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ON TYPE II AND TYPE III PRINCIPAL
GRAPHS OF SUBFACTORS*

MASAKI IZUMI

Abstract.

For pairs of type III; (0 < 4 £ 1) factors with finite indices, we shall show a necessary and sufficient
condition that the type II principal graph does not coincide with the type 111 principal graph, in terms
of Longo’s sectors.

1. Introduction.

According to recent works of T. Hamachi and H. Kosaki [HK1, 2, 3, K3], the
index theory of type III factors splits into two theories, one is a “purely type I11”
index theory and the other is an “essentially type II” index theory. The former is
closely related to the ergodic theory, and if the factors involved are approximate-
ly finite dimensional (AFD) it is completely described by extensions of ergodic
flows. On the other hand the latter is reduced to the studies of inclusions of type 11
von Neumann algebras and automorphisms which globally preserve subalgeb-
ras [Kal, 2, Lil, P].

In the “essentially type II” index theory (of type III factors), there appear two
principal graphs, so-called the type II principal graph and the type III principal
graph, and they play essential réles in the analysis [KL]. In this paper, for type
III, (0 < A £ 1) factors we shall characterize the condition that the above-men-
tioned two graphs do not coincide in terms of sectors, which were introduced by
R. Longo [L2] and turns out to be an important tool for index theory {11, 2, CK].
Namely the change of the principal graphs of the dual pair happens if and only if
a modular automorphism appears as the descendant sector of the canonical
endomorphism.

Basic facts on index theory can be found in [GHJ, K1]. For sector theory we
shall freely use the notations in [12].

The author would like to thank Y. Kawahigashi for informing of the S. Popa’s
work [P] and S. Popa for sending his proof of Corollary 3.6 in the finite depth

* This research is partially supported by JSPS and CNR.
Received September 7, 1992. '



308 MASAKI 1ZUMI

case. He is also grateful to H. Kosaki and M. Choda for discussions, and Ph. Loi
for pointing out a misprint in the original version of this paper.

2. Preliminaries.

In this section we recall the constructions of the simultaneous crossed product
decompositions in [HK 1, KL, L1, Lil], and the relation between the canonical
endomorphisms and Jones towers [L2, K2]. Throughout this paper we assume
that von Neumann algebras have separable preduals.

2-1. The simultaneous continuous decomposition. Let M > N be a pair of type
III factors with finite index. Then we can construct the simultaneous continuous
crossed product decomposition as follows. Let i be a faithful normal state on
N and E: M — N the minimal conditional expectation of Hiai [H, KL, L4]. (In
this paper we shall treat only minimal expectations.) We define a pair of type 11,
von Neumann algebras M > N as follows.

M=MxR>N=NxR, o=y E
a® o¥

Let 7 be the usual trace on M and 6 the dual action of ¢, which coincides with the
dual action of ¢” restricted to N. Note that the trace preserving expectation
E: M — N is the restriction of E ® id to M, and consequently

~ 1

E-———idM->M
[M:N]o

is completely positive. Thanks to Takesaki duality we can identify M > N with
M xR>N x R.
6 [}
Let

M,oM,_ o---oM>N

be the tower associated with M > N and E;: M; - M;_, the minimal expecta-
tion. We define type II,, von Neumann algebras by

M,=M, x R
where ¢, = ¢ E, - E, -+ E,. Even though M, is not a factor in general, M, can be
considered to be the basic extension of M,_, by M, _, in a certain sense [HK 1,
Ka1]. Infact M, is generated by M, _; and the Jones projectionin M, n M,_,.In
the same way as above we can and do identify the tower for M > N with

M,xRoM,_;xRo---oMxR>N xR
0 0 [} [}
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where 0 extends to the tower fixing the Jones projections. It is known that the
following relation holds [KL].

@.1) (M, NP = M, AN,

where we regard M, and N as subalgebras of M, and N.

If M and N are type I1I, factors then M > N is an inclusion of type II, factors
with the minimum index [M: NJ,. We define the type IT and the type III principal
graphs of M > N as follows.

DEFINITION 2.1. Under the above condition, we call the principal graph of
M > N as the type I principal graphof M o N, and that of M > N as the type 111
principal graph of M > N.

From the relation (2.1), in general two principal graphs do not coincide.
Actually there exist examples whose two principal graphs are different [S].

