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COUNTING MATRICES WITH COORDINATES IN
FINITE FIELDS AND OF FIXED RANK

DAN LAKSOV' and ANDERS THORUP?

Abstract.

Over a given finite field, we present a method for obtaining explicit expressions for the number of
matrices of given rank satisfying certain conditions. Asillustration of the method, we present a series
of new formulas, and we obtain simple proofs of known formulas.

Introduction.

We present a method for obtaining explicit expressions for the number of
matrices of fixed order and rank with entries in a finite field and satisfying certain
additional conditions.

The method is simple and formal and makes it possible to derive many
formulas using only standard linear algebra. Applying the method in various
examples, we obtain simple proofs of known formulas, and we obtain a series of
new formulas. Formulas of this kind have mostly been obtained through the use
of recursion and exponential sums. In the references we have listed some articles
that illustrate the differences in methods and that are not used elsewhere in the
text.

On the other hand, our method explains the appearance of the recursion
formulas. Moreover, the expressions obtained from our method are in many
cases different from those obtained using exponential sums. As a consequence,
we obtain new non-trivial identities between expressions that can be interpreted
as special values of certain generalized hypergeometric series.

To illustrate our method, we consider the set of all m x t matrices and the four
subsets defined by the following conditions on the matrix X:
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(1) The matrix X is arbitrary,

(2) The rows of the matrix X are non-zero and mutually different,

(3) The matrix X is a solution to the equation X'SX = 0 where S is a given
regular symmetric m x m matrix,

(4) The matrix X is a solution to the equation X'AX = 0 where 4 is a given
regular antisymmetric m x m matrix.

Explicit expressions and a recursion formula for the number of all matrices of
rank r were given in [Lb]. A recursion formula for the number of matrices of rank
r satisfying Condition (2) was obtained by [Ls] and an explicit expression was
given in [C3]. Explicit expressions for the number of matrices satisfying Condi-
tion (3) or (4) with no condition on the rank were given in [C1, C2]. In the present
work we obtain explicit expressions for the subsets of matrices of given rank r.
The expressions we derive for the number of all matrices satisfying (3) or (4) are
different from those obtained in [C1] and [C2]. Taken in connection with the
previous expressions, the new expressions may be seen as a new family of
nontrivial identities of hypergeometric series. In fact, these identities led us to the
discovery of an error in the expressions obtained in [C2], see Note (6.3) below.

The explicit expressions involve the g-binomial coefficients or Gaussian poly-
nomials,

[t] _@-D¢=1..(¢7" =1
r @-D@ ' =1D...q-1

When g s a variable, the expression on the right hand side is in fact a polynomial.
In our formulas g will be the number of elements in a finite field. Our method
explains the occurrence of these polynomials. In fact, as we show in Section 3,
anumber of well known properties of the Gaussian polynomials may be obtained
on the basis of similar properties of numbers arising from finite dimensional
vector spaces over finite fields.

1. Interpolation formulas.

In this section we prove an interpolation formula needed in Section 2. The
formula is of Lagrange type, giving the transition between two different bases of
the polynomial ring R[x] over a ring R.

DEerINITON 1.1. Let R be a commutative ring with unity. Fix a sequence
A1,22,... of elements in R, and define polynomials for r = 0, 1,...

Q(x):=(x — A)(x — 43)...(x — 4,).
Then Qy(x) = 1, and the sequence Qq(x), Q1(x), ... forms an R-basis for R[x].
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Hence every polynomial f(x) of R[x] uniquely determines coefficients [{] in
Rforr=0,1,... such that

(1.1.1) flx) = i[ ]Q,(X)

where [{] = 0 forr > deg f.

Our notation for the coeflicients resembles the usual notation for the
g-binomial coefficients. The connection between the two notations will be ex-
plained in Remark 1.5 and Note 3.2.

Assume that the differences A; — 4; are invertible in R whenever i # j.

