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APPROXIMATION BY NEAREST INTEGER
CONTINUED FRACTIONS (II)

JINGCHENG TONG

Abstract.

In a paper with the same title recently published in this journal, a recurrence relation of a Diophantine
inequality is established: min(0,-,, 0, ..., 0,+:) <2/3 + \/ S — 20), where oy =2/5 and
o; = 1/(3 — a;-). In this note, we give the explicit form of this inequality: min(6,-,, 6,, ..

Onei) < 1N/5 + (B = /2215,

.

Let x be an irrational number, x = [gobg; €, by, ..., &,b,, ...] be its expansion
in nearest integer continued fraction. Let A,/B, = [eobo; €1by, .. ., &,b,] be the
nth convergent and 6, = B,%|x — A4,/B,|. It was proved in [2] that min (0,_,,
0,,0,+1) < 5(5/5 — 11)/2. The present author generalized this result. It is pro-
ved in [4] that min(0,_, O,, ..., O,+) < 2/3 + \/5 — o), where oty = 2/5, a; =
1/(3 — a;-,). In this note, using the Fibonacci sequence, we give an explicit
estimation of the value min(@,_,6,, ..., 6,.,) as a function of k directly.

THEOREM 1. min (0,-1,0,, ..., O0,41) < 1/3/5 + (3 — /5)/2)**3//5.

ProoOF. Let fy =1, f, =1, f,+2 = fo+1 + f, be the Fibonacci sequence.

We first prove that the recurrence relation o; = 1/(3 — ¢;—;) and oy = 2/5
imply that o; = f3;+1/f2i+3.

If i=1, then oy =2/5= f3/fs. Suppose o, = for+1/fax+3. Then o,y =
1B — o) = /(3 = fax+1/fox+3) = fau+3/Gfak+3 — S+ 1) = San+3/(Rfon+3 +
Juv2) = fau+3/(fae+3 + fak+a) = facr 3/fau+s. Therefore by induction we have
% = foi+1/f2i+a.

Replacing o, in the expression min (6,—y, 0,,, - .., O,44) < 2/(3 + /5 — %) by
Jax+1/fak+3, we have

min (0,1, 0,y - . -5 On i) < 2f2043/((3 + \/5)f2k+3 = 2f+1)

By Binet’s formula for the Fibonacci sequence [1], we have
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fo=@" = (=05,
where ¢ = (1 +./5)/2, —¢ ' =(1 —,/5)/2. Now a direct calculation of

2(@/(— ¢~ W2 = VUG + /(D=7 N2 = 1) = A= N —
DA—¢™1)) yields

min (0,1, Ops - - -, Opri) < 1/3/5 + (B — /5)/D**3//5.

Now we can have a comparison of the two approximations by simple con-
tinued fraction and by nearest integer continued fraction. Let x be an irrational
number. Borel’s theorem [3] asserts that among any three consecutive conver-
gents p;/q; of simple continued fraction of x, there is at least one satisfies
Ix — pi/ail < 1/(\/54:*). As a much weaker corollary we know that there are
infinitely many convergents p;/q; satisfying |x — p;/q;] < l/(\/ 5g;%). For nearest
integer continued fraction we only have the following even weaker form.

COROLLARY 1. Let x be an irrational number. Then there are infinitely many
convergents A;/B; of nearest integer continued fraction of x satisfying

Ix — A/Bil < 1/((/5 — &) B?).

PRrOOF. Since (3 — /5)/2)**3 — 0 when k — oo, we know that min (6,4, 6,,

v Ol 1/\/ 5 for any fixed positive integer n. Therefore for any given small

¢ > 0 and any positive integer n, pick up k such that min (0,_,6,,...,0,.,) <

1/(y/5 — ¢) then we can have an integer m(—1 < m < k) such that 6,,, <

1/(\/ 5 — ¢). Since there are infinitely many positive integer n, there are infinitely

many i such that 6; < 1/(/5 — ¢). Since 6; = B*|x — A;/B;|, we have the con-
clusion.
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