2-2. The simultaneous discrete decomposition. Let M be a type III, (0 < 4 < 1)
factor and N a type III, subfactor of M with finite index. We assume that there
exist a pair of type II, factors M > N and 6eAut(M,N) Aut(M,N)=
{xe Aut(M); a(N) = N}) scaling the trace 7 on M such that

(M:N);(M;gZ:IV:;Z).
We further assume that the minimal expectation E: M — N preserves 7. Of course
we can not expect such a decomposition in general. But if the center of M N N'is

trivial, we can construct the decomposition in a similar way as in subsection 2-1
using the generalized trace and T action instead of  and R action [Lil]. Let

M,oM,.,o---D2M>N
MHDM"..ID"'DMDN

be the towers for M > N and M > N. Then 6 can be uniquely extended to the
latter tower as before. Asin the continuous case we can and do identify the former
tower with ’

M,,);Z:)M,,-l ;(ZD---DM);ZDIV;(Z.
Then the following holds.
(2.2 (M,nN)’ = M,nN".
As in the case of type III, factors we define two principal graphs of M > N as
follows.

DEFINITION 2.2. Under the above condition, we call the principal graph of

1
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M > N as the type Il principal graph of M = N, and that of M > N as the type Il
principal graph.

REMARK 2.3. Let M x,Z > N x,Z be the discrete decomposition of M > N
and M x4R o N x,R the continuous decomposition of M > N. As in [KL,
Section 4.] we can see that M and N have common central decomposition, and
the type II principal graph of M > N coincides with the principal graph of the
field of type I, inclusions.

Examples whose two principal graphs are different are found in [IK, KL, Lil].

2-3 Canonical endomorphisms. Let M > N be a pair of properly infinite von
Neumann algebras. Then both of M and N can be standardly represented on
a common Hilbert space H. Let J,;, Jy be the modular conjugations of M,
N acting on H. We define an endomorphism y: M — N by y(x) = JyJyxJpyJy for
x € M. We say that an endomorphism is canonical if it is constructed as above,
even though we do not assume that y comes from a common cyclic and separating
vector. Note that y is uniquely determined up to inner perturbation of N [L3].
We further assume that M o N is an inclusion of factors with finite index and
define M; (i > 0) by

MZKEF*"MI-'", Mz,,_lEI-'*”NF"

where I' = JyJy,. Then the modular conjugation of M; can be easily computed.
Using this we can see that

M,>M, ,5--->5M>N
is the tower for M o N, and consequently
M>N>yM)2y(N)2y* (M) >
is the tunnel for M > N. Note that Ad(I')|y,: M; — M, _, is a canonical endomor-
phism.
3. Main result.
Before stating the main result we shall prove two technical lemmas.

LeMMA 3.1. Let M > N be a pair of properly infinite von Neumann algebras and
a: G - Aut(M, N) a continuous action of a locally compact group G. We define
another pair of properly infinite von Neumann algebras M o N by

M=MxGoN=N xG.

Then for any canonical endomorphism §- M — N there exists a canonical endomor-
phism y: M — N which satisfies the following conditions.
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(i) Let m,: M — M be the usual embedding map. Then y(n,(x)) = n,(f(x)) for
xeM.

(ii) There exists a a-cocycle v,,g€ G in N such that 7(44) = m,(v,)4,, where A, is
the implementing unitary for 6, in M. ‘

(iti) If G is abelianand & G — Aut(M, N) is the dual action of @, theny commutes
with &, c€G.

PRrOOF. (i): We assume that M and N act on a Hilbert space H which is the
standard Hilbert space for both of M and N. Let Jy, Ji be the modular
conjugations of M, N, and uj, u the canonical implementations of &, «|5. Thanks
to [Ha], the modular conjugations Jy, Jy of M, N acting on L*(G, H) can be
obtained as follows.

Im)s) = 46(8) ™ ugg(s/* I l(s ™)
(UnE)s) = 4g(s) ™ Pugglsf*Jg&ls™")

where ¢ € L*(G,H), se G and 4 is the modular function of G. Let F=Jily,
I = JyJy, 7 = Ad(F)\5 and y = Ad(I')|y. Then we have the following by using
the above equations.

(TE)(s) = (UnTmE)s) = ug(s)* Fuig(s)&(s).
Hence, for xe M we obtain
(0 (x))E)(s) = (Ima(X)*)(s)
= ug($)* Fugz () - 1 (x)uxi(5)* MHug(s)(s)
= uf(s)*F(xJus(s)E(s)
= (ma(F(x))E)(s).
(ii): Using the above expression of I" we get
((A)E)(S) = (IAgT*EXs) = ug(s)* Fus(s)(A,T*E)s)
= ug(s)*JaJaua(Suirg ™' iaiur(g ™ s)(A,€)s)
= uzi(s)*Jusa(glun(g)* Jius(s)(44¢)(s).