PROPOSITION 1.2. For every polynomial f(x), the following formulas hold,

1. _
(1.2.1) [r]_i);———g;“ui), for r=0,1,...

where Q' denotes the formal derivative of the polynomial Q.

Proor. Clearly, the two sides of (1.2.1) are R-linear maps R[X] — R. There-
fore, it suffices to prove that the equations (1.2.1) hold when f = Q, for
n=0,1;... Clearly, the left hand side is equal to 1 for r = n, and zero otherwise.
Consider the right hand side of (1.2.1) for f = @,.. The numerator Q,(4;) vanishes
when i < n. In particular, the right hand side vanishes for r < n, and for r = n the
only non-vanishing term is equal to 1. Hence it remains to be shown that the right
hand side is equal to O for r > n.

Clearly, it suffices to prove that the right hand side is zero for r > n when the
elements 4, 4,...,4,+, areindependent variables overZ. Setp =r + 1 — n,and
x;:= A,4ifori = 1,..., p. Denote by G the right hand side. Then, after a change of
indices,

G = & QA i Qn(xi)

i=n+1 Qr+1(’ll) Qr+1(xl)

After a reduction of the fractions in the sum on the right hand side, we obtain the
equation,

1

15isp il — X))

p
G=Y
i=1

It follows that G is symmetric in the p variables x,...,x,. Moreover, every
denominator on the right hand side divides the Vandermonde determinant
4=1], <i<jszplX;j — X;). Therefore, the product G4 is an alternating polynomial
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in x,,...,x,, and of degree less than the degree of 4. Consequently, G = 0 and we
have proved the Proposition.

1.3. Assume for the rest of this section that the sequence of 1;’s consists of the
powers of a single element g, that is, 4; = ¢~ . Then

(1.3.1) Qi) =(x—Dx—q...(x — ¢ ).

In this case, the coefficients of the interpolation formula can be expressed by the
g-binomial coefficients,

Iir]‘z @-Dg '=D..(¢ =1
i G@-Dd'=1...(g-1)

For 0 £ i £ r, it follows immediately from the definition that

(1.3.2) m N [r i i]’

Moreover,

1.3.3 ’]z_Qi@l: 1))
R [i o - TV

as follows by an extraction of powers of ¢ and a simple reduction.

for r,i=0.

PROPOSITION 1.4. Assume that A; = q'~'. Then, for every polynomial f and
r=20,1,2,..., the coefficient in the expansion (1.1.1) is given by the formulas,

MAoe f@ _ 1t & .-(i)[r]
H L0 @ o 5V e

Proor. The first formula is just a rewriting of (1.2.1), and the second equation
follows from Equation (1.3.3).

ReMaRrk 1.5. The formulas apply whenever the element g and the differences
q' — 1fori > 0 areinvertible. When the latter elements are regular, the formulas
can be interpreted in the total ring of fractions of the given ring. In particular, the
formulas hold for an element g which is transcendental over a ground ring.
Moreover, the formulas for an arbitrary element g follows by specialization from
the transcendental case.

Consider the case where g is transcendental. Then the g-binomial coefficients
are a priori rational functions of g. It is well known that they are in fact
polynomials in g, called the Gaussian polynomials. Moreover, the following two
formulas are well known,
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x" |m
r| Lr
(explaining our choice of notation), and

Q.(x) = Z'jo(_ 1)ig® m i

As we shall see in the Section 3 (Note 3.2 and Remark 3.3), these assertions follow
easily from our results.

2. The method.

Let g be a power of a prime number and denote by F, the field with g elements. Fix
a vectorspace V of finite dimension m over F,. For a given family . of subspaces
of ¥, denote by 7, the set of subspaces of dimension r in the family . Moreover,
for any t = 0, denote by

Hom (F;, V) € Hom(F}, V)

the set of those linear maps F; — V whose image belongs to 7. Note that the set
Homy, (F;, V) consists of the linear maps ¢: F; — V' such that the rank of ¢ is
equal to r and the image of ¢ belongs to 7. In particular, the set Hom 5 (F7, V) is
the set of injective linear maps F] — V whose image belongs to 7.

