generated by the long constants $g'(g \in G)$ where $\{F_{\lambda} | \lambda \in \Lambda\}$ are all archimedean l-homomorphic images of the \mathcal{A} -free l-group $\mathcal{F}_{\mathcal{A}}([G,P])$ generated by [G,P].

Note. Suppose that a po-group [G, P] is po-group isomorphic into an archimedean l-group. By Proposition 2.3 there exists an \mathcal{L} -free l-group $\mathscr{F}_{\mathscr{L}}([G, P])$ generated by [G, P]. If we take $\mathscr{F}_{\mathscr{L}}([G, P])$ instead of $\mathscr{F}_{\mathscr{A}}([G, P])$ in the above discussion, we obtain another description of $\mathscr{F}_{\mathscr{A}}([G, P])$.

Let \mathscr{U} be a class of algebras and X be a nonempty set. The algebra $\mathscr{F}_{\mathscr{U}}(X)$ is called the \mathscr{U} -free algebra on X if X generates $\mathscr{F}_{\mathscr{U}}(X)$ as an algebra, and whenever $L \in \mathscr{U}$ and $\lambda \colon X \to L$ is a map, then there exists a homomorphism $\sigma \colon \mathscr{F}_{\mathscr{U}}(X) \to L$ which extends λ . By Birkhoff's Theorem ([4]) there exists a \mathscr{U} -free algebra $\mathscr{F}_{\mathscr{U}}(X)$ on any nonempty set X if \mathscr{U} is closed under subalgebras and direct products. Let \mathscr{U} be a class of l-groups and X be a nonempty set with $|X| = \alpha$. Then the \mathscr{U} -free l-group $\mathscr{F}_{\mathscr{U}}(X)$ on X is said to be of rank α . We can construct the \mathscr{U} -free l-group $\mathscr{F}_{\mathscr{U}}(X)$ on X using the \mathscr{U} -free l-group generated by a trivially ordered group. Let \mathscr{U} be a class of l-groups which is closed under l-subgroups and direct products. We denote by $\mathscr{G}(\mathscr{U})$ the class of all groups that can be embedded (as subgroups) into the members of \mathscr{U} . It is clear that $\mathscr{G}(\mathscr{U})$ is closed under subgroups and direct products.

PROPOSITION 2.6. Let $\mathcal U$ be a class of l-groups which is closed under l-subgroups and direct products and X be a nonempty set. The $\mathcal U$ -free l-group $\mathscr F_{\mathcal U}(X)$ on X is the $\mathcal U$ -free l-group generated by the $\mathscr G(\mathcal U)$ free group on X with trivial order.

PROOF. By Birkhoff's Theorem there exists the $\mathscr{G}(\mathscr{U})$ -free group $\mathscr{F}_{\mathscr{G}(\mathscr{U})}(X)$ on X. $\mathscr{F}_{\mathscr{G}(\mathscr{U})}(X) \in \mathscr{G}(\mathscr{U})$ means $\mathscr{F}_{\mathscr{G}(\mathscr{U})}(X)$ can be embedded (as a subgroup) into a member of \mathscr{U} . By Theorem 28.2 of [10] there exists a \mathscr{U} -free l-group $\mathscr{F}_{\mathscr{U}}([\mathscr{F}_{\mathscr{G}(\mathscr{U})}(X), \{0\}])$ generated by the trivially ordered $\mathscr{G}(\mathscr{U})$ -free group $\mathscr{F}_{\mathscr{G}(\mathscr{U})}(X)$. Now any map from X into an l-group $L \in \mathscr{U}$ can be extended to a group homomorphism of $\mathscr{F}_{\mathscr{G}(\mathscr{U})}(X)$ into L and hence to an l-homomorphism of $\mathscr{F}_{\mathscr{G}(\mathscr{U})}(X)$ into L and hence to an l-homomorphism of $\mathscr{F}_{\mathscr{G}(\mathscr{U})}(X)$, $\{0\}$]) into L.

Theorem 2.7 of [14] is a special case of the above Proposition 2.6. The following theorem is a consequence of Proposition 2.6.

