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FREE ARCHIMEDEAN /-GROUPS

DAO-RONG TON and KAI-YAO HE

Abstract.

In this paper we discuss the existence and description of the free archimedean Il-group #,.([G, P])
generated by a po-group [G, P], and give some properties of the free abelian I-group (the free
archimedean I-group) &, of rank a.

We use the standard terminologies and notations of [1, 5,9]. We assume that all
groups considered will be abelian. The group operation of an I-group is written
by additive notation. Let G be an Il-group and S = G. We denote by [S] the
I-subgroup of G generated by S. The convex I-subgroup generated by an element
ge G is denoted by G(g). A po-group is a partially ordered group [G, P] where
P = {xeG|x = 0} is the positive semigroup of G. P is said to be semi-group if
pe P whenever pe G and np e P for some positive integer n. Let G and H be two
po-groups. A map ¢ from G into H is called a po-group homomorphism, if ¢ is
a group homomorphism and x = y implies ¢(x) = ¢(y) for any x, yeG.
A po-group homomorphism ¢ is called a po-group isomorphism if ¢ is an
injection and ¢ ! is also a po-group homomorphism. We use N and Z for the
natural numbers and the integers, respectively.

1. Sub-product Radical Class of Archimedean /-groups.

A family % of I-groups is called a sub-product radical class, if it is closed under
taking 1) I-subgroups, 2) joins of convex l-subgroups and 3) direct products. All
our sub-product radical classes are always assumed to contain along with a given
l-group all its [-isomorphic copies. Let % be a sub-product radical class and G be
an I-group. Then the join of all convex I-subgroups of G belonging to % is the
unique largest convex l-subgroup of G belonging to #. It is denoted by %(G) and
is called a sub-product radical of G. %(G) is a characteristic l-ideal of G.

An [-group G is said to be archimedean if it satisfies one of the following three
equivalent conditions:
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1. For any 0 < a,beG, there exists ne N such that nb £ a.

2. Forall q,beG,ifnb < aforallneZ,thenb = 0.

3. Foralla,beG,ifnb < aforallneN,thenb £0.

Let G be an I-group. An element ae G is archimedean if a = 0 and if for all
0 < b £ a, there exists ne N such that nb £ a [12, 18]. Let P(G) be the set of all
archimedean elements of G. An element a € G is said to be generally archimedean
if the positive part a* and the negative part a~ are both archimedean. The
following lemma is easy to show using [18].

LemMMA 1.1. Let G be an l-group and g€ G. Then the following are equivalent:
(1) g is generally archimedean.

(2) |g| is archimedean.

(3) G(g) is archimedean.

(4) G(lgl) is archimedean.

Let .o/r be the family of all archimedean [-groups. /1 is a quasi-torsion class
[13], that is, «/r is closed under taking 1) convex l-subgroups, 2) joins of convex
I-subgroups and 3) complete I-homomorphisms. It is clear that o/r is closed
under taking l-subgroups and direct products. So /r is a sub-product radical
class. Let G be an [-group. Then there exists a unique largest archimedean
I-subgroup of G, the «/r radical o/r(G). Clearly, G is archimedean if and only if
G = or(G). In [18] it was proved that the I-subgroup A(G) of G is the unique
largest archimedean convex I-subgroup of G. In [12] J. Jakubik also proved the
existence of such A(G). So we have «/r(G) = [P(G)]. By Theorem 1.3 of [5]
r(G) consists of the elements g = x — y where x,ye P(G)and x A y = 0. Infact,
x=g"* and y = g~. And so such g are generally archimedean. Conversely, if
g€ G is a generally archimedean element, then g € o/r(G). Thus Lemma 1.1 infers

Lemma 1.2. or(G) = [P(G)]
= {geG|g is generally archimedean}
= {geG|lgle P(G)}
= {ge G| G(g) is archimedean}
= {ge G| G(lg|) is archimedean}.

COROLLARY 1.3. The set of all generally archimedean elements of an I-group G is
closed under the addition, inverse, met and join.

