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HOMOTOPY OF PROJECTIONS AND FACTORIZATION
IN THE UNITARY GROUP OF CERTAIN C*-ALGEBRAS

SHUANG ZHANG

Abstract.

We prove that every unitary element in the matrix algebra M,(s¢) and the multiplier algebra M(2/)
can be factored as a product of a diagonal unitary and some symmetries, where .o is a C*-algebra
such that RR(s#) = 0 and tsr(&/) = 1. In addition, we discuss the relations among homotopy of
projections, the topological stable rank tsr(s¢), and some factorizations of unitary elements in the
unitization of & @ .

Introduction.

Assume that .o is a unital C*-algebra, U(</) is the unitary group of &, and #(&/)
is the space of all non-trivial projections (i.e., 0, 1) which is equipped with the
relative norm topology and called the Grassmann space of . Despite it is known
that U(«/) and 2(«) carry a great deal of information about ., their detailed
structure, both topological and algebraic, remains mysterious.

The purpose of this article is, first, to consider factorizations of unitaries in
a C*-algebra o with RR (/) = 0 and tsr(«/) = 1, in the multiplier algebra M(=/)
of  (if o is non-unital), and in the matrix algebras M, (/) where n = 1. It turns
out that every unitary element in M, (/) or in M(&/) can be factored as a product
of two types of simplest unitaries, non-trivial symmetries (self-adjoint unitaries
not equal to + 1, —1) and diagonal unitaries. Secondly, we give necessary and
sufficient conditions for the surjectivity of the natural map U,(&/)/
Udst) 22225 U, 4 4(£)/UC, ((£) in terms of homotopy of projections, and
consider the same type of factorizations of unitaries in the unitization of & ® ',
where U,(s#) is the unitary group of M,(«#) and UQ(&) is the identity path
component of U,(=). All these two goals are reached by considering some
intimate relations between the homotopy of projections and factorizations of
unitaries.
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The factorizations mentioned above provide a better understanding about the
unitary groups of M, (/) and the unitization of .o/ ® A for certain C*-algebras.
Infact, every symmetry can be written as 2r — 1 for some projection r € (&) and
presumbably well understood, and diagonal unitaries in M, (<) are explicitly
created by all unitaries in U(%/). However, as one knows, the matrix algebras
M, (<) (n 2 1) are technically difficult to deal with in general due to the high
complexity of the manipulations of matrices with non-commutative entries; in
turn it is unknown how U(%/) is related to U,(«) if at all.

The text is arranged as follows. In the first section, we prove that two
Murray-von Neumann equivalent projections in &/ can be conjugated by either
one symmetry and a unitary close to the identity in norm or by two symmetries.
Based on this result, in the second section we factor each unitary in U,(«/) (n > 2)
as at most 2 {-}2—;—} symmetries and a diagonal unitary, where {r} is the smallest
integer greater or equal to the number r. Alternatively, every unitary in U,(<#) can
be approximated in norm by products of {:E—;} symmetries and a diagonal
unitary. Again using the result above, we consider similar factorizations in the
unitary group of M(=/), for which we need the aids from G. A. Elliott’s technique
for matroid algebras and our recent result in [ 597]. It turns out that every unitary
in M(s/) can be approximated in norm by a product of a symmetry and
a diagonal unitary (with respect to a decomposition of the identity); and in case
& is simple, any unitary of M(s#) can be factored as a product of n symmetries
and a unitary of the form (1 — p,) ® (p,uop,) for some projection p, e M(«) such
that 2"[p,] = [1] for any n = 2.

In the last section, assuming that & is an arbitrary unital C*-algebra, we
discuss the relation between the homotopy of projections and factoring unitaries
in U,(s) as a product of symmetries and a diagonal unitary. In particular, the
natural map

Un(A)/U(H) 25 Ko ()
is surjective if for each m > n the path component of the space of projections in
M, (/) containing the projection 1 ® e, is connected, where 1 ® e, is the
m X m matrix whose only nonzero entry 1 is at the (1, 1)-place. In case the
topological stable rank n: = tsr() of & is finite, every unitary in the unitization
of of ® A", whose unitary group is denoted by U, (&), can be approximated in
norm by some products of a number of symmetries and a unitary of U, (%)
(embedded into U (%)), where ¢ denotes the algebra of all compact operators
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on a separable Hilbert space; consequently, o ® ¢ is generated by projections
and unitaries in U,,(&/) for some m > n.

ACKNOWLEDGMENT. The author wishes to thank the referee for his/her ex-
tremely helpful suggestions and detailed criticisms for improving the manuscript.

1. Factorizations in U(%f).

1.1. Matrix decomposition of a C*-algebra.
Let {p;} be a set of mutually orthogonal nonzero projections of & such that

Z@Pi=1;

here we assume that such projections exist in »/. The above sum is called
a decomposition of the identity with respect to {p;}. Suppose further that the above
decomposition contains a finite number of terms, if .o is unital, and it contains
infinitely many terms converging to the identity of M(/) in the strict topology, if
&/ is non-unital. We will often use the following *-isomorphism between
a C*-algebra o/ (or M(=¢)) and a matrix decomposition of o/ (0t M(&), respective-
ly) with respect to the decomposition Y p; = 1:

P1XP1  P1XP2 P1XP3
D2XPy  D2XP2  P2XP3
P3XP1 P3XP2 P3XP3

X

Under this *-isorﬁorphism, one can easily check that the multiplication, the
addition, the scalar multiplication and the involution follow the standard rules of
the matrix manipulations. The above matrix is said to be the matrix form of x with
respect to the decomposition Z pi= 1.

1.2. Notations.

Let o/ be a unital C*-algebra and U(s/) be equipped with the relative norm
topology. Two unitaries in U() are said to be homotopic if they are in the same
path component of U(&). Slightly abusing a standard notation, we use  to
denote the unitization of & in case  is non-unital and to denote & itself in case
& is unital.