THEOREM 2.7. Let X be a nonempty set. The $\mathcal{A}r$ -free l-group $\mathcal{F}_{\mathcal{A}r}(X)$ on X is the $\mathcal{A}r$ -free l-group generated by the $\mathcal{G}(\mathcal{A}r)$ -free group $\mathcal{F}_{\mathcal{G}(\mathcal{A}r)}(X)$ with trivial order.

$$X \to \mathscr{F}_{\mathscr{G}(\mathscr{A}_r)}(X) \to \mathscr{F}_{\mathscr{A}_r}(X).$$

PROPOSITION 2.8. Suppose that $\mathscr{F}_{sr}([G, P_1])$ and $\mathscr{F}_{sr}([G, P_2])$ are the $\mathscr{A}r$ -free l-groups generated by po-group $[G, P_1]$) and $[G, P_2]$, respectively. If $P_1 \subseteq P_1$. Then $\mathscr{F}_{sr}([G, P_2])$ is an l-homomorphic image of $\mathscr{F}_{sr}([G, P_1])$.

PROOF. $[G, P_2]$ can be embedded into $\mathscr{F}_{\mathscr{A}r}([G, P_2])$ as a po-group and G generates $\mathscr{F}_{\mathscr{A}r}([G, P_2])$. So $[G, P_1]$ is also embedded into $\mathscr{F}_{\mathscr{A}r}([G, P_2])$ as a po-group. Hence there exists an l-homomorphism φ from $\mathscr{F}_{\mathscr{A}r}([G, P_1])$ into $\mathscr{F}_{\mathscr{A}r}([G, P_2])$. But $[G, P_1]$ can be embedded into $\mathscr{F}_{\mathscr{A}r}([G, P_1])$ as a po-group and G generates $\mathscr{F}_{\mathscr{A}r}([G, P_1])$. Therefore φ is onto $\mathscr{F}_{\mathscr{A}r}([G, P_2])$.

3. The Relation between $\mathscr{F}_{\mathscr{A}}([G,P])$ and $\mathscr{F}_{\mathscr{A}r}([G,P])$.

In [6] P. Conrad has given the relation between the \mathcal{L} -free l-group $\mathscr{F}_{\mathscr{L}}(X)$ and the \mathscr{A} -free l-group $\mathscr{F}_{\mathscr{A}}(X)$ on a nonempty set X. Let Y be the l-ideal generated by the commutator subgroup $[\mathscr{F}_{\mathscr{L}}(X), \mathscr{F}_{\mathscr{L}}(X)]$. Then $\mathscr{F}_{\mathscr{A}}(X) \cong \mathscr{F}_{\mathscr{L}}(X)/Y$.

In this section we will give the relation between $\mathscr{F}_{\mathscr{A}}([G,P])$ and $\mathscr{F}_{\mathscr{A}r}([G,P])$. Clearly, if $\mathscr{F}_{\mathscr{A}r}([G,P])$ is archimedean then $\mathscr{F}_{\mathscr{A}r}([G,P]) \cong \mathscr{F}_{\mathscr{A}r}([G,P])$. We will give a necessary and sufficient condition in which $\mathscr{F}_{\mathscr{A}}([G,P])$ is archimedean. First we need some concepts. Let [G,P] be a torsion free abelian po-group and S be a nonempty subset of G. S is said to be positively independent if for any finite

subset $\{x_1, \dots, x_k\}$ of S and non-negative integers $\{\lambda_1, \dots, \lambda_k\}$, $\sum_{i=1}^{n} \lambda_i x_i \in -P$ only if $\lambda_i = 0$ ($i = 1, \dots, k$). There exists a total order P_1 of G such that $P_1 \supseteq P \cup S$ if and only if S is positively independent. Let $x = \bigvee_{i \in I} \bigwedge_{j \in J} \langle x_{ij} \rangle \in \mathscr{F}_{\mathscr{A}}([G, P])$. Then $x \nleq 0$ if and only if for some $i \in I$ the set $\{x_{ij} | j \in J\}$ is positively independent [3].

A po-group [G, P] is said to be strong uniformly archimedean if, given $u \in G$ and a positively independent subset $\{v_1, \ldots, v_k\}$ of G, there exists $n \in N$ such that if

 $\lambda_1, \dots, \lambda_k$ are non-negative integers and $\sum_{i=1}^k \lambda_i \ge mn$ with $m \in \mathbb{N}$, then $\sum_{i=1}^k \lambda_i v_i \le mu$.

THEOREM 3.1. The \mathscr{A} -free l-group $\mathscr{F}_{\mathscr{A}}([G,P])$ generated by a po-group [G,P] is archimedean if and only if [G,P] is strong uniformly archimedean.

