PROJECTIVE C*-ALGEBRAS

TERRY A LORING*

Abstract.

We show that if A and B are σ -unital, projective C^* -algebras (star-homomorphisms into quotients lift to star-homomorphisms) then $A \oplus B$ and $M_n(A)$ are projective. Corresponding results are proven for semiprojectivity. A corollary is that elements h_1, \ldots, h_n in a quotient C/I satisfying

$$0 \le h_i \le 1,$$

$$h_i h_j = h_j, \text{ if } i \prec j,$$
and $h_i h_j = 0$, if $i \not\preceq j$ and $j \not\preceq i$

can be lifted to elements of C satisfying the same relations. Here \leq is any partial order on $\{1, \ldots, n\}$ such that a < c and b < c implies a < b or b < a.

1. Projectivity.

A C^* -algebra is called *projective* if, given any star-homomorphism $\varphi: A \to B/I$, with I any ideal in any C^* -algebra B, there is a lift $\bar{\varphi}: A \to B$ so that $\pi \circ \bar{\varphi} = \varphi$. Projective C^* -algebras are contractable by [3, Proposition 3.1] and hence are rather rare.

An important example is $\bigoplus_{1}^{n} C_0(0,1]$. This is universally generated by h_1, \ldots, h_n satisfying

$$(1) 0 \le h_i \le 1$$

and

$$(2) h_i h_j = 0 for i \neq j.$$

Akemann and Pedersen [1, Proposition 2.6] show that $h_i \in (B/I)_+$ satisfying (2) lift to $k_i \in B_+$ also satisfying (2). Adjusting the norms is easy (see [4, Theorem 4.5]) so $\bigoplus_{i=1}^{n} C_0(0, 1]$ is projective.

We use the following C^* -algebras frequently and so introduce the notation

$$M_n(0,1] = C_0(0,1] \otimes M_n.$$

Using the corona C*-algebra version of the Kasparov technical theorem, due to

^{*} Supported by NSF grant DMS-9007347 Received December 16, 1991; in revised form August 31, 1992.

Olsen and Pedersen [5, Theorem 3.7], we showed [4, Theorem 4.8] that $M_n(0, 1]$ is projective.

Suppose that A and B contain strictly positive elements h_1 and h_2 . Then $h_1 \oplus 0$ and $0 \oplus h_2$ generate a quotient of $C_0(0,1] \oplus C_0(0,1]$. In $A \otimes M_n$, the elements $h_1 \otimes e_{ij}$ generate a quotient of $M_n(0,1]$. These subalgebras act enough like matrix units that their liftings are the first steps in showing $A \oplus B$ and $A \otimes M_n$ are projective whenever A and B are.

We mostly will work in \mathscr{C}_0 , the category at all C^* -algebras and star-homomorphisms. By \mathscr{C}_1 , we mean the category of unital star-homomorphisms and C^* -algebras. By projective in \mathscr{C}_0 , we mean the above definition, while projective in \mathscr{C}_1 is defined assuming A, B, φ and $\bar{\varphi}$ above are unital.

LEMMA 1.1. A is projective in \mathscr{C}_0 if and only if \tilde{A} is projective in \mathscr{C}_1 .

2. Direct Sums.

We shall restrict attention to C^* -algebras that are σ -unital. If A is σ -unital, it contains a strictly positive element h, so $A = \overline{hAh}$, the hereditary subalgebra generated by h.

LEMMA 2.1. If $\pi: B \to C$ is a surjective homomorphism, k is a positive element of B and $\pi(k) = h$ then $\pi(\overline{kBk}) = \overline{hCh}$.

Theorem 2.2. If A_1 and A_2 are σ -unital, projective C^* -algebras then $A_1 \oplus A_2$ is projective.

PROOF. Suppose $\pi: B \to C$ is surjective and we are given

$$\varphi = \varphi_1 \oplus \varphi_2 : A_1 \oplus A_2 \to C.$$

Let $h_i \in A_i$ such that $0 \le h_i \le 1$ and $A_i = \overline{h_i A_i h_i}$. Since $\varphi_1(h_1) \varphi_2(h_2) = 0$ and $C_0(0, 1] \oplus C_0(0, 1]$ is projective (or use [1, Proposition 2.6]), there are positive lifts k_i of $\varphi_i(h_i)$ with $k_1 k_2 = 0$.