So we obtain a useful result.

PrOPOSITION 1.4. Suppose that an l-group G has a set of generators which
consists of generally archimedean elements. Then G is archimedean.

In what follows we will give an application of Proposition 1.4.
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2. Free Archimedean /-group Generated by a po-group.

A partial l-group G is a set with partial operations corresponding to the usual
l-group operations . , —1, 1, v and A such that whenever the operations are
defined for elements of G then the I-group laws are satisfied. Suppose [G, P] is
a po-group. Then G has implicit partial operations v and A as determined by
the partial order. That is,

xvy=yvx=yifandonlyifx £y and
xAy=yAax=x ifand onlyif x < y.

Using these two partial lattice operations together with the full group operations,
G can be considered as a partial I-group. Thus we have the following definition as
a special case of the #-free algebra generated by a partial algebra.

DEerFINITION 2.1. Let % be a class of I-groups and [G, P] be a po-group. The
l-group %&([G, P]) is called the %-free I-group generated by [G, P] (or ¥-free
I-group over [G, P)) if the following conditions are satisfied:

(1) (G, PDe;

(2) there exists an injective po-group isomorphism a: G — % ([ G, P]) such
that a(G) generates Z4([ G, P]) as an [-group;

(3) f Ke% and B:G — K is a po-group homomorphism, then there exists an
I-homomorphism y: %4 ([G, P]) — K such that ya = .

[G’ P] 2 > 'g;"ll([G’ P])

) b
K

The classes of I-groups which will be refered to are &/r and the following:
2, the class of all I-groups,
<, the class of all abelian I-groups.

Z, o and Ar are all sub-product radical classes of I-groups.

In 1963 and 1965, E. C. Weinberg initially considered the «/-free I-group
generated by a po-group [G, P]. He has given a necessary and sufficient condi-
tion for existence and a simple description of Z,([G, P]) as follows:

PROPOSITION 2.2. [17,18]. Let [G, P] be a torsion-free abelian po-group.

(1) There exists an s/ -free l-group F4([G, P]) generated by [G, P] if and only if
there exists a po-group isomorphism of [ G, P] into an abelian l-group, if and only if
P is semi-closed.

(2) Let P bethe set of all total orders T of G such that P < T. Then %,([G,P)) is
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the sublattice of the direct product [] [G, T] which is generated by the long
constants {g) (g€ G). Te?
The elements of %4([G, P]) have the form

x =\ A {xi)

iel jeJ
where I and J are both finite and x;;€ G (iel, jeJ).
In 1970, P. Conrad generalized Weiberg’s result.

PROPOSITION 2.3 [6]. Let [G, P] be a torsion-free po-group.

(1) There exists an ¥-free I-group F,([ G, P]) generated by [ G, P] if and only if
there exists a po-group isomorphism of [ G, P] into an I-group, if and only if P is the
intersection of right orders on G.

(2) Suppose that P = ﬂ P; where {P,|Ae A} is the set of all right orders of

Aed

G such that P, 2 P. If G, is G with one such right order, then denote by A(G,) the
l-group of order preserving permutations of G,. Each xe G corresponds to an
element p, of A(G;) defined by p.g = g + x. Then F4([G, P]) is the sublattice of
the direct product H A(G;) which is generated by the long constants {g)(g€G).
Aed

In this section we will discuss the «/r-free I-group %, ([G, P]) generated by
a po-group [G, P]. Because /r is a sub-product radical class of I-groups, by
Gritzer’s existence theorem on a free algebra generated by a partial algebra (see
Theorem 28.2 of [10]) we have

THEOREM 2.4. There exists an sfr-free l-group %4([G,P]) generated by
a po-group [G, P]if and only if [ G, P] is po-group isomorphic into an archimedean
l-group.