PROOF. Necessity. Suppose that $u \in G$ and $\{v_1, \ldots, v_k\}$ is a positively independent subset of G. Then, $\langle v_1 \rangle^+ \wedge \cdots \wedge \langle v_k \rangle^+ \neq 0$ in $\mathscr{F}_{\mathscr{A}}([G, P])$. Since $\mathscr{F}_{\mathscr{A}}([G, P])$ is archimedean, there exists $n \in N$ such that

$$n(\langle v_1 \rangle \wedge \cdots \wedge \langle v_k \rangle)^+ = n(\langle v_1 \rangle^+ \wedge \cdots \wedge \langle v_k \rangle^+) \not \leq \langle u \rangle^+.$$

It follows that if $\lambda \ge n$, $\lambda(\langle v_1 \rangle \wedge \cdots \wedge \langle v_k \rangle) \le \langle u \rangle$. Now if $\lambda_1, \dots, \lambda_k$ are non-negative integers and $\sum_{i=1}^k \lambda_i \ge mn$ with $m \in \mathbb{N}$, then we have

$$\sum_{i=1}^k \lambda_i(v_i) \geq \left(\sum_{i=1}^k \lambda_i\right) (\langle v_1 \rangle \wedge \cdots \wedge \langle v_k \rangle) \leq m \langle u \rangle,$$

because P is semi-closed and $mn(\langle v_1 \rangle \wedge \cdots \wedge \langle v_k \rangle) \leq \left(\sum_{i=1}^k \lambda_i\right)(\langle v_1 \rangle \wedge \cdots \wedge \langle v_k \rangle) \leq m\langle u \rangle$ would imply $n(\langle v_1 \rangle \wedge \cdots \wedge \langle v_k \rangle) \leq \langle u \rangle$, a contradiction. Hence we have $\sum_{i=1}^k \lambda_i v_i \leq mu$ in [G, P].

Sufficiency. It follows from Proposition 1.4 that it suffices to show that $\langle g \rangle$ is generally archimedean in $\mathscr{F}_{\mathscr{A}}([G,P])$ for each $g \in G$. And because G is a group and $g^- = (-g) \vee 0$, it suffices to show that g^+ is archimedean in $\mathscr{F}_{\mathscr{A}}([G,P])$ for each $g \in G$. Let $g \in G$ and $0 < x = \bigvee \bigwedge \langle x_{ij} \rangle \in \mathscr{F}_{\mathscr{A}}([G,P])$ where $x_{ij} \in G$. We must show there exists $n \in N$ such that $nx \nleq g^+$. Since x > 0, the set $\{x_{ij} | j \in J\}$ is positively independent for some i. It suffices to show that there exists $n \in N$ such that $n(\bigwedge \langle x_{ij} \rangle) \nleq \langle g \rangle \vee 0$. And so it suffices to show that if $\{v_1, \dots, v_k\}$ is a positively independent subset of G and $g \in G$, then there exists $n \in N$ and a total order T of G such that $T \supseteq P, v_i \in T$ and $nv_i - g \in T$ ($i = 1, \dots, k$). Then, lifting the identity map of [G, P] onto [G, T] to an i-homomorphism of $\mathscr{F}_{\mathscr{A}}([G, P])$ onto [G, T] we would have $\bigwedge_{i=1}^k [(nv_i - g) \wedge nv_i] \nleq 0$, and so $n \binom{k}{i-1} v_i \not \leq g \vee 0$.

It therefore suffices to show that there exists $n \in N$ so that the set

$$\{v_i | i = 1,...,k\} \cup \{nv_i - g | i = 1,...,k\}$$

is positively independent. Because [G, P] is strong uniformly archimedean, there

exists $n \in N$ such that if $\lambda_1, \ldots, \lambda_k$ are non-negative integers and $\sum_{i=1}^k \lambda_i \ge mn$ with $m \in N$, then $\sum_{i=1}^k \lambda_i v_i \le mg$. Suppose that μ_1, \ldots, μ_k and ν_1, \ldots, ν_k are all non-negative integers and

$$\sum_{i=1}^k \mu_i v_i + \sum_{i=1}^k v_i (nv_i - g) \in -P.$$

Then $\sum_{i=1}^{k} (\mu_i + nv_i)v_i \le \left(\sum_{i=1}^{k} v_i\right)g$ which contradicts the choice of n unless all v_i are zero and then contradicts positive independence of the v_i unless all μ_i are zero. Thus $\{v_i | i = 1, ..., k\} \cup \{nv_i - g | i = 1, ..., k\}$ is positively independent.