Our method is to combine some simple relations between the numbers of
elements in the sets 7,, Homy (F;, V) and Homy (F}, V) with the interpolation
formula obtained in Section 1 with respect to the polynomials

Q) =(x—Dx—q...(x —q'").

When a basis for V is given, V = F7, then Homy (F;, V) is a subset of the set of
m X t matrices, and we obtain the explicit formulas mentioned in the introduc-
tion.

PROPOSITION 2.1. Let I be a family of linear subspaces of V. Then the cardinali-
ties of the sets 7,, Hom4(F}, V) and Homg (F;, V) are related by the following
Sformulas,

(2.1 [Homy. (F;, V)| = |7,|- Q.(q),

2.1.2) Hom,, (F., V)| = [:‘] - [Homy. (F,, V),
dimV

(2.1.3) [Hom (Fg, V)| = Zo |7 Quq').

ProOF. Let U be a subspace of dimension r in V. Clearly, the number of
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surjective linear maps F, — U is equal to the number of injective linear maps
F; — F; hence the number is equal to the product,

@-D4d—-9q...(d —q ).

In other words, the number is equal to Q,(¢"), where Q,(x) is the polynomial of
(1.3.1). Therefore, the number [Hom 4. (F;, V)| of linear maps F; — V withimage in
J,is the product of Q,(¢q") and the number of possible images, |.7,|. Hence the first
equation holds. The second equation follows by using the first for t and for t: = r,

noting that the quotient Q,(q")/Q.,(¢") is the g-binomial coefficient [ :I by (1.3.3).

Finally, the last equation follows from the first by summation over the possible
ranks of the subspaces in 7.

COROLLARY 2.2. Considered the polynomial f = f4 defined by

dimV

S(x):= Zo |7+ Qr(x).

Then the following formulas hold:

L flg)
@21 el = [r] Z o Qrv1(d)’
(222) ' [Homy (F., V) = f(q),

(2.2.3) [Homg. (Fi, V)| = [f ] 0.(q) = Z( 1y (2)[ ]f(q’ ),

(22.4) [Homg (F:, V)| =[f ] 0:q") = 0.(q") Z fo()q.)

225) B]Z(IY@[]ﬂfﬁ

Proor. By definition of f, the equation (2.2.2) follows from Equation (2.1.3).
Moreover, it follows from the definition of the coefficient [{] that |7, = [f:] .

Therefore, the remaining formulas of the Corollary follow from the formulas of
Proposition 2.1 and the general expressions for the coefficient [{ ] in Proposi-
tion 1.4.

REMARK 2.3. The Proposition has an obvious dual form. Let J * denote the
family of polars to the family 7, that is, a subspace W of the dual space V*
belongs to 7 *, if and only if the mtersectlon of the kernels of the linear forms in
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W belongs to 7. Clearly, the set of all rank-r linear maps V — F; whose kernel
belongs to J corresponds bijectively to the set of all rank-r linear maps F; — V*
whose image belongs to 7 *. Hence a dual form of the proposition is obtained by
applying the proposition to the family * of subspaces in the dual vector space
V*.

3. General matrices.

In this and the following sections the method of Section 2 is illustrated by
applying it to the cases mentioned in the introduction. As in Section 2, the vector
space V is assumed to be of finite dimension m over the field F, with g elements.

Let # be the set of all subspaces of V. Then Homg (F;, V) is the set of all linear
maps F; - F7, and Homg (F, V) is the set Hom,(F], F7) of all injective linear
maps F; — F7". Clearly,

(3.0.1) |Hom, (F, F7) = Q.(¢™).

@ q

Hence, from Formula (2.1.2), we obtain the following result of Landsberg [Lb].