Let v, = Jguz(g)uz(g)*J5. Since uii(g)uz(g)* commutes with any element in 1\7,
we have v, e N and 50 y(4,) = m,(v,)4,. It is easy to show that v, is a a-cocycle. (iii)
is a direct consequence of (i) and (ii).

The following lemma enables us to compare the descendant M — M(M — N)
sectors with the descendant M — M(M — N) sectors.

LEMMA 3.2. Let M o N be a pair of type II1 factors with finite index, and
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M=1\7I>;R:3N=I\7§R

its simultaneous continuous crossed product decomposition explained in subsection
2-1. Then for any positive integer n, there exist canonical endomorphisms

2M-N, »M->N

satisfying the following.
) moF(x) = 7)) for x e M. )
(i) y commutes with o; t € R where © is the dual weight of the trace t on M.
(iii) For any integer i, (0 < i < n), 0 globally preserves (M) and #(N). More-
over 0 fixes the Jones projections associated with the following tunnel.
M > N > y(M) > y(N)> -+ = y(N).
(iv) The following formulas hold for 0 < i < n.
M ny(M) = mo(M ~ F(M))°).
M yi(NY = mo(M  7(NY)).
Proor. We use the notations in the proof of Lemma 3.1. In the present case
G=Randa = 0. Let My; = M'*MI' and M,; _, = I''NI*(1 £i < n). Then as
we saw in subsection 2-3,

M, oM, o ->DM>N

is the tower for M > N and Ad(I')|u,,: M3s = M, is a canonical endomor-
phism. Let E;: M;—» M;_;, EEM — N be the minimal expectations and
@;=1"E - Ey--- E;. From the uniqueness (up to isomorphisms) of the basic
construction, we can identify the following two towers.

MZnDMZn—l DDMI DM:N
(Mzn)m,. = (Mln—l)u,,_l DD (Mx),,, = no(M) > n9(1\7).

where M; is as in subsection 2-1. Let e;e M; n M’;_, be the Jones projection and
4.€ M the implementing unitary for 6. Then we have ;€ (M;), because E;_; - E;
is minimal [KL]. So if we define R action on (M), , by Ad(4,)| M), Ad(4,) fixes e;
and hence the above identification extends to R actions. Suppose that the
following formula holds.

(3.1 (M), ,, = I'mo(M)I".
Mzi-1),,_, = T*ng(N)I.
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Then since Ad (D)l (M) — o(N) is a canonical endomorphism due to
Lemma 3.1. (i), so is

Ad (D My, M2n),, = (Man-1)g,,_ -

Hence we obtain (i), (iii), (iv) because M = N is isomorphic to M,, > M,,_,,and
(i) by direct computation using I'A,I'* = ny(v,)4,. We shall prove (3.1) in what
follows.

First we show (M), = I'*ny(N)I". Let M, = J3N'Jy = [™*NT. The extension
of 6 to M, which preserves the Jones projection in M; n N’ is obtained by
Ad (uys(t))lsz, [Kal, Li] and we also denote this by 8 as in subsection 2-1. We show

M, xR= (M) v {4} = M,.
For xe N,
(M*me()TE)(S) = uiz(s)* M ugi(9)0 - (x)uz(s)* Fua(s)E(s)
= ugg(s)**xFuj(s)&(s)
= (mo(T*xT))(s).

This means Mng(N)I" = m4(M,). Let v, be the 8-cocycle in N as before. Since 6]is
a stable action there exists a unitary ve N satisfying v, = v*6,(v) [CT, Theorem
5.1]. So we have

r*A,I = ([*rg)D) A *ng(v*)D).
Hence
M, = I'*NT = I'*(ng(N) v {4 NI
= mg(My) v {(T*ma0))ALT*no(v*)D)}
= ng(My) v {4}
=M, X R.
To show (M), = I™*ne(N)I" what we have to do is to prove that ¢, is the dual

weight of the canonical trace on M,. Let E;: M, —» M be the dual conditional
expectation of E=E|gandt, =1° E, the canonical trace. Since E, commutes

with 0,
(B, @ id)|y,: My > M
is a faithful normal conditional expectation. As we stated in subsection 2-1

1 ~ ~
e ———id: M, - M
By, M M ‘
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is completely positive. This implies (E; ® id)|y, = E; because E, is minimal.
Therefore we have ¢, = 1.
Next we show (M), =TI’ *no(M)I. For this it suffices to show

t-Ad(N)ls, = [M: Nog2,
or equivalently

T =[M: N]o@s Ad(I'*)|y-
Since

Ad(I)-E, -Ad(I'*: M > N

is a conditional expectation with index [ M;: M], = [M: N],, it must be E. So the
right hand side of the above equation is