COROLLARY 3.2. Suppose that a po-group [G, P] is po-group isomorphic into an archimedean l-group. Then $\mathscr{F}_{\mathscr{A}}([G, P]) \cong \mathscr{F}_{\mathscr{A}r}([G, P])$ if and only if [G, P] is strong uniformly archimedean.

Let G be a group. A nonempty subset S of G is said to be independent if for any finite subset $\{x_1, \ldots, x_k\}$ of S and non-negative integers $\{\lambda_1, \ldots, \lambda_k\}$, $\sum_{i=1}^k \lambda_i x_i = 0$ only if $\lambda_i = 0$ $(i = 1, \cdots, k)$. Clearly, S is independent in G if and only if S is positively independent in the po-group $[G, \{0]\}]$ with the trivial order. Let G be a torsion-free and abelian group. Weinberg has proved that the \mathscr{A} -free l-group $\mathscr{F}_{\mathscr{A}}([G, \{0\}])$ is archimedean (Corollary 3.4 of [17]). From this we get

COROLLARY 3.3. Suppose that G is a torsion-free and abelian group. Given $u \in G$ and an independent subset $\{v_1, \ldots, v_k\}$ of G, then there exists $n \in N$ such that if $\lambda_1, \ldots, \lambda_k$ are non-negative integers and $\sum_{i=1}^k \lambda_i \ge mn$ with $m \in N$, $\sum_{i=1}^k \lambda_i v_i \ne mu$.

4. Some properties of an archimedean l-group.

In order to discuss properties of $\mathscr{F}_{\mathscr{A}r}([G,P])$ we need to know some properties of an Archimedean l-group. First we introduce some concepts. Let $\{G_{\alpha} \mid \alpha \in A\}$ be a system of l-groups. For $g \in \prod_{\alpha \in A} G_{\alpha}$, we denote by g_{α} the α component of g. An l-group G is said to be an ideal subdirect sum of l-groups G_{α} , in symbol $G \subseteq \prod_{\alpha \in A} G_{\alpha}$, if G is a subdirect sum of G_{α} and G is an l-ideal of $\prod_{\alpha \in A} G_{\alpha}$. An l-group G is said to be a completely subdirect sum, if G is an l-subgroup of $\prod_{\alpha \in A} G_{\alpha}$ and $\prod_{\alpha \in A} G_{\alpha} \subseteq G$. We use the symbol \subseteq to denote subdirect sum. Let G be an l-group. We denote by g0 the least cardinal g1 such that $|g| \subseteq g$ 2 for each bounded disjoint

subset A of G. G is said to be v-homogeneous if vH = vG for any convex l-subgroup $H \neq 0$ of G. A v-homogeneous l-group G is said to be v-homogeneous of α type if $vG = \alpha$. By Theorem 3.7 of [11] it is easy to verify the following lemma. The proof is left to the reader.

LEMMA 4.1. Any complete l-group is l-isomorphic to an ideal subdirect sum of complete v-homogeneous l-groups.

By using 4.3 of [11] it is easy to verify that if an l-group G is v-homogeneous and non-totally ordered, then $vG \ge \aleph_0$. It is well known that any non-zero complete totally ordered group is l-isomorphic to a real group R or an integer group Z. So from Lemma 4.1 we obtain the structure theorem of a complete l-group.

THEOREM 4.2. Any complete l-group G is l-isomorphic to an ideal subdirect sum of real groups, integer groups and complete v-homogeneous l-groups of \aleph_i type $(i \ge 0)$.

THEOREM 4.3. Let G be an archimedean v-homogenous l-group of \aleph_i type. Then G has the following properties:

- (1) G has no basic element.
- (2) G has no basis.
- (3) The radical R(G) = G.
- (4) G is not completely distributive.
- (5) The distributive radical D(G) = G.

Moreover, every non-trivial convex l-subgroup of G enjoys these same five properties.

PROOF. By Theorems 5.4 and 5.10 of [5] we need only to show (1). For any $0 < g \in G$, $vG(g) = \aleph_i > 1$. So G(g) is not totally ordered, and [0, g] is also not totally ordered by 4.3 of [11].