Now suppose that a po-group [G, P] is po-group isomorphic into an ar-
chimedean [-group [F’, F'*] with the po-group isomorphism 6. Thus [G, P] must
be torsion-free abelian and semi-closed. By Proposition 2.2(1) there exists the
of -free I-group Z,([G, P]) generated by [G, P] with the po-group isomorphism
o of [G, P] into %, ([G, P]). By definition 2.1 there exists an [-homomorphism
y from %, ([G, P]) into F’ such that ya = . Let D = {F, | A€ A} be the set of all
archimedean l-homomorphism images of %,([G, P]) with the [-homomorphism
B,- Thus yZ,([G, P]) e D and D is not empty. For each A€ A, y,a is a po-group

homomorphism of [G, P] into F;. The direct product [] F; is an archimedean
Aed

l-group. Let © be the natural map of the po-group G
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[F,F*"] «——1— #((G,P)

a

di
[G,P] : Fc[lF
8 ﬂ‘l AeA
(L.L"]

onto the subgroup G’ of long constants of [| F;. That is, n(g) = (---,7,a(g), ")

Aed
for ge G. Because ya = d is a po-group isomorphism, 7 is a po-group isomor-
phism of G onto G'. Let F be the sublattice of || F; generated by G'. For each
Jed

gegG, let g = n(g) denote the long constant of G'. Since H F; is a distributive
lattice, the sublattice generated by all g’ is Aed

F = {\/ N gijl9:;€G, I and J ﬁnite}.
iel jeJ

Suppose that f is a po-group homomorphism of [G, P] into an archimedean
l-group [L,L"]. Then there exists an I-homomorphism y' of %, ([G, P]) into
[L, L*] such that ya = B. So ¥ Z,([G, P])e D. Now we extend B to F as follows:

ﬂ*<\/ A\ g:‘j) =V A ﬁ(gij)-
iel jeJ iel jeJ
To see that §* is well defined, suppose that
V AB@ij)+ NV N Bhm)-
iel jeJ meM neN
Then we have
VAV V B(gij — Hppomy) + 0
iel jeJ meM feNM
in [L, L*]. Because 7 %, ([G, P])e D,
VAV V B@j— Pusm) 0
iel jeJ meM feNM
in F. That is, we have
VAgG;+ V N h
iel jeJ meM neN

in F. Therefore f* is single valued.
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That f* is a lattice homomorphism is an immediate consequence of the fact
that L is a distributive lattice. Now consider g = \/ A\ gi;;andh= \/ /\ h,,in

iel jeJ meM neN
F.

Bfg—mW=NN N V @ij— hmsom)

iel jeJ meM feNM

VAN VYV B@ij — hmgom)

iel jeJ meM feNM

VA B@)— NV N Blh)

iel jeJ meM neN
= p*(9) — B*(h).
Hence p* is an I-homomorphism of F into L and f*r = §.
The above discussion proves the following theorem.

THEOREM 2.5. Suppose that a po-group [ G, P] is po-group isomorphic into an
archimedean I-group. Then the sfr-free I-group %,,([G, P]) generated by [ G, P] is

the sublattice F of the direct product H F; which is generated by the long constants
AeA

g' (g € G) where {F, | A€ A} are all archimedean I-homomorphic images of the </ -free
I-group %4([G, P]) generated by [G, P].

NoTE. Suppose that a po-group [G, P] is po-group isomorphic into an ar-
chimedean I-group. By Proposition 2.3 there exists an #-free I-group % ([ G, P])
generated by [G, P]. If we take % ([G, P]) instead of Z,([G, P]) in the above
discussion, we obtain another description of %,,([G, P]).

Let % be a class of algebras and X be a nonempty set. The algebra %4(X) is
called the %-free algebra on X if X generates %,,(X) as an algebra, and whenever
Le% and A: X — L is a map, then there exists a homomorphism o: %(X) — L
which extends 1. By Birkhoff’s Theorem ([4]) there exists a #-free algebra % (X)
on any nonempty set X if % is closed under subalgebras and direct products. Let
% be a class of I-groups and X be a nonempty set with | X| = a. Then the %-free
l-group %%(X) on X is said to be of rank a. We can construct the #-free I-group
Fa(X) on X using the #-free I-group generated by a trivially ordered group. Let
% be a class of I-groups which is closed under I-subgroups and direct products.
We denote by 4(%) the class of all groups that can be embedded (as subgroups)
into the members of %. It is clear that (%) is closed under subgroups and direct
products.