[M:N]o@z  Ad(I™)ly = [M:N]o@," E;"Ad(I'™*)|yy = [M:Nop, - Ad(I'™)- E.
Due to - E = £ and ¢,|y = %, what remains to show is the following.
(Pl'Ad(F)]m = [M:Nloo;.
As we saw before we have Ad(I') - mg| 2, =T Ad(D) s, and Ad(I)(4,) = me(v;) A,
So we obtain Ad(I')- f* = of* - Ad(I')|s,. By Longo’s observation [L1] we have

7y -Ad(D)z, = [M:N]ot,. (Note that Ad(F)|z;: M; - M is a canonical en-
domorphism.) Therefore we get the following for any positive element x € M;.

®1-Ad(N)(x) = ;- Ad(I)(x)

e ( f "o (Ad(f')(x))dt)

-

=1 '1t4,‘1(Ad(1")<J‘ao o;"(x)dt))

@

=1, Ad(D) 7, ! (J a‘,’"(x)dt)

— o

e

= [M:NJot; 75 * (J Gf”(x)dt>

—

= [M:N]o¢:(x).

In general case, we obtain (3.1) by induction using (M;), = (M;-,), _, v
{Ej}(j > 2) and l"ekr* = ek_z(k > 3).

ReMARK 3.3. In the situation that we consider only the sectors of y and 7, we
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may replace Ad(I') and Ad(I') with Ad(ne(v)I") and Ad(vT) in the above proof.
Since ng(v)I" commutes with A, we further have y(J,) = 4, in this case.

REMARK 3.4. The same type of statement holds for the discrete decomposition.
Our main theorem is as follows.

THEOREM 3.5. Let M > N be a pair of type 111, (0 < A < 1) factors with finite
index, and y: M — N the canonical endomorphism. In type I11, (0 < 4 < 1) case we
assume the pair has the simultaneous discrete crossed product decomposition. Let
M, be the basic extension of M by N and © be the dual weight of the trace T on M as
in subsection 2-1,2-2. Then the type 11 and the type 111 principal graphs of M, > M
do not coincide if and only if y[y*]y contains y[0%]y, for some t & T(M) and for
some k > 0.

ProOF. In the case of type III, factors: We take y as in the statement of Lemma
3.2 for sufficiently large n and use the notations of Lemma 3.2. We denote by 4,
the implementing unitary for 6, in M as before. We shall omit 7y in what follows.
Let p be a minimal projection in M N (M) (resp. M n y*(N)) (0 < k < n). Since
p belongs to M  y*(M) (resp. M  y*(NY), there exists an isometry ve M satisfy-
ing vv* = p. (Note that p is always an infinite projection in M.) Let y[p] (resp.
mLp]n) be the descendant M — M (resp. M — N) sector of y corresponding to p.
Then p is obtained as follows.

p(x) = v*y*(x)v for xeM (resp. xeN).

Note that p(M) < M (resp. p(N) = N) and p|y; (resp. pl7) gives the descendant
sectors of § corresponding to p. This means that we can compare M — M (resp.
M — N)sectors with M — M (M — N) sectors. In what follows, to obtain repre-
sentatives of sectors we always use isometries in M, and we write as

al0li = mlplialn  (resp. z[ols = alelalq)-

We compute £ - p in the case that pisan M — M sector. Letg,: M — y*(M) be the
minimal expectation. From the proof of Lemma 3.2 we may assume ©- g = 7. So
we have the following for xe M.

(p(x)) = E*y () = T (x)ov*)
= & 8(*(0)p) = 1 (*)e(p))
= &(p)2(*(0) = &(p)[M : NToE(x).
As in [I1, subsection 2.3] we obtain
i-p=d(p)t
where d(p) = [M : p(N)]/2. Note that if p is an automorphism £ p = £ holds.
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Assume that ,[y*1,, contains ,[of]y (t + 0). Let p be the projection corre-
sponding to y[6%], and ve M an isometry satisfying vv* = p as before. We define
a€ Aut(M) by a = v*y*(x)v. By assumption there exists a unitary w € M satisfying
a = Ad(w)-o%. Dueto-a = £, wbelongs to M. Thismeans j3[&@]; = s[id]5 and
hence the two graphs are different.