An *l*-group G is said to be continuous, if for any $0 < x \in G$ we have $x = x_1 + x_2$ and $x_1 \wedge x_2 = 0$ where $x_1 \neq 0, x_2 \neq 0$.

LEMMA 4.4 (Lemma 2.4 of [20]). A complete l-group G is continuous if and only if G has no basic element.

An l-group G is said to be projectable if each of its principal polars is a cardinal summand. The following lema is clear.

LEMMA 4.5. Let G be a projectable (in particular, complete) and non-totally ordered l-group. Then G is directly decomposable.

An l-group G is said to be ideal subdirectly irreducible if G cannot be expressed as an ideal subdirect sum of l-groups.

LEMMA 4.6 (Lemma 2.6 of [20]). A complete l-group G is directly indecomposable if and only if G is ideal subdirectly irreducible.

LEMMA 4.7 (Lemma 2.7 of [20]). An archimedean l-group G is subdirectly irreducible if and only if the Dedekind completion G^{\wedge} of G is ideal subdirectly irreducible.

Now from Lemma 4.4, Lemma 4.5 and Lemma 4.6 we have

Theorem 4.8. Let G be a complete v-homogeneous l-groups of \aleph_i type. Then

- (1) G is continuous.
- (2) G is directly decomposable.
- (3) G is not ideal subdirectly irreducible.

Moreover, every nontrivial convex l-subgroup of G enjoys these same three properties.

From Lemma 4.7 and Theorem 4.8 we obtain

COROLLARY 4.9. An archimedean v-homogeneous l-group of \aleph_i type is not subdirectly irreducible.

A subset D in a lattice L is called a d-set if there exists $x \in L$ such that $d_1 \wedge d_2 = x$ for any pair of distinct elements of D and d > x for each $d \in D$. We denote by w[a, b] the least cardinal α such that $|D| \le \alpha$ for each d-set D of [a, b].

LEMMA 4.10. Let G be a v-homogeneous l-group of \aleph_i type and be a dense l-subgroup of an l-group G'. Then G' is also a v-homogeneous l-group of \aleph_i type.

PROOF. Suppose that H is an arbitrary convex l-subgroup of G. Let $H = H' \cap G$. Then H is dense in H' and H is a convex l-subgroup of G. We will prove that vH' = vH. It is clear that $vH' \ge vH$. Let $\{x'_{\alpha} \in H'^{+} \mid \alpha \in A\}$ be a disjoint of H' with an upper bound x'. Then there exists $x_{\alpha} \in H$ such that $0 < x_{\alpha} \le x'_{\alpha}$ for each $\alpha \in A$ and there exists $x \in H$ such that $0 < x \le x'$. Hence $\{x_{\alpha} \wedge x \mid \alpha \in A\}$ is a disjoint subset of H with an upper bound x. Hence $|A| \le \aleph_i$ and $vH' \le vH$. Therefore

$$vH' = vH = vG = \aleph_i$$

and so G' is a v-homogeneous l-group of \aleph_i type.

From Theorem 2.6 and Theorem 5.2 of [8] and the above Lemma 4.10 we get

THEOREM 4.11. Let G be an archimedean v-homogeneous l-group of \aleph_i type. Then the Dedekind completion G^{\wedge} of G and the lateral completion G^{L} of G are also v-homogeneous l-groups of \aleph_i type.

LEMMA 4.12. Let G be a v-homogeneous l-group of \aleph_i type and $\{x_\alpha \mid \alpha \in A\}$ be a disjoint subset in G. Then $|A| \leq \aleph_i$.

PROOF. Let G^L be the lateral completion of G. By Theorem 4.11 G^L is also v-homogeneous of \aleph_i type. Let x be the least upper bound of a disjoint subset $\{x_\alpha \mid \alpha \in A\}$ of G in G^L . So $\{x_\alpha \mid \alpha \in A\}$ is a bounded disjoint subset in G^L . Therefore $|A| \leq \aleph_i$.

Theorem 4.13. Let G be a v-homogeneous l-group of \aleph_i type. Then the divisible hull G^d of G is also a v-homogeneous l-group of \aleph_i type.