As usual, the notation ‘p ~ ¢’ denotes the Murray-von Neumann equivalence
in 2(o#), and [p] denotes the equivalence class containing p. Under the natural
ordering induced by the equivalence, [p] < [¢] iff pis equivalent to a subprojec-
tion of g.

Two projections p, g € #(#) are said to be unitarily equivalent, if ther‘e exists



284 SHUANG ZHANG

a unitary u of o such that upu* = g;and pand q are said to be homotopic if pand
q are in the same path component of #(«). In case RR (/) = 0 and tsr(&/) = 1,
two projections p,q e P(«) are equivalent if and only if p and q are unitarily
equivalent, again if and only if p and g are homotopic [48, 3.4]). The same
conclusions hold also for purely infinite simple C*-algebras ([21] and [51]).

A C*-algebra is said to have the cancellation property, if p; ~ p, whenever
four projections of of satisfy ry @ p; ~ r, @ p, and ry ~ r,. Under the condition
RR(«) = 0, of has cancellation if and only if tsr (=) = 1 ([3]). Specific examples
of such C*-algebras include the following C*-algebras and the tensor products
with the algebra J¢: all AF algebras [20], all Bunce-Deddens algebras ([7], [6]),
all finite factors (von Neumannalgebras) [ 13], many inductive limit algebras ([4],
[23], [5], among others), and certain irrational rotation algebras ([41], [14]).

1.3. LEMMA. Assumethat RR (&) = Oand tsr(f) = 1. Then the following three
Statements are equivalent:

(i) Two projections p,qe P () are equivalent.

(ii) For each positive number ¢ there exists a symmetry s and a unitary u, in
o such that ||u, — 1|| < & and su,pu¥s = q.

(iii) There are two symmetries s and s’ in o such that ss'ps's = q.

PRrooOF. Itis trivial that (iii) implies (1). In order to prove that (i) implies (ii) and
(ii) implies (iii), we need to use the construction in [48, 2.1] which is based on the
idea in [11] with further analyses. First, write p as a 2 x 2 matrix form with
respect to the decomposition g @ (1 — q) = 1, that is,

p=< apq ap(1 - ) )
(I—gpg 1—gp(l—q)

.\ 1 . L. .
For each positive number § < 1 — —= there exists [48, 2.1] a projection p, with

7
a b
Po = (b* c’)

lp — poll < 9,

a matrix form

such that

where a’ and ¢’ are positive elements of & with finite spectra in [0, 1]. If § is small
enough, it is well known that there exists a unitary u, € U(</) such that

lu.— 1]l <e and u,pu} = p,.

Set fo = x1;(@’) and ep = x;4,(c’) (it is possible that f, = 0 or e, = 0, or both are



HOMOTOPY OF PROJECTIONS AND FACTORIZATION IN THE UNITARY ... 285

zero). Of course f, is a projection in gs/q and e, is a projection in
(1 — g)/(1 — g). With respect to the decomposition f, @ (g — f,) = q one can

write
g0
0 a)’

where a(a)\{0} : = {t;}7*; = (0,1). Similarly, with respect to (1 — q — o) ® eo =
1 — g one can write
o€ 0
N0 e/

Then o(c)\{0} = {1 — t;}7-, = (0, 1), since

(2

is a subprojection of py, where one notices that fob = 0 and be, = 0 due to the
equalities a — a® = bb* and ¢ — ¢* = b*b. Thus, with respect to the decomposi-
tion

fo@@—fo)D(1—qg—e)@ey=1

one can write p, as the following 4 x 4 matrix form:

fo 0 0 0

0 a b 0}
Po=10 »* ¢ 0’

0 0 0 e

where a = (g — fo)po(q — fo), b =(q — fo)po(l — g — €o), and ¢ = (1 — g — e)
po(1 — g — e,). By the construction in [48, 2.17, if one writes

c= i (1 —t)r;

for some mutually orthogonal projections {r;}7-; < (1 — g — e¢)#(1 — g — eg),
then

m m
a= U(Z r,-—c)v* =Y tr*
i=1 i=1

for some partial isometry ve of such that v*v = Y T r;:= e. Furthermore, the
relation among b, ¢ and v is given by

b=uve—c) .

Set vv* = f. Clearly, ef =0, f is the range projection of 4, and e is the range
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projection of ¢. Obviously, fof = 0 and ege = 0. It is due to the cancellation

property that g — fo — f + 0 as long as ¢g = 0.
Since a(a) U o(c) < [0, 1), it is obvious that

lall <1, |If—al <1,
lel <1, Jle—c| < 1.

It follows from the well known fact (we cannot locate a reference)

g, — gzl = max{llql(l — q2)ll, llg2(1 — ‘11)”}

(=l e 2)-
w-feor=((i )=o)} [ D) s-ven}

Then s, is a symmetry of (e ® f)/(e @ f) such that

b
SofSo = (bci C).

One can also similarly define a symmetry conjugating (

that

<1

Set

b‘f“ IZ) and e, but we do
not need it here.

Let us show now that (i) implies (ii). If g ~ p, it follows from the cancellation
property that g — fo — f ~ eg, for p ~ py. Let v, be a partial isometry in 7 such
that vov¥ = e and v¥vy = q — fo — f. Since eo(q — fo —f) = 0, then s, := vy +
v§ is a symmetry in the corner

(eo ®(q —fo —f)) A (eo ® (q — fo — f))
such that s,(q — fo — f)s; = eo. Set
5:=50Ds5; Dfo®D(1 —qg—e—ep)

Then s is a symmetry of < such that spys = g. Therefore, su,pu*s = g, and hence
(ii) holds.
For (ii) implying (iii), we need to find a symmetry s’ € & such that s'ps’ = u,pu®*.
The existence of s’ follows immediately from the estimate |p — u,puX| <
2llu, — 1) < 1 (if e < 1) and a well known fact that two close projections are
equivalent by a symmetry (for example, see [61, Lemma 2]).