PROPOSITION 2.6. Let % be a class of I-groups which is closed under l-subgroups
and direct products and X be a nonempty set. The #-free I-group %5(X) on X is the
A -free l-group generated by the 4(U)free group on X with trivial order.
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Proor. By Birkhoff’s Theorem there exists the %(%)-free group Fga,)(X) on
X. Zya(X)e9(U) means Fyq)(X) can be embedded (as a subgroup) into
a member of . By Theorem 28.2 of [10] there exists a #-free l-group
Fa([Fs@)(X), {0}]) generated by the trivially ordered %(%)-free group Fyga(X).
Now any map from X into an l-group Le% can be extended to a group
homomorphism of F,(X)into L and hence to an I-homomorphism of % 4, (X)
into L and hence to an I-homomorphism of %o ([ Ze@)(X), {0}]) into L.

Theorem 2.7 of [14] is a special case of the above Proposition 2.6. The
following theorem is a consequence of Proposition 2.6.

THEOREM 2.7. Let X be a nonempty set. The /r-free l-group %4,(X) on X is the
Ar-free l-group generated by the G(r)-free group Fg .(X) with trivial order.

X - yg(dr)(x ) = Fgr(X).

PROPOSITION 2.8. Suppose that %4,([G, P,]) and %4,([G, P,]) are the o/r-free
I-groups generated by po-group [G, P,]) and [ G, P,], respectively. If P, = P,. Then
Z4.([G, P,]) is an I-homomorphic image of %4,([G, P1]).

ProOF. [G, P,]can be embedded into %,,([G, P,]) as a po-group and G gener-
ates Z,,([G, P,]). So [G, P,] is also embedded into £,,([G, P,]) as a po-group.
Hence there exists an l-homomorphism ¢ from £, ([G, P;]) into %,,([G, P,]).
But [G, P,] can be embedded into £,,([G, P,]) as a po-group and G generates
Z4([G, P,]). Therefore ¢ is onto £,,([G, P,]).

3. The Relation between %,([G, P]) and £,,([G, P)).

In [6] P. Conrad has given the relation between the #-free I-group % (X) and
the o7 -free I-group %,(X) on a nonempty set X. Let Y be the l-ideal generated by
the commutator subgroup [ (X), %»(X)]. Then Z,(X) =~ Z(X)/Y.

In this section we will give the relation between Z,([G, P]) and Z,,([G, P]).
Clearly, if Z,([G, P]) is archimedean then Z,([G, P]) = £,.([G, P]). We will give
anecessary and sufficient condition in which Z,([G, P])is archimedean. First we
need some concepts. Let [G, P] be a torsion free abelian po-group and S be
a nonempty subset of G. S is said to be positively independent if for any finite

k
subset {x;,**,x;} of S and non-negative integers {1y,..., 4}, ¥, 4:x;€ —P only
i=1
if4; = 0(i = 1,...,k). Thereexists a total order P, of G such that P; 2 P U Sifand
only if S is positively independent. Let x = \/ /\ {x;;> € Z([G, P]). Thenx £ 0if
iel jeJ

and only if for some i€ the set {x;;|j€ J} is positively independent [3].

A po-group [G, P] is said to be strong uniformly archimedean if, given ue G
and a positively independent subset {v, ..., v, } of G, there exists n € N such that if
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k

Ay, +, A are non-negative integers and Y A, 2mn with meN, then
i=1

k
Aiv; £ mu.
)

13

THEOREM 3.1. The o/ -free l-group %,([G, P]) generated by a po-group [G, P} is
archimedean if and only if [ G, P] is strong uniformly archimedean.