PROOF. Let P be any nontrivial convex l-subgroup of G^d . For any $0 \neq x \in P$ there exists $n \in N$ such that $0 \neq nx \in P \cap G$. So $P \cap G$ is also a nontrivial convex l-subgroup of G. It is clear that $vP \geq v(P \cap G) = \aleph_i$. On the other hand, $P = \left\{\frac{1}{n_g} \middle| g \in G \cap P, n \in N\right\}$. So if $\{c_j | j \in J\}$ is a bounded disjoint subset in P, let $c_j = \frac{1}{n_j} g_j$ $(j \in J, g_j \in G \cap P, n_j \in N)$. By the Bernau representation of an archimedean l-group [2] we see that $c_j \wedge c_{j'} = 0$ if and only if $g_j \wedge g_{j'} = 0$ $(j \neq j')$. So $\{g_j | j \in J\}$ is a disjoint subset in $G \cap P$. By Lemma 4.12, $|J| \leq \aleph_i$. Hence $vP \leq \aleph_i$. Therefore $vP = \aleph_i$.

Now we turn to an archimedean *l*-group. In [19] we proved the following result.

LEMMA 4.14. An l-group G is archimedean if and only if G is l-isomorphic to a subdirect sum of subgroups of reals and archimedean v-homogeneous l-groups of \aleph_i type.

Suppose that G is a subdirect sum of subgroups of reals and v-homogeneous l-groups of \aleph_i type, $G \subseteq \prod_{\delta \in A} T_\delta$. Let $\Delta_1 = \{\delta \in \Delta \mid T_\delta \text{ is a subgroup of reals}\}$. If $\sum_{\delta \in \Delta_1} T_\delta \subseteq G$, G is said to be a semicomplete subdirect sum of subgroups of reals and v-homogeneous l-groups of \aleph_i type, in symbols $\sum_{\delta \in \Delta_1 \subseteq \Delta} T_\delta \subseteq G \subseteq \prod_{\delta \in \Delta} T_\delta$.

THEOREM 4.15. (Theorem 4.7 of [19]). An l-group G is archimedean if and only if G is l-isomorphic to a semicomplete subdirect sum of subgroups of reals and archimedean v-homogeneous l-groups of \aleph_i type.

5. Properties of \mathscr{A}_{α} .

We denote by \mathscr{A}_{α} the \mathscr{A} -free l-group $\mathscr{F}_{\mathscr{A}}(X)$ of rank α . By Proposition 2.6 \mathscr{A}_{α} is the \mathscr{A} -free l-group $\mathscr{F}_{\mathscr{A}}([G, \{0\}])$ generated by $\mathscr{G}(\mathscr{A})$ -free group G with trivial order. It follows from Corollary 3.4 of [17] that \mathscr{A}_{α} is archimedean. Hence $\mathscr{A}_{\alpha} \cong \mathscr{A}r_{\alpha}$. We

have already known some properties of \mathcal{A}_{α} . For example, \mathcal{A}_{α} is a subdirect sum of integers (Theorem 2.5 of [3]); $\mathcal{A}_{\alpha}(\alpha > 1)$ has a countably infinite disjoint subset but no uncountable disjoint subset (Theorem 6.2 of [16]); every infinite chain in \mathcal{A}_{α} must be countable (Theorem 5.1 of [15]); the word problem for \mathcal{A}_{α} is solvable (Theorem 2.11 of [14]); $\mathcal{A}_{\alpha}(\alpha > 1)$ has no singular elements (Theorem 2.8 of [3]). In this section we will give further properties of \mathcal{A}_{α} using the structure theorem of an archimedean l-group.

THEOREM 5.1. $\mathcal{A}_{\alpha}(\alpha > 1)$ is an archimedean v-homogeneous l-group of \aleph_0 type.

PROOF. Since \mathcal{A}_{α} is archimedean, by Theorem 4.15, without loss of generality, we have

$$\sum_{\delta \in \Delta_1 \subseteq \Delta} T_{\delta} \subseteq \mathscr{A}_{\alpha} \subseteq \prod_{\delta \in \Delta} T_{\delta},$$

where each T_{δ} ($\delta \in \Delta_1$) is a subgroup of reals and each T_{δ} ($\delta \in \Delta \setminus \Delta_1$) is an archimedean v-homogeneous l-group of \aleph_i type. By Theorem 3.5 of [3] (or Theorem 1 of [18]) $\mathscr{A}_{\alpha}(\alpha > 1)$ has no nontrivial direct summands. Hence $\Delta_1 = \emptyset$ and $\mathscr{A}_{\alpha}(\alpha > 1)$ is a subdirect sum of archimedean v-homogeneous l-groups of \aleph_i type. Let