We now have the following factorization result in U(27).
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1.4. THEOREM. Suppose that RR(s#) = 0, tst(&/) = 1, p is any nonzero projec-
tion of o, w is an arbitrary unitary in 57, and ¢ is any positive number.
(i) There exist two symmetries s, s' and a unitary u, in </ such that

flu,— 1)l <e and u=u,s u 0 = 55 up 0 ,
0 u, 0 u,

where u, and u) are unitaries of pof p, u, and u'y are unitaries of (1 — p)(1 — p).
(ii) If qe P() with p ~ q < 1 — p, then there exist two symmetries s, s' and
a unitary u, of of such that ||u, — 1|| < ¢ and

W s 0 a) " 0 b*\/p 0
T8N0 )T\ ee*)\0 ba+e
s 0 a) s 0 b*\/p 0
S\ )T\ ce*J\0 ba+c)
where the matrices above are unitaries of s (with respect to the decomposition

p®(1—p)=1),and
0 b* d 0 b*
b cc* an b cc'*

Proor. (i) Since upu* is unitarily equivalent to p, by Lemma (1.3) there exist
two symmetries s, s’ and a unitary u, close to the identity (in norm) within ¢ such
that

are symmetries of /.

suXup = psu*u and §'sup = ps'su.

_ U, 0 _ss; ull 0
TS 0 w) T\ 0w/

(i) If p ~ g £ 1 — p, then upu* ~ gq. It follows from Lemma (1.3) again that

It follows that

su*upu*u,s = s'supu*ss’ = q,

where s and s’ are symmetries and u, is a unitary close to 1in norm within ¢. It is
then easily checked by calculation (see [55, 2,1], if not clear) that

0 a , (0 &
su;“u=(b b) and ssu—(b, c’)’

while by matrix multiplication ([55, 2.1]) one sees
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0 a 0 b*\(p 0
(b c) N (b cc*)(O ba + c) and
0 a\ (0 b*\/(p 0
b ¢) \» ce*J\0 ba+c)

Thus, we have completed the proof.

1.5. REMARKS.
(i) Some conclusions similar to Theorem 1.4 also hold in case .« is a purely
infinite, simple C*-algebra; namely, there exist two symmetries s, s’ of & such that

u=ys's u 0
- 0 uz’

where u, is a unitary of (1 — p).Z(1 — p),and u, is a unitary of ps#p; alternatively,
there exist symmetries s, and s, of & such that

i (0 @y (0 b*\(1-p O
_Zlbc_SZIbcc* 0 ba+c/)

the above matrix decompositions are with respect to p @ (1 — p) = 1. Since
purely infinite simple C*-algebras are not the target of this article, we leave
a proof for the above claim elsewhere ([61, 1.5]).

(i) We can write the unitary u in Theorem 1.4 as a product in the following form

— * U 0 — * 0 a
u (uasua)u,,(O uz), u (uesug)ua(b )

where u,su¥ is also a symmetry. Hence, the order of s and u, in the above
factorizations is up to one’s choice. This observation will be freely used later
without further comments.

2. Factorization of unitaries in M, (f).

Applying the factorizations theorem (1.4) in the last section, we will factor
unitaries in M, () as a product of some symmetries and a diagonal unitary in this
section. Using the elementary fact that each symmetry can be written as 2r — 1
for some projections, one sees that the construction of U,(</) is completely
determined by the Grassmann space of M, (&) and unitary of &/ itself.

2.1. Further Notations.
From now on, the identity of M,(/) is denoted by I, which is often written as

M=

1®e; =1,

i=1
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where {1 ® e;), denotes the set of matrices whose only nonzero entry 1 is at the
(i, j)-place.

2.2. THEOREM. Suppose that </ is a C*-algebra such that RR(s/) = 0 and
tsr(of) = 1.Ifp=p; ® p2 @ ... ® p, for some projections {p;} = P(sf) such that
[(prl=[p:]=... =[padlie,pi~ g S piyy forl <i<n— 1)anduisaunitary
of the corner po/p, then there exist some symmetries {s;}™ ,, {s;}m,, {x;}2m and
{y;};21 of pop such that u can be approximated in norm by unitaries of psf p with
both the following matrix forms

uy, 0 ... 0 py 0 ... O

T S DR

152+..8y .'. .‘. 0 ) 152+« Som : Pu-t 0

\O0 ... 0 wu, 0O ... 0 v

and u can be exactly factored as the following products
uy 0 ... 0 py 0 ... O
s 0 W 0
=X{X3...X =
1X2 2m o0 YiyV2---Vim :  paey O

0 ... 0 u, o ... 0 v

where u; and u; are some unitaries of the corner p;fp; (1 £ i £ n),v and v’ are some
unitaries of p,p,, and m is the smallest integer such that 2™ = n.

As a consequence, if o isreplaced by M,(<7), p by I, and p; by 1 ® e;;, then every
unitary u of M,(<f) can be approximated by products of some (m or 2m) symmetries
and a diagonal unitary (in either of the above two forms) and can be exactly
factored as products of some (2m or 3m) symmetries and a diagonal unitary (in
either of the above two forms).

ProoF. The proof is given by repeatedly using the factorizations in Theorem
1.4,
First, for any ¢ > 0 we carry out the following two factorizations

u 0 ... 0 W, 0 ... 0

u=sl82...s u 0 u2 ‘.. : =xle.‘.X2 (.) .urz . )
A "o 0
0 ... 0 u, 0O ... 0 u,

where Jju, — p| <e.

Case 1. Assume that n = 2™ for some integer m.