PROOF. Necessity. Suppose that ue G and {vy,...,v,} is a positively indepen-
dentsubset of G. Then, {v,>* A - A (0> F 0in Z ([ G, P)). Since %, ([G, P])
is archimedean, there exists ne N such that

n( o) A A o)t = (o) A A o)) £ upt
It follows that if A=n, AKv> A ALue)) £ <u). Now if A,,---, 4 are

non-negative integers and Z A; 2 mn with me N, then we have
i=1

k k
Z, Aoy 2 (Z 1i)(<vl> A AKo) £ mlup,

k
because P is semi-closed and mn({v) A -+ A {0y)) §(Z /1,->(<01> A A
i=1
{ve)) £ m{u) would imply n({v;> A -+ A (v ») < {u), a contradiction. Hence
k
we have Y Av; £ muin [G, P].
i=1

Sufficiency. It follows from Proposition 1.4 that it suffices to show that {g) is
generally archimedean in %, ([ G, P]) for each g € G. And because G is a group and
g~ =(—¢) v 0,it suffices to show that g* is archimedean in Z,([ G, P]) for each
geG. Let geG and 0 < x = \/ A\ {x;;) € %([G, P]) where x;;e G. We must

iel jeJ
show there exists n € N such that nx £ ¢*. Since x > 0, the set {x;;|jeJ} is
positively independent for some i. It suffices to show that there exists ne N such

that n(/\ (x;;) £ {g> v 0. And so it suffices to show that if {v;," -, v} is
JjeJ

a positively independent subset of G and g € G, then there exists ne N and a total
order T of G suchthat T 2 P,v;e Tand ny; — ge T(i = 1,- -+, k). Then, lifting the
identity map of [G, P] onto [G, T] to an l-homomorphism of %, ([G, P]) onto
k k
[G, T] we would have N\ [(nv; — g) A nv;] £ 0,and son ( AN v,-) fgvo.
i=1 i=1
It therefore suffices to show that there exists ne N so that the set
{vli=1,..k}u{n;,—gli=1,... k}

is positively independent. Because [G, P] is strong uniformly archimedean, there
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k
exists ne N such that if 4,,..., 4, are non-negative integers and Y, A; = mn with
i=1
k
meN, then Y Aw; £ mg. Suppose that puy,...,m and vy,...,v, are all
i=1

non-negative integers and

k

k
Y v + Z vi(nv; — g)e —P.
i=1 i

i=1

k k
Then Z (u; + nvv; ( Z vi)g which contradicts the choice of n unless all v;
i i=1

are zero and then contradicts positive independence of the v; unless all y; are zero.
Thus {v;|i = 1,...,k} v {nv; — g|i = 1,...,k} is positively independent.

i=1

COROLLARY 3.2. Suppose that a po-group [ G, P] is po-group isomorphic into an
archimedean I-group. Then #,([G, P]) =~ %,([G, P]) ifand only if [G, P} is strong
uniformly archimedean.

Let G be a group. A nonempty subset S of G is said to be indepedent if for any
k
finite subset {x;,...,x;} of S and non-negative integers {1y,..., 4}, 3. 4x; =0
i=1

only if ; =0 (i = 1,---,k). Clearly, S is independent in G if and only if S is
positively independent in the po-group [G, {0]}] with the trivial order. Let G be
a torsion-free and abelian group. Weinberg has proved that the «7-free I-group
Z4([G, {0}]) is archimedean (Corollary 3.4 of [17]). From this we get

COROLLARY 3.3. Suppose that G is a torsion-free and abelian group. Givenue G
and an independent subset {v,,...,v;} of G, then there exists ne N such that if
k k

Ats..., Ay are non-negative integers and z A; = mnwithmeN, Z Aiv; F mu.