(1)
$$\sum_{\delta \in \Delta'} T_{\delta} \subseteq \mathscr{A}_{\alpha} \subseteq * \prod_{\delta \in \Delta'} T_{\delta}$$
$$\mathscr{A}_{\alpha} \subseteq ' \prod_{\delta \in \Delta'} T_{\delta},$$

where $\Delta' = \Delta \setminus \Delta_1$ and each $T_{\delta}(\delta \in \Delta')$ is an archimedean v-homogeneous l-groups of \aleph_i type. For any $0 < x \in \mathscr{A}_{\alpha}$. We denote by $\mathscr{A}_{\alpha}(x)$ the convex l-subgroup in \mathscr{A}_{α} generated by x and $\mathscr{A}_{\alpha}(x)$ the convex l-subgroup in \mathscr{A}_{α} generated by x. By Theorem 2 of [18] we have

$$(2) v\mathscr{A}_{\alpha}(x) \leq v\mathscr{A}_{\alpha} \leq \aleph_{0}.$$

On the other hand, $\mathscr{A}_{\alpha}(x)$ is dense in $\mathscr{A}_{\alpha}(x)$. If $\{x_{\alpha} \mid \alpha \in A\}$ is a disjoint subset with an upper bound x_0 in $\mathscr{A}_{\alpha}(x)$. Then there exists $x_0' \in \mathscr{A}_{\alpha}(x)$ such that $0 < x_0' < x_0$. Put $x_{\alpha}' = x_{\alpha} \wedge x_0'$. Then $\{x_{\alpha}' \mid \alpha \in A\}$ is a disjoint subset with an upper bound x_0' in $\mathscr{A}_{\alpha}(x)$. Hence $v\mathscr{A}_{\alpha}(x) \leq v\mathscr{A}_{\alpha}(x)$. And it is clear that $v\mathscr{A}_{\alpha}(x) \leq v\mathscr{A}_{\alpha}(x)$. Thus,

$$v\mathscr{A}_{\alpha}(x) = v\mathscr{A}_{\alpha}(x).$$

For any $\delta_0 \in \Delta'$, put $\bar{x}_{\delta_0} = (\dots 0 \dots, x_{\delta_0}, \dots 0 \dots)$. Then $\bar{x}_{\delta_0} \leq x$. Since $vT_{\delta_0}(x_{\delta_0}) = vT_{\delta_0} \geq \aleph_0$ where $T_{\delta_0}(x_{\delta_0})$ is the convex *l*-subgroup of T_{δ_0} generated by x_{δ_0} , there exists a disjoint subset $\{x^{\beta} \mid \beta \in B\}$ in $T_{\delta_0}(x_{\delta_0})$ such that $x^{\beta} \leq x_{\delta_0}$ and $|B| \geq \aleph_0$. Then $\bar{x}^{\beta} = (\dots 0 \dots, x^{\beta}, \dots 0 \dots) \in \mathscr{A}_{\alpha}$ by (1) and $\{\bar{x}^{\beta} \mid \beta \in B\}$ is a disjoint subset with an upper bound \bar{x}_{δ_0} in $\mathscr{A}_{\alpha}(\bar{x}_{\delta_0})$. Hence

$$(4) v\mathscr{A}_{\hat{a}}(x) = v\mathscr{A}_{\hat{a}}(\bar{x}_{\delta_0}) \geq \aleph_0.$$

Combining (2), (3) and (4) we get $v\mathscr{A}_{\alpha}(x) = \aleph_0$ for any $0 < x \in \mathscr{A}_{\alpha}$. Now for any nontrivial convex *l*-subgroup K in \mathscr{A}_{α} . Let $0 < x \in K$. Then

$$\aleph_0 = v \mathscr{A}_{\alpha}(x) \leq v K \leq v \mathscr{A}_{\alpha} \leq \aleph_0.$$

Therefore $vK = \aleph_0$ and \mathscr{A}_{α} is a v-homogeneous l-group of \aleph_0 type.

By Theorem 4.3 and Theorem 5.1 we obtain

THEOREM 5.2. $\mathcal{A}_{\alpha}(\alpha > 1)$ has the following properties:

- (1) \mathcal{A}_{α} has no basic element.
- (2) \mathcal{A}_{α} has no basis.
- (3) The radical $R(\mathcal{A}_{\alpha}) = \mathcal{A}_{\alpha}$.
- (4) \mathcal{A}_{α} is not completely distributive.
- (5) The distributive radical $D(\mathcal{A}_{\alpha}) = \mathcal{A}_{\alpha}$.