Let $B_i = \overline{k_i B k_i}$. Clearly $B_1 B_2 = 0$. Since

$$A_i = \overline{h_i(A_1 \oplus A_2)h_i},$$

we see that

$$\varphi_i(A_i) \subseteq \overline{\varphi(h_i)C\varphi(h_i)}$$

$$= \overline{\pi(k_i)C\pi(k_i)}$$

$$= \pi(\overline{k_iBk_i})$$

$$= \pi(B_i).$$

By hypothesis, φ_i lifts to a homomorphism $\bar{\varphi}_i: A_i \to B_i$. Thus $\bar{\varphi}_1 \oplus \bar{\varphi}_2$ is a lift of φ .

PROPOSITION 2.3. If X is a finite tree then C(X) is projective in \mathscr{C}_1 .

PROOF. The proof is by induction on the number of edges. If X has one edge then C(X) = C[0, 1] is well-known to be projective in \mathscr{C}_1 .

For X with more than one edge, pick a middle vertex v. Then

$$X = X_1 \cup_v X_2$$

with each X_i a sub-tree with fewer edges. Since

$$C(X) \cong C_0(X \setminus \{v\})^{\widetilde{}},$$

$$C_0(X \setminus \{v\}) \cong C_0(X_1 \setminus \{v\}) \oplus C_0(X_2 \setminus \{v\})$$
and
$$C(X_i) \cong C_0(X_i \setminus \{v\})^{\widetilde{}}$$

we are done by the induction hypothesis, Lemma 1.1 and Theorem 2.2.

For notation, we will use $C^*\langle -|-\rangle_0$ to indicate a universal C^* -algebra and $C^*\langle -|-\rangle_1$ to indicate a universal unital C^* -algebra.

PROPOSITION 2.4. Suppose S is a nonempty finite set and \leq is a partial order on S satisfying the axiom

(3)
$$(a < c \text{ and } b < c) \Rightarrow (a < b \text{ or } b < a)$$

Let $G(S) = \{h_e | e \in S\}$ denote a set of generators and $R(\preceq)$ denote the relations

$$0 \le h_e \le 1$$
, for $e \in S$,
 $h_e h_f = h_f$ if $e \prec f$,
 $h_e h_f = 0$ if $(e \not\prec f \text{ and } f \not\prec e)$.

Then $C^*\langle G(S)|R(\preceq)\rangle_1$ is isomorphic to C(X), where X is finite tree.

PROOF. If S has only one element,

$$C^*\langle G(S)|R(\prec)\rangle_1 \cong C^*\langle h|0 \leq h \leq 1\rangle_1 \cong C[0,1].$$

For larger S, consider its minimal elements a_1, \ldots, a_k . Axiom (3) implies that the sets

$$S_i = \{ s \in S | a_i \leq s \}$$

are disjoint. Let \leq_i denote the restricted relations. If $a \in S_i$ and $b \in S_j$, $i \neq j$, then a and b are incomparable and thus $h_a h_b = 0$. Therefore,

$$C^*\langle G(S)|R(\preceq)\rangle_0 \cong \bigoplus_{i=1}^k C^*\langle G(S_i)|R(\preceq_i)\rangle_0.$$

If k > 1, we are done by induction and adding units. (Two trees attached at a point form a tree.)

If k = 1 then S has a minimum element a. Consider a new relation \leq' on S defined so that a is incomparable to $S \setminus \{a\}$ and, for $s, t \in S \setminus \{a\}$,

$$s \prec' t \Leftrightarrow s \prec t$$
.

Then

$$C^*\langle G(S)|R(\prec)\rangle_1 \cong C^*\langle G(S)|R(\prec')\rangle_1$$

the isomorphism sending h_s to h_s' for $s \neq a$, and h_a to $(1 - h_a')$. With this order, S has at least two minimal elements so the induction proceeds as above.

COROLLARY 2.5. Suppose A is a C*-algebra containing an ideal I and \leq is a partial order on $\{1,\ldots,n\}$ satisfying Axiom (3). Let $\pi:A\to A/I$ denote the quotient map. If $h_1,\ldots,h_n\in A/I$ satisfy the relations $R(\leq)$, then there exists $k_1,\ldots,k_n\in A$ satisfying $R(\prec)$ such that $\pi(k_i)=h_i$.

The vacuous order on $\{1, \ldots, n\}$ corresponds to the relations

$$h_i h_j = 0, i \neq j.$$

Akemann and Pedersen [1, Proposition 2.6] proved that positive operators satisfying these relations can be lifted. The other extreme case, the linear order, corresponds to the relations,

$$h_i h_{i+1} = h_{i+1}, i = 1, \ldots, n-1,$$

which Olsen and Pedersen [5, Lemma 6.5] proved to be liftable. In this case, the universal C^* -algebra is C[0, 1], so a simple proof exists. However, most of the ideas for Theorem 2.2 and Proposition 2.3 came from examining Olsen and Pedersen's proof.