i=1 i=1

4. Some properties of an archimedean /-group.

In order to discuss properties of %,,([G, P]) we need to know some properties of
an Archimedean l-group. First we introduce some concepts. Let {G,|xe A} be
a system of [-groups. For ge [] G,, we denote by g, the « component of g. An

aeA
l-group G is said to be an ideal subdirect sum of l-groups G,, in symbol
G =* [] G,,if Gis a subdirect sum of G, and G is an l-ideal of [] G,. An I-group
aeA aecA
G is said to be a completely subdirect sum, if G is an l-subgroup of [] G, and
aed

Y. G, = G. We use the symbol <’ to denote subdirect sum. Let G be an I-group.
acAd

We denote by vG the least cardinal a such that |4] < a for each bounded disjoint
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subset 4 of G. G is said to be v-homogeneous if vH = vG for any convex
I-subgroup H # 0 of G. A v-homogeneous I-group G is said to be v-homogeneous
of a typeif vG = a. By Theorem 3.7 of [ 11] it is easy to verify the following lemma.
The proof is left to the reader.

LEMMA 4.1. Any complete l-group is l-isomorphic to an ideal subdirect sum of
complete v-homogeneous l-groups.

By using 4.3 of [11] it is easy to verify that if an I-group G is v-homogeneous and
non-totally ordered, then vG = N,. It is well known that any non-zero complete
totally ordered group is l-isomorphic to a real group R or an integer group Z. So
from Lemma 4.1 we obtain the structure theorem of a complete /-group.

THEOREM 4.2. Any complete l-group G is l-isomorphic to an ideal subdirect sum
of real groups, integer groups and complete v-homogeneous l-groups of W; type
i=0).

THEOREM 4.3. Let G be an archimedean v-homogenous I-group of ¥X; type. Then
G has the following properties:

(1) G has no basic element.

(2) G has no basis.

(3) The radical R(G) = G.

(4) G is not completely distributive.

(5) The distributive radical D(G) = G.

Moreover, every non-trivial convex l-subgroup of G enjoys these same five
properties.

ProoF. By Theorems 5.4 and 5.10 of [5] we need only to show (1). For any
0 < geG, vG(g) = N; > 1. So G(g) is not totally ordered, and [0, g] is also not
totally ordered by 4.3 of [11].

An l-group G s said to be continuous, if forany0 < xe Gwehavex = x; + x,
and x; A x, =0where x; $0,x, F0.

LEMMA 4.4 (Lemma 2.4 of [20]). A4 complete I-group G is continuous if and only
if G has no basic element.

An l-group G is said to be projectable if each of its principal polars is a cardinal
summand. The following lema is clear.

LEMMA 4.5. Let G be a projectable (in particular, complete) and non-totally
ordered l-group. Then G is directly decomposable.

An Il-group G is said to be ideal subdirectly irreducible if G cannot be expressed
as an ideal subdirect sum of I-groups.
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LEMMA 4.6 (Lemma 2.6 of [20]). A complete l-group G is directly indecompos-
able if and only if G is ideal subdirectly irreducible.

LemMMA 4.7 (Lemma 2.7 of [20]). An archimedean l-group G is subdirectly
irreducible if and only if the Dedekind completion G" of G is ideal subdirectly
irreducible.

Now from Lemma 4.4, Lemma 4.5 and Lemma 4.6 we have

THEOREM 4.8. Let G be a complete v-homogeneous I-groups of N; type. Then

(1) G is continuous.

(2) G is directly decomposable.

(3) G is not ideal subdirectly irreducible.

Moreover, every nontrivial convex l-subgroup of G enjoys these same three
properties.

From Lemma 4.7 and Theorem 4.8 we obtain

COROLLARY 4.9. An archimedean v-homogeneous l-group of ¥X; type is not
subdirectly irreducible.

A subset D in a lattice L is called a d-set if there exists xe L such that
dy A d, = x for any pair of distinct elements of D and d > x for each de D. We
denote by w[a, b] the least cardinal « such that |D| < « for each d-set D of [a, b].