Moreover, every nontrivial convex l-subgroup of \mathcal{A}_{α} enjoys these same five properties.

By Theorem 3.6 of [7] and the above Theorem 4.11, Theorem 4.13 and Theorem 5.1 we have

THEOREM 5.3. (1) The Dedekind completion \mathcal{A}_{α} of \mathcal{A}_{α} is a v-homogeneous l-group of \aleph_0 type.

- (2) The lateral completion \mathscr{A}_{α}^{L} of \mathscr{A}_{α} is a v-homogeneous l-group of \aleph_{0} type.
- (3) The divisible hull \mathcal{A}^d_{α} of \mathcal{A}_{α} is a v-homogeneous l-group of \aleph_0 type.
- (4) The essential closure \mathscr{A}^e_{α} of \mathscr{A}_{α} is a v-homogeneous l-group of \aleph_0 type.

From Theorem 4.8 we get

Theorem 5.4. The Dedekind completion \mathscr{A}_{α} of \mathscr{A}_{α} has the following properties:

- (1) \mathscr{A}_{α} is continuous.
- (2) \mathscr{A}_{α} is directly decomposable.
- (3) \mathscr{A}_{α} is not ideal subdirectly irreducible.
- (4) \mathscr{A}_{α} has a closed l-ideal.

Moreover, each nontrivial convex l-subgroup of \mathscr{A}_{α} enjoys these same four properties.

REFERENCES

- M. Anderson and T. Feil, Lattice-Ordered Groups (An Introduction), D. Reidel Publishing Company, 1988.
- S. J. Bernau, Unique representation of archimedean lattice groups and normal archimedean lattice rings, Proc. London Math. Soc. 15 (1965), 599

 –631.
- 3. S. J. Bernau, Free abelian lattice groups, Math. Ann. 180 (1969), 48-59.

- 4. G. Birkhoff, On the structure of abstract algebras, Proc. Camb. Phil. Soc. 31 (1935), 433-454.
- 5. P. Conrad, Lattice-Ordered Groups, Tulane Lecture Notes, Tulane University, 1970.
- 6. P. Conrad, Free lattice-ordered groups, J. Algebra 16 (1970), 191-203.
- 7. P. Conrad, The essential closure of an archimedean lattice-ordered groups, Duke Math. J. 38 (1971), 151-160.
- P. Conrad, The hull of representable l-groups and f-rings, J. Austral. Math. Soc. 16 (1973), 385-415.
- A. M. W. Glass and W. C. Holland, Lattice-Ordered Groups (Advances and Techniques), Kluwer Academic Publishers, 1989.
- 10. G. Grätzer, Universal Algebra, 2nd ed., Springer-Verlag. New York, 1979.
- 11. J. Jakubik, Homogeneous lattice ordered groups, Czechoslovak Math. J. 22 (97) (1972), 325-337.
- J. Jakubik, Archimedean kernel of a lattice ordered group, Czechoslovak Math. J. 28 (103) (1978), 140–154.
- 13. G. O. Kenny, Lattice-Ordered Groups, PhD dissertation, University of Kansas, 1975.
- 14. J. Martinez (ed.), Ordered Algebraic Structures, 11-49, Kluwer Academic Publishers, 1989.
- W. B. Powell and C. Tsinakis, Free products in the class of abelian l-groups, Pacific J. Math. 104 (1983), 429–442.
- W. B. Powell and C. Tsinakis, Free products of lattice ordered groups, Algebra Universalis 18 (1984), 178-198.
- 17. E. C. Weinberg, Free lattice-ordered abelian groups, Math. Ann. 151 (1963), 187-199.
- 18. E. C. Weinberg, Free lattice-ordered abelian groups II, Math. Ann. 159 (1965), 217-222.
- Dao-Rong Ton, Radical classes of l-groups, International J. Math. Math. Sci. 2 (17) (1994), 361-374.
- 20. Dao-Rong Ton, The structure of a complete l-group, Czechoslovak Math. J. 43 (118) (1993).

DEPT. OF MATH. & PHYS. HOHAI UNIVERSITY NANJING, 210024 PEOPLE'S REPUBLIC OF CHINA NANJING FORESTRY UNIVERSITY NANJING, 210037 PEOPLE'S REPUBLIC OF CHINA