3. Matrix Algebras.

We now show that a homomorphic image of $M_n(0, 1]$ is an acceptable substitute for a set of matrix units.

PROPOSITION 3.1. If $\varphi: M_n(0,1] \to B$ is a star-homomorphism to a C^* -algebra B and if $h = \varphi(t \otimes e_{11})$, then there is an injective star-homomorphism

$$\alpha: \overline{hBh} \otimes M_n \to B$$

with image the C*-algebra generated by $\varphi(M_n(0,1])$ and \overline{hBh} . For $x \in B$,

$$\alpha(hxh \otimes e_{ij}) = \varphi(t^{1/2} \otimes e_{i1})h^{1/2}xh^{1/2}\varphi(t^{1/2} \otimes e_{1i}).$$

PROOF. For $x, y \in B$,

$$\alpha(hxh \otimes e_{ij})\alpha(hyh \otimes e_{jk}) = \varphi(t^{1/2} \otimes e_{i1})h^{1/2}xh^{1/2}\varphi(t \otimes e_{11})h^{1/2}yh^{1/2}\varphi(t^{1/2} \otimes e_{1k})$$

$$= \varphi(t^{1/2} \otimes e_{i1})h^{1/2}xh^2yh^{1/2}\varphi(t^{1/2} \otimes e_{1k})$$

$$= \alpha(hxh^2yh \otimes e_{ik}).$$

For $0 < \gamma \le 1/2$,

$$\varphi(t^{1/2} \otimes e_{i1}) = \varphi(t^{\gamma} \otimes e_{i1}) h^{((1/2)-\gamma)}.$$

Therefore,

$$\|\alpha(hxh\otimes e_{ij})\|\leq \|h^{1-\gamma}xh^{1-\gamma}\|.$$

Taking limits, as $\gamma \to 0$, shows that the given formula does define a bounded *-homomorphism that extends to all of $\overline{hBh} \otimes M_n$.

Clearly \overline{hBh} is in the image of α and since

$$\begin{split} \alpha(h^{3} \otimes e_{ij}) &= \varphi(t^{1/2} \otimes e_{i1})h^{1/2}hh^{1/2}\varphi(t^{1/2} \otimes e_{1j}) \\ &= \varphi(t^{1/2} \otimes e_{i1})\varphi(t^{2} \otimes e_{11})\varphi(t^{1/2} \otimes e_{1j}) \\ &= \varphi(t^{3} \otimes e_{ij}), \end{split}$$

the image of α also contains $\varphi(M_n(0,1])$.

To show α is injective, it suffices to show that α restricted to $\overline{hBh} \otimes e_{11}$ is isometric. For $x \in B$.

$$\alpha(hxh \otimes e_{11}) = h^{1/2}(h^{1/2}xh^{1/2})h^{1/2} = hxh$$

and thus $\|\alpha(v \otimes e_{11})\| = \|v\|$ for any $v \in \overline{BBh}$.

The isomorphism α is natural in the following sense.

PROPOSITION 3.2. Suppose that B_1 and B_2 are C^* -algebras and

$$\beta: B_1 \to B_2$$

$$\varphi_i: M_n(0,1] \to B_i$$

are star-homomorphisms. Let $h_i = \varphi_i(t \otimes e_{11})$. If $\beta \circ \varphi_1 = \varphi_2$ then

$$\beta \circ \alpha_1 = \alpha_2 \circ (\beta_0 \otimes id),$$

where $\beta_0: \overline{h_1Bh_1} \to \overline{h_2B_2h_2}$ is the restriction of β and α_i is as in Poposition 3.1.

Theorem 3.3. If A is a σ -unital, projective C^* -algebra then $A \otimes M_n$ is projective.

PROOF. Suppose that $\pi: B \to C$ is surjective and we are given

$$\varphi: A \otimes M_{\bullet} \to C$$
.

Let $h \in A$ be such that $0 \le h \le 1$ and $A = \overline{hAh}$. Define a homomorphism

$$\varphi_2: M_n(0,1] \to C$$

by $\varphi_2(f \otimes e_{ij}) = \varphi(f(h) \otimes e_{ij})$. Since $M_n(0,1]$ is projective, by [4, Theorem 4.8], there exists a homomorphism

$$\varphi_1: M_n(0,1] \to B$$

with $\pi \circ \varphi_1 = \varphi_2$.