LEMMA 4.10. Let G be a v-homogeneous I-group of ¥, type and be a dense
I-subgroup of an l-group G'. Then G’ is also a v-homogeneous l-group of W; type.

ProoF. Suppose that H is an arbitrary convex Il-subgroup of G. Let
H = H'nG. Then H is dense in H' and H is a convex [-subgroup of G. We will
prove that vH' = vH. Itis clear that vH' = vH. Let {x, e H'* |a € A} be a disjoint
of H' with an upper bound x’. Then there exists x, € H such that 0 < x, £ x|, for
each ae 4 and there exists x € H such that 0 < x < x". Hence {x, A x|a€ A} is
a disjoint subset of H with an upper bound x. Hence |4] < ¥, and vH' < vH.
Therefore

vH' = vH =vG = N;
and so G’ is a v-homogeneous I-group of N; type.
From Theorem 2.6 and Theorem 5.2 of [8] and the above Lemma 4.10 we get

THEOREM 4.11. Let G be an archimedean v-homogeneous l-group of N; type.
Then the Dedekind completion G" of G and the lateral completion G* of G are also
v-homogeneous l-groups of ¥N; type.
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LEMMA 4.12. Let G be a v-homogeneous I-group of N, type and {x,|o€ A} be
a disjoint subset in G. Then |A| £ N;.

PROOF. Let G* be the lateral completion of G. By Theorem 4.11 G* is also
v-homogeneous of N; type. Let x be the least upper bound of a disjoint subset
{x,|a€ A} of Gin G*. So {x, |« € A} is a bounded disjoint subset in G*. Therefore
%S

THEOREM 4.13. Let G be a v-homogeneous l-group of W, type. Then the divisible
hull G of G is also a v-homogeneous I-group of N; type.

ProOF. Let P be any nontrivial convex I-subgroup of G%. For any 0 + xe P
there exists ne N such that 0 & nxe P n G. So P n G is also a nontrivial convex
l-subgroup of G. It is clear that vP = v(P n G) = N;. On the other hand,

1
p= {—
ny

1 .
¢ = ;g,- (jeJ, gjeGn P, nje N). By the Bernau representation of an ar-

geGnP,ne N}. So if {c;|je J} is a bounded disjoint subset in P, let

J
chimedean [-group [2] we see that c; A ¢; = Oifand onlyifg; A g; = 0(j % j).
So {g;|jeJ} is a disjoint subset in G N P. By Lemma 4.12, |J| < X;. Hence vP <
N;. Therefore vP = N;.

Now we turn to an archimedean I-group. In [19] we proved the following
result.

LEMMA 4.14. An l-group G is archimedean if and only if G is l-isomorphic to
a subdirect sum of subgroups of reals and archimedean v-homogeneous l-groups of
N; type.

Suppose that G is a subdirect sum of subgroups of reals and v-homogeneous

l-groups of N; type, G <’ [| T;. Let 4, = {6e 4| T; is a subgroup of reals}. If
ded

Y. T; = G, G is said to be a semicomplete subdirect sum of subgroups of reals
ded,

and v-homogeneous I-groups of ¥; type,insymbols Y. T, G<'[] T.
ded1 S 4 ded
THEOREM 4.15. (Theorem 4.7 of [19]). Anl-group G is archimedean if and only if
G is l-isomorphic to a semicomplete subdirect sum of subgroups of reals and
archimedean v-homogeneous I-groups of N; type.

5. Properties of <Z,.

Wedenote by <, the o/ -free I-group %,(X) of rank a. By Proposition 2.6 </, is the
& -free I-group #,([G, {0}]) generated by ¥(#)-free group G with trivial order. It
follows from Corollary 3.4 of [17] that 7, is archimedean. Hence &/, =~ &/r,. We
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have already known some properties of o, . For example, <, is a subdirect sum of
integers (Theorem 2.5 of [3]); & (« > 1) has a countably infinite disjoint subset
but no uncountable disjoint subset (Theorem 6.2 of [ 16]); every infinite chain in
<, must be countable (Theorem 5.1 of [15]); the word problem for <, is solvable
(Theorem 2.11 of [14]); &/, (x > 1) has no singular elements (Theorem 2.8 of [3]).
In this section we will give further properties of &/, using the structure theorem of
an archimedean /-group.