This is an elementary induction argumentonm. Letg=p,; @ p, ®... @ pam-1.
Thenp — g = pym-141 D ... ® p,. Since uqu* and q are unitarily equivalent, by
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Theorem 1.4. (i) there exists some symmetries s; (= Xx,), S, and a unitary v, in
ps/p such that ||v; — p|| < ¢, and

u, 0 u; 0
S10 U = (01 W1) and sy5,u = (01 w’1>’

where u,, u} are unitaries of g&/q and w,, w) are unitaries of (p — q)(p — q).
Now the induction applies to the corners of both unitaries

Uy 0 u’l 0
(0 W1> and (0 W/1>.

There are some symmetries s5, 5%, . . . , Sy, X3, X4, - - , X2, and a unitary v, of go/q
close to ¢q in norm such that

U o ... 0
0 Uy ' .
Uy = 5585... S,V . 0 and
0 O 0 Uym-1
u; 0 ... 0
0 uy :
uy = x5x,. .. x5, | . ;
o, .0
0 0 0 uym-
and there are some symmetries s7,53,...,5, X3, X4,. .., X5, and a unitary v’, of
2293 m 3 4 2m 2
— — oS —qi rm su
o close to in norm such that
Usgm-141 0 e 0
0 uzm—l+2 ’ .
Wi = 5585 ...5m05 . ) and
: . 0
0 0 um
Upm—141 0 ... 0
0 Uom-1 . :
Wy =X1X3...Xom . moirr e
-0
0 0 upm

For eachi = 2 set

s—S;O x—x£0 andu~v/20
\o &) T \o X)) 27\o wvyf

Thus, for the case n = 2™ the two factorizations follow clearly, where one needs to
notice the observation in (ii) of (1.5).
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Case 2. Assume that n < 2", where m is the least integer satisfying this
inequality.

Applying the same arguments as in the case 1 to the projection g = @27, ' p;
and any unitary u of p.o/p, we find two symmetries s,, s, and a unitary v in po/p

such that
4= s Wi 0 _ , W’l 0
= SoUg 0 w, = S0So 0 W'z s

where the matrix forms are with respect to the decomposition
(@1 P) ®(®=ym-141P) = P.

Notice that 1 < n—2""! < 2™~ ! The two factorizations of u clearly follow
from the same arguments as for the case 1 applied to the corners corners w,, w,,

wi, and w).
Secondly, we carry out the factorization
. 0 ... O pp 0O ... O
< o ’ ’ ' ' . . _ O ) . ’ .
U=S8183...SomlU :  Pay O =Y1Y2---V3m C . gy O
0O ... 0 o ... 0 ¢

These are done by repeatedly using the factorizations in (ii) of Theorem 1.4.
Case 1. n = 2™ for some integer m.
Since [p;]1 £ [p,] = ... £ [p.], itis clear that

P1®P®D..®OPrr-1 ~q=Pm-141D ... DPpom.

It is obvious that g ~ u(p; @ p2 ® ... @ pam-)u*. It follows from Theorem 1.4
(i) that there exist symmetries zo, z;, z, and a unitary w; in p./p such that

€
— pll < —and
Iwy —pll <~

2m=ty 'p 0
zzzlw1u=<@‘—l bi )—*:222120(@ 01 P ),

0 vy v}
where the matrices are written with respect to the decomposition
(@' P)® (P — &L 'p)=p.
Repeating this process recursively m times, we reach the following factorizations:
pp, 0 ... O

0

ZomZam—1WmZam-2Z22m—3Wm-1--- 2221 W1 U = and

Pn-1 0
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py O 0
YamYV3m-1Yam-2..- Y32 Y14 = pn.—.l 0 ’
0O ... 0 Vv

where zy,23,. .., Zam Y15 V25 - - - » Yam L€ SOmMe symmetries in p/p and wy, wy, . . .,

w,, are some unitaries in p.«/p close to the identity p in norm within —. Set
m

51 = wizywy,

5 = wizowy,

53 = Wiwizwawy,

5S4 = WiWizawow,,

S5 = wiwiwizswiw,wy,. ..,

Sym = WEWE . WEZo W, W Wy,

— w¥w* %
u, = wiw¥ ... wk.

. £ . .
It is easy to check that |u, — p|| < Z;’;l = &, and {s] J?'__"l with u, give the
factorizations wanted.

Case 2. n < 2™ where m is the smallest integer satisfying the inequality.

Set q=@!-2" 'p;. Thenq~q <p—gq,since0<n—2""1 <2" ! One
can apply the same arguments as in the first step of the case 1 to g. The remaining

job is the same as in the case 1.

2.3. REMARK. Under the same assumptions as in Theorem 2.2, one can obtain
some upper bounds for the exponential rank and exponential length of M, (/).
For example, if p and {p;} are as in Theorem 2.2, then

cer (pfp) £ {L;_} + cer (p,Ip,) + €

cel(pfp) £ —n + cel(p, A p,),

|3

where {t} is the smallest integer greater or equal to a number .
After the original manuscript was written, H. Lin proved a break-through
result which asserted that

cer(#/) <1 +¢ andhencecel(o/)<n
for any C*-algebra with RR(&/) = O (tsr(«#) = 1 or not). Thus, the above esti-
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mates becomes worthless. We can not delete the above inequalities in this
revision only because they are cited in some appeared or to be appeared articles
of others.

2.4. ExampLE. The factorizations as in Theorem (2.2) are not always possible
in an arbitrary C*-algebra. For example, look at the commutative C*-algebra
C(S?) of all complex-valued continuous functions on the 3-sphere S3. The
homeomorphism S* = SU(2) gives a unitary uin M,(C(S3)) which is not connec-
ted to the identity I,, where SU(2) is all unitary scalar matrices with determinant
1. Since each diagonal unitary of M,(C(S?)) and all symmetries are in the identity
path component of the unitary group of M,(C(S%)), u cannot be factored into
a product of some symmetries and a diagonal unitary.

2.5. COROLLARY. Suppose that </ is a C*-algebra such that RR(f) = 0 and
tsr(f) = 1, and suppose that p is a full projection of s/ (i.e., the closed ideal
generated by p is o/ ) and u is any unitary of .