Let $h_i = \varphi_i(t \otimes e_{11})$. Notice that $h_2 = \varphi(h \otimes e_{11})$. By Proposition 3.1 we have monomorphisms

$$\alpha_1 : \overline{h_1 B h_1} \otimes M_n \to B,$$
 $\alpha_2 : \overline{h_2 C h_2} \otimes M_n \to C.$

For any $a \in A$,

$$\varphi(hah \otimes e_{ij}) = \varphi((h^{1/2} \otimes e_{i1})(h^{1/2} \otimes e_{11})(a \otimes e_{11})(h^{1/2} \otimes e_{11})(h^{1/2} \otimes e_{1j}))$$

$$= \varphi_2(t^{1/2} \otimes e_{i1})h_2^{1/2}\varphi(a \otimes e_{11})h_2^{1/2}\varphi_2(t^{1/2} \otimes e_{1j})$$

$$= \alpha_2((h_2\varphi(a \otimes e_{11})h_2) \otimes e_{ij}).$$

Therefore, if we define

$$\psi: A \to \overline{h_2 C h_2}$$

by $\psi(hah) = h_2 \varphi(a \otimes e_{11}) h_2$, we obtain a homomorphism such that $\varphi = \alpha_2 \circ (\psi \otimes id)$. (In fact, $\psi(a) = \varphi(a \otimes e_{11})$.) By Proposition 3.2, we have the following commutative diagram:

$$\overline{h_1Bh_1} \otimes M_n \xrightarrow{\alpha_1} B$$

$$\downarrow \pi_0 \otimes \mathrm{id} \qquad \downarrow \pi$$

$$A \otimes M_n \xrightarrow{\psi \otimes \mathrm{id}} \overline{h_2Ch_2} \otimes M_n \xrightarrow{\alpha_2} C$$

Here π_0 is the restriction of π which, by Lemma 2.1, is a surjection of $\overline{h_1Bh_1}$ onto $\overline{h_2Ch_2}$. By assumption, ψ lifts and hence so do $\psi \otimes$ id and φ .

COROLLARY 3.4. If X is a finite tree, minus a single point, then $C_0(X) \otimes M_n$ is projective.

4. Semiprojectivity.

The above techniques work well with Blackadar's version of semiprojectivity. We just need a replacement for Lemma 2.1 to deal with hereditary subalgebras of inductive limits.

LEMMA 4.1. Suppose that $B_n \xrightarrow{\gamma_n} B_{n+1}$ is an inductive system with surjective connecting maps γ_n . Let $C = \lim_n B_n$ and let $\gamma_{n,m} \colon B_n \to B_m$ and $\gamma_{n,\infty} \colon B_n \to C$ denote the canonical homomorphisms. Given $h_1 \in (B_1)_+$, if $h_n = \gamma_{1,n}(h_1)$ and $h = \gamma_{1,\infty}(h_1)$ then

$$\lim_{n \to \infty} \overline{h_n B_n h_n} = \overline{hCh}.$$

PROOF. Consider the commutative diagram

$$\begin{array}{ccc}
\overline{h_n B_n h_n} & \to & B_n \\
\downarrow & & \downarrow \\
\overline{h_{n+1} B_{n+1} h_{n+1}} & \to & B_{n+1}
\end{array}$$

Notice that both vertical maps are surjective. The horizontal maps are injective, so it follows that the limit map is also injective. Surjectivity follows from

$$\gamma_n(\overline{h_nB_nh_n}) = hCh.$$

The proofs of Theorems 2.2 and 3.3 now modify easily to prove the following theorems. In these theorems, we are referring to semiprojectivity as defined in $\lceil 2 \rceil$. In particular, we answer the question raised in $\lceil 2 \rceil$, Remark 2.20 \rceil .

THEOREM 4.2. If A_1 and A_2 are σ -unital, semiprojective C^* -algebras then $A_1 \oplus A_2$ is semiprojective.

Theorem 4.3. If A is a σ -unital, semiprojective C*-algebra then $A \otimes M_n$ is semiprojective.

REFERENCES

- C. A. Akemann and G. K. Pedersen, Ideal perturbations of elements in C*-algebras, Math. Scand. 41 (1977), 117-139.
- 2. B. Blackadar, Shape theory for C*-algebras, Math. Scand. 56 (1985), 249-275.
- 3. E. G. Effros and J. Kaminker, Homotopy continuity and shape theory for C*-algebras, in geometric methods in operator algebras, U.S. Japan Joint Seminar at Kyoto, Pitman.
- 4. T. A. Loring, Stable relations for C*-algebras, J. Funct. Anal., to appear.
- C. L. Olsen and G. K. Pedersen, Corona C*-algebras and their applications to lifting problems, Math. Scand. 64 (1989), 63-86.