PROPOSITION 3.1. The number of ¢,(t,m) of all m x t matrices of rank r with entries
in F_ is given by the following expressions,

K 2,(9)2:(¢™)
(t,m) = [Hom,(F;, F7)| = Qg =
u(t, m) = [Hom, (F}, Fy)| _r] 0 ==
Norte 3.2. It follows from Equation (2.1.1), or directly, that the number,
m|_ Q.(q"
3.2.1 F| = = )
G20 o’ [r_ 0.)

is equal to the number of dimension-r subspaces of V. Clearly, the set Hom(F;, V)
can be identified with the set ofall m x t matrices, and consequently the cardinal-

ity of Hom(F}, V)is ¢'™. Now, let f = fz =) 3 [T] Q,(x) be the polynomial of

Corollary 2.2. Then it follows from (2.2.2) that g™ = f(¢"). Consequently, since
t is arbitrary, it follows that f(x) = x™. From (3.2.1) and the first equation of
(2.2.1), we obtain that

-G

Consider finally Equation (2.2.3). By (3.0.1), or directly, the left hand side of
(2.2.3) is Q,(¢g™. The polynomial f on the right hand side of (2.2.3) is f = x™
Therefore, Equation (2.2.3) implies the following equation,
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0.q™ = Zo (—1q® m @

The latter equation holds for all m. Therefore it implies the following equation of
polynomials,

(323) 0.00= ¥ (~1g® m ot

ReMARK 3.3. The results of 3.2 were obtained for the given prime power q.
However, the results imply corresponding results for an element g which is
transcendental over Z. Indeed, when q is transcendental, the g-binomial coeffi-

cient [ ] is a quotient of polynomials in g with integer coefficients and the
r

denominator is a monic polynomial in g. It follows from the interpretation of
t
r
power. Therefore, the g-binomial coefficients are polynomials in g with integer
coefficients. Consider next the two sides of Equation (3.2.2) when g is transcen-
dental. The two sides are polynomials in g, and equal when g is a prime power.

Therefore, Equation (3.2.2) holds when g is transcendental. It follows similarly
that Equation (3.2.3) holds in the transcendental case.

(3.2.1) above, that the value of [ ] is integral when evaluated on any prime

4. Matrices with different rows.

Consider the set of all m x ¢t matrices whose rows are non-zero and mutually
distinct. Let V:= F’,and denote by ¢, . . ., {, the dual of the canonical basis of V.
Then, clearly, the latter set of matrices can be identified with the set of linear maps
Homy (F}, V) defined by the following family & of subspaces of V: A subspace
U belongs to 2, if and only if the functionals &; when restricted to U are non-zero
and mutually distinct.

Clearly, the number of matrices in Homg(F}, V) is (¢' — 1)(¢" — 2)...(¢" — m).
Therefore it follows from Equation (2.2.2) that the polynomial of Corollary 2.2 is
f(x) =(x — 1)(x — 2)...(x — m). Hence, from Formula (2.2.5), we obtain the
following result of Carlitz [C3].

PROPOSITION 4.1. The number 6,(t,m) of m x t matrices of rank r with entries in
F,, whose rows are non-zero and mutually different, is given by the following
expression,

6,(t,m) = [Homy, (F,, Fp)| = [j] T 1)‘q(5)[§](q'—i — (@ =g = m)
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NoTE 4.2. The interest in the numbers 6,(t,m) originally comes from their
applications to coding theory. They appear in the investigations of the distribu-
tion of multigrams in solutions of maximal length of linear recurring sequences
associated to linear codes. For more details see §7-10 of [Ls].

5. Matrices with quadratic symmetric conditions on the entries.

In this section the prime power g will be assumed to be odd. Let S be a regular
symmetric bilinear form on V. In a given basis of V¥, identify S with a regular
symmetric m x m matrix S. Consider the set of all m x t matrices X such that

X'SX =0.

Clearly, the latter set of matrices can be identified with the set Hom (F}, V) of
linear maps defined by the set & of subspaces of V that are isotropic for S. Recall
that a subspce U < V is said to be isotropic for the bilinear form S if S is equal to
zeroon U.