(i) If o is unital, then there exist some symmetries sy, s,, . .., s, in s (for some

n = 1) such that
1—-p O
U=3518...8, 0 o ,

where ug is a unitary in the hereditary C*-subalgebra p.s/p.
(ii) If of is non-unital, then there exist some symmetries Sy, Sa,. . ., S, (for some
n = 1) and a unitary u, in o such that

1-p 0
lu,— 1| <& and u=sy5,...5,U 0 4 )

where uq is a unitary in the hereditary C*-subalgebra p</p.

PRrOOF. (i) Assume that .« is unital. Since p is a full projection, it was proved
[52,1.1] that

1=¢,®¢:®...@q and [q]=[q]=...sla]=[r]

We may assume that g, < p. Then the conclusion follows from Theorem (2.2).

(ii) Assume that </ is not unital. Since RR (&) = 0, there is an approximate
identity of .o consisting of projections. Then we can choose a projection g € &/
and a unitary u,, in &7 such that

e 1—-¢q O

“ule—'1"<—2’9 q>Dp and u“’uls( 0 U s

where u, is a unitary in q./q (see the proof of [50,4.1] or [54,2.6], for example).
Now the problem has been reduced to the unital C*-algebra ¢./q.
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3. Factorizations in UM(s#)).

We now consider the same type of factorizations in the unitary group of the
multiplier algebra M(%/) in case &/ is non-unital. G. A. Elliott proved [22,2.1]
that every unitary algebra of a matroid algebra can be approximated in norm by
the product of two block diagonal unitaries (with respect to two different
decompositions of the identity). The same technique also applies to a C*-algebra
with RR(&/) = 0 and tsr(&/) = 1.

In this section we provide two different types of factorizations in the unitary
group of M(s/); one is Proposition 3.1 which is proved by the combination of
Elliott’s technique in [22,2.1] and Theorem 1.4; the other is Theorem 3.2 which is
proved by the combination of the technique of [22], [59,1.1] and Theorem 1.4.

3.1. PROPOSITION. Assume that ¢ is any number, and </ is a non-unital, c-unital
C*-algebra such that RR (/) = 0 and tst(/) = 1. Then every unitary u of M (/)
can be factored as u = u,suy, where ||u, — 1|| < &, s is a symmetry, uq is a diagonal
unitary @2 u;, where u; is a unitary of the corner (e,, — e,,_,) (e, — €n,_,)
(Vi 2 1), and {e,} is an approximate identity of o/ consisting of a sequence of
increasing projections.

Proor. Using the technique of G. A. Elliott in [22,2.1], one can choose an
approximate identity of &/ consisting of an increasing sequence of projections,
say {e,}. For any positive number ¢ there exists a unitary v in M(s¢) with the
following properties:

lv—ull<e2 and v= <§: (—Bui><§ (-Bv,-),
i=1 i=1
where '
ueU((ezi-1 — €2i- 1) (€241 — €2i-1)),
vieU((ezi — e2i-2) (e —€zi-3) (i=1,¢e0=0)

Here one may need to change the notations after choosing a subsequence of {e,}.
Applying Theorem 1.4 to each u;, one can write

;0
U = Siwi<u(;l uﬂ) iz1),

where the matrix decomposition is with respect to
(e2i+1 — €2:) @ (€2 — €2i-1) = €141 — €241,

s; is symmetry, w; is a unitary of the corner U((ezi+1 — €2i—1) %
(e2i+1 — €2;-1)) such that
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w; — (e2i+1 — ezl <&/2 (1)

Sets' =) 2, @s,andw =) 2, ®w,; Then |w— 1| < ¢/2 and

z Qu; =s'w Z (uy; ® uy).

i=1 i=1
Clearly, Z{“; (U @ uy) Z{“; 1 ®v;:= u,is a diagonal unitary with respect to the
decomposition Y ° | (e;; — €3;—,) = 1. Thus

u = (uv*)v = (uv*)swuy = (U*w)(W*s'w)u,
has the desired form, since
luv*w — 1| = [lu — w*v|| < flu — o] + w* — 1] <e.

Set u, = uv*w and s = w*s'w as wanted.

3.2. Incase ./ isa g-unital, non-unital, simple C*-algebra of real rank zero, we

proved [59,1.1] that every projection p in M(%/) not in &/ can be written as

P=p1®p:®@... ®p2n,
where n = 1 can be any integer and {p,}?", are mutually equivalent orthogonal
projections of M(o#) (of course not in /). In particular, the identity of M (/) can
be written as

1=p1 @pz@.-..@pzn.
Guaranteed by [56,1.2], we can write each p; into a direct sum of a sequence of
projections of &7, say

pi=ﬁl®ﬁ2®“"®ﬁj@“"
Furthermore, we can assume that
flj~f2j~"'~f2"j foralljgl.

Now we have the following factorization of unitaries in M(%/):

3.3. THEOREM. Suppose that s/ is a g-unital, non-unital, simple C*-algebra with
RR(=/) = Oandtsr(f) = 1. Write 1l = p; @ p, @ ... @ panfor somen 2 2, where
pi ~ p; (V1 £ i,j £ 2"). If u is any unitary in M(s/) and ¢ is any positive number,
then there exist a unitary u, in M(sZ) with |u, — 1| < € and 2n symmetries {si}2"o
in M(s/) such that
D1 0 “e 0
0 - . .
u=u£S05132....52n .

6 0 v
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where v is a unitary of the corner p,» M(f)p,» whose matrix form with respect to the
decomposition pyn = fon; @ for, @ ... @ fonj ® ... is block-diagonal; ie., v =
Z;‘; 1 ®v;, eachv;is aunitary in the corner (fmm, — farm,_ )& (form, — farm,_,)) for
some sequence {m;}.