THEOREM 5.1. (o > 1) is an archimedean v-homogeneous l-group of X, type.

ProoF. Since <7, is archimedean, by Theorem 4.15, without loss of generality,

we have
>y LedAd<']IT,
ded1 S 4 ded

where each T; (5e 4,) is a subgroup of reals and each T; (6eA4\4,) is an
archimedean v-homogeneous I-group of N; type. By Theorem 3.5 of [3] (or
Theorem 1 of [18]) 4, (« > 1) has no nontrivial direct summands. Hence 4, = §
and o/, (« > 1)is a subdirect sum of archimedean v-homogeneous I-groups of I\;
type. Let

1 Z’I}EMQE*HT‘;
ded’ ded’

A< [l T,
ded’

where A" = 4\ 4, and each T;(6 € 4') is an archimedean v-homogeneous I-groups
of X; type. For any 0 < x € o7,. We denote by <, (x) the convex I-subgroup in .=/,
generated by x and o/;(x) the convex l-subgroup in </, generated by x. By
Theorem 2 of [18] we have

@ vy (x) S vy S Ro.

On the other hand, ./,(x) is dense in oZ;(x). If {x, | « € A} is a disjoint subset with
an upper bound x, in &/;(x). Then there exists x; € o, (x) such that 0 < x; < x,.
Put x,, = x, A x,. Then {x/, | xe A} is a disjoint subset with an upper bound xj, in
o, (x). Hence v/ (x) < vef,(x). And it is clear that v.e/,(x) < v/;(x). Thus,

) vl (X) = vA(x).

For any doed, put X; =(..0..,x5,...0...). Then X, <x. Since
vT5,(xs5,) = vT;, = N, where T; (x;,) is the convex I-subgroup of T;, generated by
X5,> there exists a disjoint subset {x?| fe B} in T; (x;,) such that x? < x; and
IB| 2 Ro. Thenxf =(...0...,x%,...0...)eo/; by (1) and {xf| Be B} is a disjoint

subset with an upper bound %;, in &;(X;,). Hence
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4 vl (%) = v (X5,) Z No.

Combining (2), (3) and (4) we get v.,(x) = N, for any 0 < x € .o/,. Now for any
nontrivial convex l-subgroup K in &7,. Let 0 < xe K. Then

No = vo,(x) £ vK £ v, < N,.
Therefore vK = X, and &, is a v-homogeneous I-group of N, type.
By Theorem 4.3 and Theorem 5.1 we obtain

THEOREM 5.2. of,(o > 1) has the following properties:

(1) o, has no basic element.

(2) <4, has no basis.

(3) The radical R(s,) = oA,.

(4) o, is not completely distributive.

(5) The distributive radical D(4,) = <,.

Moreover, every nontrivial convex l-subgroup of <, enjoys these same five
properties.

By Theorem 3.6 of [7] and the above Theorem 4.11, Theorem 4.13 and
Theorem 5.1 we have

THEOREM 5.3. (1) The Dedekind completion oZ; of <, is a v-homogeneous
I-group of YR, type.

(2) The lateral completion /" of <4, is a v-homogeneous I-group of N, type.

(3) The divisible hull 42 of o, is a v-homogeneous I-group of R, type.

(4) The essential closure oLf of 4, is a v-homogeneous l-group of R, type.

From Theorem 4.8 we get

THEOREM 5.4. The Dedekind completion </, of <, has the following properties:

(1) oA is continuous.

(2) o, is directly decomposable.

(3) «; is not ideal subdirectly irreducible.

(4) o, has a closed l-ideal.

Moreover, each nontrivial convex l-subgroup of </; enjoys these same four
properties.
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