5.1. Define for ¢ = +1 a function ¢%m) as follows: If m is odd, ignore the
argument &, and set
r m+1—2|'_1 m;'l—i_*_l)(qm—;l—i_l)

q U]
Am)i= i = i
o i1=—[1 qg—1 .D; qg—1

If m is even, set

m+1-2i + 8(q _ l)q%—t -1
q-1

oim):= 1 2

N iRt L B R TR
s q-1 T2 =1 4 —1
i=1 q2+8

(where the last equation assumes m > 0 or ¢ + — 1). Note that the numerator in
the above products contains 0 as a factor when r is large. More precisely,

r> 3 when m is odd,
m .
gi(m) =0 < r>7 when mis even and ¢ = 1.
m .
r>—2——1 when mis even and e = —1.

LEMMA 5.2. Let S be a regular symmetric form on V. If the dimension m of V is
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even, define ¢ = ¢S) as +1 or —1 according as (— 1)% det S is a square or
a non-square in F}. Then, the number of isotropic subspaces of dimension r for the
form S is equal to the following expression,

|| = ay(m).

Proor. The starting point of the proofis the following well known formula for
the number of solutions in V to the equation S(x, x) = 0. The number of solutions
isequal to g™~ ' if mis odd, and equal to " ! + &(q — 1)q2 ! if mis even, see [D,
Theorems 65 and 66, pp. 47-48]. Hence the number of non-zero solutions to
S(x,x) = 0 is equal to the expression,
gt -1 when m is odd,

(5.2.1) aimiqg—-1) = {

q" ' +eg—1)g2 ! —1 when m is even.

The number |#,| of dimension-1 isotropic subspaces is obtained by dividing the
latter expression by g — 1. Therefore, the formula of the Lemma holds for r = 1.
Clearly, the formula holds for r = 0. In particular, the formula holds for m = 1
and m = 2. The formula is proved in the general case by induction on m.

Assume that m > 2. Then there are 1-dimensional isotropic subspaces of V,
because the expression (5.2.1) is positive. Fix a 1-dimensional isotropic subspace
Lof ¥, and consider its “orthogonal complement” L*. If vis a generator of L, then
I is the set of all vectors u such that S(u,v) = 0. The complement L' is of
dimension m — 1, because S is regular. Moreover, L* contains L, because L is
isotropic. The restriction, S*, of S to L* is not regular, since L is contained in the
null space of S*. However, consider the form S, induced by S* on the quotient
Vo:= L*/L. Then, as will now be shown, the form S, is regular; moreover,
dim V, = m — 2 and, if m is even, then &(S) = &(Sy).

To prove the latter assertions, choose a generator v for L, extend the vector v to
a basis (v, u,, ..., U, ) for L', and extend the latter set with a vector w to a basis
(v,w,uy,...,u,-,)for V. In the latter basis, the form S corresponds to a matrix of
the following form,

0 a 0 ... 0
a
0
: So

0

where a = S(v,w) and S, is an (m — 2) x (m — 2) matrix. By Laplace develop-
ment of the determinant of S we have that detS = —a?® det So. The matrix S, is
a matrix of the form S, defined above. Therefore, the form S, is regular and, for
m even, &8) = &S,). Hence the assertions hold.
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Consider the set of all isotropic subspaces containing L. Clearly, every iso-
tropic subspace containing L is contained in L*. Therefore, the isotropic subspa-
ces containing L correspond bijectively to the isotropic subspaces in ¥, for the
form S,. Hence, by the induction hypothesis, the number of isotropic dimen-
sion-r subspaces containing L is equal to ¢%_;(m — 2). In particular, the number
is independent of L. Therefore, for r = 1, the number |.%,| of all isotropic dimen-
sion-r subspaces is equal to ¢¢_,(m — 2) multiplied by the number ¢5(m) of L’s
and divided by the number (¢ — 1)/(g — 1) of L’s contained in a dimension-r
subspace. Hence we obtain the equation,

ai(m)(q — 1)