PROOF. Set e, = Y 7= (f1; D f2;® ... D fon;) for all m = 1. Then {e,,} is an
increasing approximate identity of o7 consisting of projections. It follows from

- . . . &
Proposition 3.1 that there exist a unitary wo with |wg — 1] < 0 and a symmetry

5o such that
e ¢]
Y —
SoWou = Z @ui’
i=1

where u; is a unitary of (e,,, — em,_,) Z(em, — €m,_,)foralli = 1(e,, = 0). Clearly,

my

lm, —Cm_, = Z (flj@ij@---@fznj)

j=mi-+1

=( %i flj)@< i fzj>®...®( g: fzn,~>, and

J=mi-1+1 Jj=mi_1+1 J=mi-1+1
m; m; m;
JITN (D V) EPR o

j=mi-1+1 Jj=mi-1+1 j=mi-1+1

It then follows from Theorem 2.2 that there are a unitary u; and 2n symmetries in

(em;, — em,_ ) A em, — em,_), 5aY Si1, Siz,...,S:2n (NOtice that n is the smallest
. €
integer such that m < 2"), such that [u; — (en, — em,_ )| < 5} and
Z;”I;m‘-_l+1f]j O .o 0
, 0 :
u; = u~S'IS'2...S',2 . . ,
' s v . . Z;'n;m(_1+lf2"—1.j 0
0 0 v/
where v; is a unitary in (372,41 D for) QT i +1 D fong).
Set v=73,@v;. Then v; is a unitary of the corner Y &, . (fonj—

Sarnj-1) Z}";W_‘H (f2nj — fan,j—1)) for each i = 1. Thus, v is a block-diagonal
unitary of pynfpyn. Sets; =32, @s;;for1 Sj<2nandw, =Y 2, Dul. Itis
a routine to check that s;’s are symmetries in M (/) and w; is a unitary of M(%/)

with [w, — 1| < % Now one can easily check that



HOMOTOPY OF PROJECTIONS AND FACTORIZATION IN THE UNITARY ... 297

D1 0 “en 0

’ 0 - . .
u=(wWgw)wlsow)sis,...85, | . ) )
: Pan-y O

0 ... 0 v

Set u, = w§w,; and s, = w¥syw,, as desired.

4. tsr(sf) and factorizations in o/ ® X,

4.1. U(A) and P().
Let o/ be a C*-algebra (may not be of real rank zero). A natural action of the
unitary group U(+/) on the Grassmann space P(A) is defined by

(u,p)—upu* VYueU(H) and VpeP(A).
If p is a fixed nontrivial projection, the orbit of p under this action, denoted by
%,:= {upu*:ue U(s)},

is the union of those path components of #(.«/) consisting of projections unitarily
equivalent to p. If U(M(«/)) is connected, then of course %, is connected for any
pe (). On the other hand, %, still can be connected even in case U(M()) is
not connected. For example, it was proved ([21, 2.4], [48, 3.4], [51]) that &,
consists of only one path component in cases either </ is purely infinite and
simple or .« satisfies RR(/) = 0 and tsr(«/) = 1 (not necessarily simple), no
matter U(M(«)) is connected or not. It is conceivable that &, is connected for
many other C*-algebras. How the internal natures of a C*-algebra relate to the
connectedness of %, is almost a total mystery. Our interest in this section is the
connection between %, is almost a total mystery. Our interest in this section is the
connection between %, and U(</).

From now on, for any n = 1 the unitary group of M, () is denoted by U,(=/)
and the identity path component of U,(«/) is denoted by UQ(<). The unitary
group of the unitization of o ® " is denoted by U, ().

If m < n, U,(#/) is naturally embedded into U, (<) by

. Uy 0
N — .
Ln,ne Um 0 I,, e

Of course, U(«/) is correspondingly embedded in UX(«). Clearly, i, , induces
a group homomorphism:

Gmn: Un( ) Up(t) = Un()/U().

However, the map ¢,, , is neither injective nor surjective in general ([3,8.1.2]).
Similarly, the natural embedding of U,(<) into U (s/) defined by

1
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D u, 0
oo 1,

induces a group homomorphism
Dn, w2 U ) U(A) = Uy ()| U (A): = Ky(H);

The homomorphism ¢, ., is again neither injective nor surjective in general. On
the other hand, there_are many interesting C*-algebras such that ¢, . is an
isomorphism for an integer n. For example, M. A. Rieffel [40, 2.10] proved that if
&/ is a unital C*-algebra such that tsr(&/) < co, then ¢, is an isomorphism
whenever n > tsr(&/); J. Cuntz proved [17] that if &/ is a purely infinite, simple,
unital C*-algebra, then ¢, ,, is an isomorphism (it holds also in case &/ is
non-unital [50, §4]); but tsr(&/) = + co. This example shows that a finite
topological stable rank is not a necessary condition for the occurrence of an
isomorphism ¢, ,, for an integer n.

For any projection p € (), we will consider the relation of the connectedness
of 4, and the factorization in the unitary group U(/), and we will then clarify
when ¢, is surjective for an integer n.

4.2. LEMMA. Assume that & is any C*-algebra and p € P(f)). Then the follow-
ing are equivalent:

(i) %, is connected.

(ii) Every unitary u of s is homotopic (in U()) to a unitary with the form

u; O
0 u,/)’

where u, is in U(po£p) and u, is in U((1 — p)Z(1 — p)).
(iii) Every unitary u of o can be written as

U, 0
U=_818,...5 0 ’
Uz

where {s;}!_, is a set of symmetries in U(sf), u, € U(pofp) and u,eU((1 — p)
(1 — p)).

PROOF. If {u(t): te [0,1]}is a path in U(7), then {u(t)pu(t)*: t € [0, 1]} is a path
in #(&f). Hence, it is trivial that (ii) implies (i) and (iii) implies (i). Since each
isometry is in the identity component of U(.#), then it is clear that (iii) implies (ii),
We need only to show that (i) implies (iii).