Assume that the two graphs are different. Note that R action 8 can not move
the central projections in M ny*(M) and M ny*(N) [KL]. So there exists
a minimal central projection ze M N y*(M) (or M ny*(NY) such that 6 acts
non-trivially on z(M N y*(M)) (resp. z(M n y*(NY)). Note that z(M N y*(M))
(resp. z(M n y*(N))) is not a factor because any R action on a type I factor is
inner. This means that there exist two non-zero central projections z,,z, in
M N y*(M) (resp. M ny*(NY) such that z, + z, = z. Hence there exist two
irreducible M — M (resp. M — N) sectors p[p11s> mlp21m (tesp. mLo1]wns
umLp2]1y) contained in »[y*]y (resp. p[y*1xn) which satisfy

mlpidm + mlp21me  (resp. mlpaln + mlp21n),
P11 = ulb21iz  (resp. 3[h11w = wlh21%)
Note that 5[5, 1s, silf215 Sresp; silP11#, 5ilP2]R) are irreducible too. We may
assume j; = §,. From y- o = o - y the following hold.
p10i =07 p1, P2°0; = 0f* py.
So there exist f-cocycles w}, w? € M satisfying
p1(d) = wi ke, p2(R) = Wik
Therefore for xe M (resp. x € N) the following holds.
W Ay () AF Wi * = py(AxAF) = py(6:(x)) = p2(8,(x))
= WP AP (X)AFWI* = Wi dpy (X)AFWE*.

Due to M n p,(MY = C (resp. M n p,(NY = C), there exists s + 0 satisfying

So we have p, = ot p,. Therefore y[p,511x = ml[0F p171]n contains r 0]y

In the case of type III, (0 < A < 1) factors: From Remark 3.4 we may do the
same assumption on y as before using 8 instead of 6,. We denote by u the
implementing unitary for € in M. In contrast with the continuous case, discrete
action @ can move central projections in M n (M) and M n #*(N). So what
remains is to show that if 6 moves central projections in M N (M) or
M ~ 7 (NY a modular automorphism appears in the irreducible components of
u[¥*1a- In this case there exist mutually orthogonal minimal central projections
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{P1:p2s-. i} € M AF(MY (resp. M #(NY) satisfying 8(p) = pyss(pras =
py)- Let

Then ze(M ny*(M))’ = M n y(MY (resp ze(M ny4(N))’ = M A y*(NY). So
there is an isometry ve (M)’ satisfying vv* = z. We define p:M—> M (resp.
p:N —> M) by

p(x) = v*y*(x)v for xe M (resp. xeN).

Letg; = v*p,v. Then g; is a central projectionin M n (M) (resp. M N j(N)) and
the following hold.

1
0(g;) = gj+1, Z g;=1
i=1
We define a unitary we M n (M) (resp. we M n §(N)) by

Eile.

2mi

From 6(w) = e™ 1 w, w satisfies

2mi

w¥uw =e” T u.
Thanks to Remark 3.3 we may assume p(u) = u. So we have
p(x) xeM (resp. xe N)
Ad (W) : p(X) = { 2mi .

px) x=u

Therefore we obtain

2n
llogi

o Adw)-p=p, s=—

This means

mlplm = M[Uf'P]M (resp. m[pIv = M["E'P]N)-
Hence y[pply = ulot: pply contains N A
As a corollary we have the following.

COROLLARY 3.6. Let M > N be a pair of type 111, factors with finite index and
9:M — N the canonical endomorphism. If only finitely many automorphisms ap-
pear in the descendant sectors of [y the type Il and type I11 principal graphs of
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M, o M coincide. In particular if the depth of M > N is finite the above condition is
automatically satisfied.

Proor. This follows from the fact that the automorphisms which appear in the
descendant sectors of »[y]) make a group.

REMARK 3.7. In the case of finite depth S. Popa [P] and Ph. Loi [Li2] also
independently obtain Corollary 3.6 in different ways.

REMARK 3.8. In the case of type 111, factors with the common flow of weight,
we can define the type I1 principal graph as in Remark 2.3. So we can consider the
same type of problem replacing modular automorphisms with extended modular
automorphisms [CT].

Our main theorem is about the “modular invariant” of “actions of para-
groups” [ST][KST][O]. Concerning the “Connes-Takesaki module” [CT] we
have the following.

PROPOSITION 3.9. Let M o N be a pair of type 111 factors with finite index and y:
M — N the canonical endomorphism. If M and N have the common flow of weight,
the Connes-Takesaki modules of the automorphisms appearing in [y are
trivial.

ProoF. Let §, M, and N be as in Lemma 3.2. By assumption we have
Z(M) = Z(N). So we can see that §is trivial on Z(M). Hence we obtain the result
as in the proof of Theorem 3.5.
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