7=

"oy 4(m—2).
The numerator of the fraction is equal to the expression (5.2.1). The asserted
formula follows from the definition of o%(m).
From Lemma 5.2 and Formula (2.1.1), we obtain the following result.
PROPOSITION 5.3. Consider the m x t matrix solutions X to the equation,
X'SX =0.
The number a,(t,m) of rank-r solutions is given by the expression,
(5.3.1) o,(t,m) = [Homy, (F%, F7)| = oX(m)Q.(q),

and the total number o(t, m) of solutions is given by the expression,

(53.2) a(t,m) = [Hom o (F3, F7)| = Y. ai(m)Q.(q")

where the summation is from r = 0 to the upper limit given by the inequalities
following the definition of ¢ in 5.1.

ExaMPLE 5.4. The determinant of the form S is well defined modulo the
subgroup of squares, (F;‘)z. If m=0 (mod 4), then &S)=1 if and only if
det Se(F)?%ifm = 2(mod 4), then &(S) = 1ifand onlyif —det S e (F¥)>. For small
values of m we obtain the following expressions for a(t, m):

a(t, 1),

Nt if —detS¢(FX?
O'(t, 2) = {1 + Z(qt _ 1) if —-detSE(F.’;)Za

ot,3)=1+(q+ )¢ - 1),
ot,4) =1+ (g> + )¢ —1) if detS¢(F¥?>
Finally, when m = 4 and det Se(F})?,
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ot,49) =1+ (g + D¢ — )+ 2(q + 1)(¢' — 1) — 9.
Norte 5.5. The expression for the number o,(t, m) in (5.3.1) seems to be new.
The number a(t, m) in (5.3.2) was considered by Carlitz [C1, Theorem 4, p. 131],

who obtained a different expression. The result of Carlitz is the following: The
product g¥“* "™ g(¢ m) is equal to the following expression when m is odd:

Z 1 le l t—-i)

1<2r$t l_L 1(1_‘1—2')

and equal to the following expression when m is even:

2r 1 t—i 2r—2 =i
—mr (l_q ) 4m —mrl—l (1‘-q )

— — & A
e Lk T e

Comparing the expressions (5.3.2) with the expressions of Carlitz we obtain
ag-identity foreachm = 1,2,.... The expressions of Carlitz can be interpreted as
special values of certain generalized hypergeometric series, see [C1]. The identity
obtained for m = 1 was observed by Carlitz [C1, Formula (4.9), p. 129]. It is the
following:

1+

1+

m+1—~i)

Am(m+1) __ —2r I—I2r 1
q - Z —2i
0§2r§m+1 H; 1(1 -q°7)

6. Matrices with quadratic alternating conditions on the entries.

Let again g be an arbitrary prime power. Assume that the dimension m of V is
even. Let A be a regular alternating bilinear form on V. In a given basis of ¥,
identify A with a regular alternatingm x mmatrix A. Consider theset ofallm x ¢
matrices X such that

X'AX =0.

Clearly, the latter set of matrices can be identified with the set of linear maps
Hom,, (F}, V) defined by the set o/ of subspaces of V that are isotropic for A.
Recall that a subspace U < Vis said to be isotropic for the bilinear form A4 if 4 is
equal to zero on U. It is easy to determine the number |.«7,| of isotropic dimen-
sion-r subspaces. Indeed, consider a basis (v,,...,v;) for an i-dimensional iso-
tropic subspace U. Let v be an arbitrary vector. Then (v4, .. ., v;, v) is a basis for an
(i + 1)-dimensional isotropic subspace, if and only if v¢ U and ve U. The
complement U+ has dimension m — i because A is regular and U < U~ because
A is alternating. Hence the number of possible v’s is equal to g™ ~* — ¢'. It follows
by induction that the number of bases of isotropic dimension-r subspaces is equal
to the product,



COUNTING MATRICES WITH COORDINATES IN FINITE FIELDS . .. 31

@ —-Da" =@ 2 =¢)...@" " =g ).