By assumption upu* is homotopic to p. One can choose a finite number of
projections p,,p,,...,p; such that p,=p and |upu* —p|| <1, and
lp; — pis1ll <lfor1 <iZ1— 1. Set
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sy = (1 — (upu* — p;)>) *upu* + p; — 1), and
Sivr =1 — (i = Pis 1)) i + pivy — 1) Vigigl-1

Then sy, 5,,..., are symmetries such that s,upu*s, = p, and s;p;s; = p;,, for
1<i=<1- 1.1t follows that

NEB ..stlupu*SISZ LS =P,

u; 0
U==518...5 0 s
LF)

where u, is a unitary of p.o/p and u, is a unitary of (1 — p)Z(1 — p), as wanted.

and hence

4.3. THEOREM. Assume that </ is any C*-algebra and n>m 2 n — m. Let
pm = diag(1,1,...,1,0,...,0), an n x n diagonal matrix in M,(=Z). Then the fol-

mtimes

lowing hold:

(i) Theorbit %, ofp,under theactionof U,(/)is connected subset of PM ()
if and only if @ n: Un(A) = U, (A)/UX(A) is surjective.

(ii) If dm,n is surjective, then every unitary u, of U,(</) can be written as

u, 0
U, = 8152...5; 0 I

for some 1> 1 and symmetries s,5,...,5 of M,(sf), where u,, is a unitary of
M, (o).

ReMARK. The condition n — m < mis not essential, because eithern — m < m
orm < n — mholds and that %, _is a connected subset of Z(M,()) iff &, _ is.

PROOF. (i) Assume that ¢,, , is surjective. Then every unitary u, of U,(+/) is
homotopic to a unitary v with the following form

u, O
0 IL-m

It follows that u,p,u* is homotopic to vp,v* = p,. Thus, the orbit of p,, is
connected as a subset of 2(M,()).

Conversely, if the orbit &, is a connected subset of A(M,(«)), and if u,, is any
unitary of M, (<), then u,p,,u* is homotopic to p,,. It follows from Lemma (4.2)
that u, is homotopic to a unitary w with the form

4, O
0 Un—m ’
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where u,, is a unitary of M,,(</) and u,, ., is a unitary of M, _ (/). If n — m < m,
there is a partial isometry v of M,(</) such that

n—m
w*=1I_, and vvv= 3 1®e;.
i=1

i=

u, O
0 Un—m

can be written as the product w,w,, where

Then

(v*u*_,v) 0 0
Wyli= 0 (Z;n=n—m+1 1 ® eii) 0 ) and
0 0 Up—m

(U*un—mv @ Z;Ln-m«}- 1 l ® eii)um 0
Wy li= 0 I .

On the other hand, w, can be written as a product of two symmetries as follows:

0 0 v¥* 0 -0 v*Uy—
w =10 Z;n=n—m+11®eii 0 0 =n-mi1 1 ® ey 0
v 0 0 u¥_,v 0 0
Setu, = (V* -0 ® Y rep—m+1 1® €;)u,. Then wyw, is homotopic to a unitary

with the form

u, 0
0 In—m ’

which is the image of an element in U,(%f) under ¢, ,. We have proved the
conclusion (i).
(i) If ¢, is surjective, then %, is a connected subset of P(M,()). It follows

from Lemma 4.2 that
u, = 518 S1-
n 192912 0 .,

for a finite set of symmetries {s;}}23 in U,(=/). As in the last paragraph, we can

rewrite
v, O
0 uym

as a product of two symmetries and a unitary of the form
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u, 0
0 In—m ‘
We then have the desired factorization.
The following corollary is immediate from Theorem 4.3 (just let m = n — 1):
4.4. COROLLARY. Let o/ be any unital C*-algebra and n = 2. Then
¢n'l.n: Un—l(‘d)/Ur?~ l(d) - U,,(M)/U,?(d)
is surjective if and only if §,(f) is a connected subset of P(M,(H)); where 4,(f) is
the orbit, under the action of U,(s#), of the projection

0

0 ... 1 /. xn
4.5. COROLLARY. Letm = 1 be afixed integer. Then the following implications
hold: (i) = (ii) = (iii) = (iv):
(i) %,(F) is connected subset of P(M,()) for all n > m.
(ii) For any n > m, every unitary u, € U,(&f) can be written as a product of the

following form
_ s u, 0
u=s18...5( o L)

where {s;}}_, is a set of symmetries in U,(/) and u, € Up(7).

(ili) Every unitary u of U (/) can be factored as the following form:

(5 sgzamion)
U =1U55,...5 © ,
72t o 2 mse11®ey)

where . is a complex number with |A| = 1, {s;}}-, is a set of symmetries in U (/)
suchthat s(1 — Y%, 1 ®e;)=1- Y72, 1 @ ey for some fixed no, u, is a unitary
in U () close to the identity in norm within any given positive number ¢, and u,, is
a unitary in U,(f).

(iv) The map @ o: Un(A)/US(H) — K () is a surjective homomorphism (and
hence K () is a quotient group of U,()/ US(s2)).

PROOF. Assume that %,(<¢) is a connected subset of 2(M,(«/)). By Theorem
4.3 there are symmetries sy, s,...,s;, such that

Uy -1 0
u=s1s2...s,‘( 0 l—In—1>’
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where u,_; is a unitary of U,_,(«/). Repeating this argument n — m times
recursively, one sees that (i) implies (ii).

Assume that (ii) holds. Let u,, be any unitary of U (&/). For any positive
number ¢, there exist an integer ny 2 1, a unitary u, € U, (), and a complex
number A with |4] = 1 such that

(5 15100
0 A Pmr1l®ew)

is close to u_, in norm within &. Then one can write

" _u<u,,0 0 )
TN AR 1 ®e))’

where

U, =u <u,’:‘0 0 >
¢ “\ 0 1(Z?ino+1 1®e)
such that |ju, — 1|| < &. Applying (ii) to u, , the conclusion (iii) follows.
It is obvious that (iii) implies (iv).

4.6. COROLLARY. If tsr(&/) < + oo (in particular, if o/ = C(X) for some com-
pact Hausdorff space X whose covering dimension dim(X) < + o0), then for any
n = tsr(<f)

(1) %+ () is a connected subset of P(M,(F));

(2) every unitary u,, of U (/) can be written as a product of the following form

U, = US155...5 U 0
=0 AR 1®e)’

where sy,...,S(, Un, and u, are as explained in Corollary 4.5 (iii); and
(3) o ® A is generated (as a C*-algebra) by unitaries in U,(f) and projections.

Proor. If tsr(«f) < + oo, then ¢, ,+, is surjective for any n < tsr(</) [40,
2.107). Hence, the conclusions (1) and (2) follows immediately from Corollary 4.4
and Corollary 4.5. Since each symmetry is of the form 2r — 1 for some projections
in & ® A, the conclusion (3) follows from the factorization in (2).

4.7. COROLLARY. If %,(&f) is connected for all m = 2,3,.. ., n, then every uni-
tary u of M,(/) can be written as
u, 0 ... 0 1 0 ... 0
0 u, - A0
U= 518,...5 . . . B/

. . . . ", 1
0 ... 0 u, 0 ... 0
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where {s;, s} isa ﬁmte set of symmetries of M,(f) and {v,u;} < U(#). Consequent-
ly, Uy(2)/U(A ) K (sf) is surjective, and M, (/) is generated (algebraically)
by all diagonal unitaries and projections in M,(<f).

4.8. REMARK. For any n = 2, by Corollary 4.5, one sees that there is no new
path component created passing from U,(#) to a larger group U, , (%) (under
the natural embedding i, ,+,) iff 4, , (&) is connected.

4.9 ExampLes. The following two examples indicate that %,(.«/) may not be
connected in general as a subset of P(M,,(7)).
(1) Take o = C(S?) and n = 2. Let u be the unitary in M,(C(S)) given by the
homeomorphism S* = SU(2). As pointed out in the second section, u is not
homotopic to a diagonal unitary. This implies that ue,u* is not homotopic to e,
in the Grassmann space of M,(C(S%)). Thus, the unitary orbit %,(«) of e, in
M,(C(S%)) is not connected. On the other hand, if n = 3, then %,(«) is connected;
this follows from Corollary 4.6 (1) and the fact that tsr(C(S*)) = 2 which is equal
dim(X)

2

to the integer part of + 1([39)). In view of Remark 4.8, for any n = 3

there is no new path component appearing in U,(C(S%)) different from the path
components in U,(C(S3)), while, as a well known fact, new path component does
arise when U(C(S?)) passes to U,(C(S?)).

(2) Take o = C(S?) and again n = 2. Let p(.) be a projection in M,(C(5%)
defined by the homeomorphism S = G, ,,where G, , is the Grassmann space of
all one-dimensional projections in M,(C). Explicitly, p(.) is the line bundle

14z 01—z
pz0) = (9‘(1 R )

where (z, 0) is the cylindrical coordinates with —1 <z <1 and feS§ ! Tt is well
known thatthe Stiefel manifold ¥}, of all unit vectors in C? is homeomorphic to
§3,and the Hopfmap S° — 52 does not admit a cross-section. It follows that there
is no unitary in M,(C(S2)) such that up(.)u* is a diagonal projection ([26]). It
follows that p(.) is not homotopic to e,. Therefore, the unitary orbit of e, in
M,(C(8?))is not connected. Due to the same reason as in Example 1,ifn 2 3, then
%.(of)is connected (because tsr(C(S2)) = 2, again); and hence there is no new path
component appearing in U,(C(S%)) for n = 3.

It follows from Corollary 4.6 that every unitary in the unitizations of both
C(S?) ® A and C(S*) ® A and C(S*) ® A can be approximated by a product of
some symmetries and a unitary of the form u, @ (1 — 1), where u, is a unitary of
M,(C(S%)) or M,(C(S?)), respectively.

4.10. PROPOSITION. Assume that &/ is any C*-algebra. Under the standard

1
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embedding of M(/) into M, , (), 4,() is identified with a subset of 4, . ().
Then 9,(</) is contained in a connected component of %, . ().

PrROOF. Obviously, the projection e,, regarded as an element in M, ()
under the embedding, is homotopic to e, 4 ;. In turn, in %, ;. (), e, 1 is clearly
equivalent to, and hence homotopic to, any projection in %,(%/).

Before concluding this section, we would like to point out the following fact.

4.11. PROPOSITION. Suppose that of is a C*-algebra with property that unitar-
ily equivalent projections are homotopic, and p is a nontrivial projection of /. Then
there are symmetries y,5,,...,5; of & such that

U, 0
U= 5183...5 0 u)’
2

where u; € U(p#p) and u, € U((1 — p)Z(1 — p)).
Proor. Use exactly the same proofs in this section and the section 2.

4.12. ReMARKS. The following three facts (1)3) are well known, where all
subsets of &« involved are equipped with the relative norm topology.

(1) The group of invertible elements of a unital C*-algebra </, denoted by
GL (&), is homotopy equivalent to U(/), since U(«/) is a homotopy retract of
GL(%).

(2) The space of all nontrivial (# 0, 1) indempotents of & is homotopy equiv-
alent to 2().

(3) The space of symmetries of & is homotopy equivalent to the subspace

{xeGL(&): x* = 1}.

Clearly, under the actions of GL(%/) and U(%/) on #(&), the orbit of GL (&) is
the space of all nontrivial idempotents, while the orbit of U() is (). Thus, one
canrephrase all results in the first section and the second section in terms of GL(<)
and the space of non-trivial idempotents. This is left to the interested reader.
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