Hence, the number of isotropic dimension-r subspaces is equal to the latter
product divided by the number of bases for an r-dimensional subspace, that is,
divided by Q,(q"). Thus the number of isotropic dimension-r subspaces of V is
equal to

r m+2— 21_1

m = [ 1

Therefore, from Formula (2.1.1) we obtain the following result.
PROPOSITION 6.1. Consider the m x t matrix solutions X to the equation,
X'AX =0.

The number a,(t, m) of rank-r solutions X is given by the expression,

r m+2—-2i

(6.1.1) o,(t,m) = [Hom, (F., V)| = U iq——“‘Qr(q )s

and the total number a(t, m) of solutions is given by the expression,

m/i2 r qm+ 2-2i __
(6.1.2) oft,m) = [Hom 4 (F, V) = ), H Qr(q')
r=0i=
NoOTE 6.2. It follows from the expressions for the number a,(m) above and the
number o,(m) in Section 5 that the following equation holds,

%,(m) = a,(m + 1).

The latter equation has the following interpretation that seems to the authors to
be a strange coincidence. Work over a finite field with an odd number g of
elements. Assume that mis even. Let 4 be an alternating regular m x m matrix
and let S be a symmetric regular (m + 1) x (m + 1) matrix. Then the number of
dimension-r isotropic subspaces for A4 is equal to the number of dimension-r
isotropic subspaces for S.

NoOTE 6.3. An alternative expression for the number a(t,m) in (6.1.2) was
obtained by Carlitz in [C2, Theorem 4, p. 25] using exponential sums. The result
of Carlitz is the following:

2r—1 —1i

$(e—1) _ m(t—r) - 2r H (1-47)
q a(ti m) - q EETN

0§22:r§r H:=1(1 q~%)

In [C2], the exponent of g in the first term in the sum was erroneously given as
m(2t —r) —
Asin Section 5, the expressions of Carlitz can be interpreted as special values of
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b=

hypergeometric series. Comparing the expression of Carlitz with the expression
(6.1.2) we obtain for an even integer m the following g-identity:

2r—1 t—1i m/2 r m+2—2i i—1
gren- H I—-q gt v (q : -1 —-q7)
_;g Hx 1(1 _2') ; D q—1 '

7. Recursion formulas.

In this section we return to the setup of Section 1. We prove a recursion formula
for the coefficients in the interpolation formulas. When applied to the sequence
A;:= ¢'~ 1, we recover the recursion formulas for the numbers ¢,(t, m) and 6,(t, m)
considered in Sections 4 and 5.

LemMMA 7.1. The polynomial f(x) can be factored in R[x] asf(x) = (x — A)g(x) if
and only if the recursion formulas,

[t o)1)

or equivalently, the formulas

[f } 0.0 = (lrs1 — ) [‘j] 0.0 + (x— A,)[r M 1]Q,_l(x),

hold forr = 1,2,....
ProoF. All the assertions of the Lemma follow immediately from the formulas
(x = DQ,(x) = (4y+1 — NQx) + @, 4y(x) for r=0,1,....

7.2. As we saw in Section 3 and 4, the two conditions (1) and (2) considered in
the Introduction correspond to the numbers ¢,(t,m) and J,(t,m) defined in
Proposition 3.1 and Proposition 4.1. By Formula (2.2.4) and Note 3.2,

b.t,m) = [f] 0.a),

where f, = x". Hence, by applying Lemma 7.1 to the factorization
Ju(x) = xf, - 1(x), we obtain the following recursion formulas of Landsberg [Lb],

¢r(ta m) = qr¢r(t,m - 1) + (qt - qr— 1)¢r—l(tam - 1)
Similarly, by formula (2.2.4) and the analysis of Section 4,

5,(t,m) = [f ] 0.4)
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where f,(x) =(x — )(x —2)...(x — m). Here f,(x)=(x —m)f,_,(x), and we
obtain the recursion formulas of Laksov [Ls],

6r(ta m) = (qr - m)ér(tom - 1) + (qt - qr_l)ér-l(t’m - 1)
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