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PROJECTIVE C*-ALGEBRAS

TERRY A. LORING*

Abstract.

We show that if 4 and B are o-unital, projective C*-algebras (star-homomorphisms into quotients lift
to star-homomorphisms) then A @ B and M,(A) are projective. Corresponding results are proven for
semiprojectivity. A corollary is that elements h,,.. . ,h, in a quotient C/I satisfying

0sh; =1,
hhy = hy, if i<,
and hh; =0, ifiLjandj i
can be lifted to elements of C satisfying the same relations. Here < is any partial order on {1,...,n}
such that a < cand b < cimpliesa <bor b < a.

1. Projectivity.

A C*-algebra is called projective if, given any star-homomorphism ¢ : 4 — B/I,
with I any ideal in any C*-algebra B, there is a lift $: A — B so that to @ = ¢.
Projective C*-algebras are contractable by [3, Proposition 3.1] and hence are
rather rare.

An important example is @] Cy(0,1]. This is universally generated by
hy,...,h, satisfying

0 0sh =1
and
(2) h,'hj =0 for i #J

Akemann and Pedersen [1, Proposition 2.6] show that h;e(B/I). satisfying (2)
lift to k; € B, also satisfying (2). Adjusting the norms is easy (see [4, Theorem 4.5])
so @17 Cy(0, 1] is projective.

We use the following C*-algebras frequently and so introduce the notation

M,©0,1] = Co(0,11 ® M,.

Using the corona C*-algebra version of the Kasparov technical theorem, due to
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Olsen and Pedersen [5, Theorem 3.7], we showed [4, Theorem 4.8] that M, (0, 1]
is projective.

Suppose that 4 and B contain strictly positive elements h, and h,. Then h; @ 0
and 0 @ h, generate a quotient of Cy(0,11@® Cy(0,1]. In 4 ® M,, the elements
h; ® e;;generate a quotient of M,,(0, 1]. These subalgebras act enough like matrix
units that their liftings are the first steps in showing 4 @® B and A ® M, are
projective whenever 4 and B are.

We mostly will work in €, the category at all C*-algebras and star-homomor-
phisms. By #,, we mean the category of unital star-homomorphisms and
C*-algebras. By projective in ¢, we mean the above definition, while projective in
%, is defined assuming A, B, ¢ and @ above are unital.

LEMMA 1.1. A is projective in €, if and only if A is projective in €.

2. Direct Sums.

We shall restrict attention to C*-algebras that are o-unital. If 4 is -unital, it
contains a strictly positive element h, so A =hAh, the hereditary subalgebra
generated by h.

LemMA 2.1. Ifn: B — C is a surjective homomorphism, k is a positive element of
B and (k) = h then n(kBk) = hCh.

THEOREM 2.2. If A, and A, are a-unital, projective C*-algebrasthen A, @ A, is
projective.

PRrROOF. Suppose n: B — C is surjective and we are given
p=0,Dpy: 4, A4, - C.

Let h;e A; such that 0 < h; < 1 and A; = hAh;. Since @4(hy)@2(h;) =0 and
Co(0, 1] ® Co(0, 1] is projective (or use [1, Proposition 2.6]), there are positive
lifts k; of ¢;(h;) with k k, = 0.

Let B; = k;Bk;. Clearly B, B, = 0. Since

A; = h(4, ® A,)h;,
we see that
0i(4:) < o(R)Co(h)
— TR
= n(kiBk;)
= n(By).
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By hypothesis, ¢; lifts to a homomorphism @;: A; = B;. Thus ¢; @ @, is a lift of
Q.

PRrOPOSITION 2.3. If X is a finite tree then C(X) is projective in €.

Proor. The proof is by induction on the number of edges. If X has one edge
then C(X) = C[0, 1] is well-known to be projective in €.
For X with more than one edge, pick a middle vertex v. Then

X=X u,X,
with each X; a sub-tree with fewer edges. Since
C(X) = CoX\{v})",
Co(X\{}) = Co(X;\{v}) ® Co(X,\{v})
and C(X;) = Co(X\{v})
we are done by the induction hypothesis, Lemma 1.1 and Theorem 2.2.

For notation, we will use C*{ —|— ), to indicate a universal C*-algebra and
C*{—|—>, to indicate a universal unital C*-algebra.

PROPOSITION 2.4. Suppose S is a nonempty finite set and < is a partial order on
S satisfying the axiom

3 (@a<candb<c)=>(a<borb<a)
Let G(S) = {h,|e€S} denote a set of generators and R(<) denote the relations
0Lh, £1, forees,
hehy =hy if e< f,
hehy =0 if(e £ fand [ Le).
Then C*{G(S)|R(<)) is isomorphic to C(X), where X is finite tree.
ProoF. If S has only one element,
C*(G(S)|R(X)>y = C*¢h|0 = h= 1), = C[0,1].

For larger S, consider its minimal elements ay,. . ., a,. Axiom (3) implies that the
sets

S; = {seS|a; < s}

are disjoint. Let <; denote the restricted relations. If ae S; and be §;, i * j, then
a and b are incomparable and thus hh, = 0. Therefore,



PROJECTIVE C*-ALGEBRAS 277

k
C*<GS)IR(<)o = @ C*{G(S)IR(<))o.

i=1

If k > 1, we are done by induction and adding units. (Two trees attached at
a point form a tree.)

If k=1 then S has a minimum element a. Consider a new relation <’ on
S defined so that a is incomparable to S\{a} and, for s,t€ S\{a},

s<'tes<t.
Then
C*<GS)IR(Z)1 = C*(G(S)IR(LD1,

the isomorphism sending h; to k; for s + a, and h, to (1 — k). With this order,
S has at least two minimal elements so the induction proceeds as above.

COROLLARY 2.5. Suppose A is a C*-algebra containing an ideal I and < is
a partial order on {1,...,n} satisfying Axiom (3). Let n: A — A/I denote the
quotient map. If hy,...,h,e A/l satisfy the relations R(<), then there exists
ky,..., k,€ A satisfying R(<) such that n(k;) = h;.

The vacuous order on {1,...,n} corresponds to the relations
h,hj = 0, l + j.

Akemann and Pedersen [1, Proposition 2.6] proved that positive operators
satisfying these relations can be lifted. The other extreme case, the linear order,
corresponds to the relations,

hihivy =hipq, i=1,...,n—1,

which Olsen and Pedersen [5, Lemma 6.5] proved to be liftable. In this case, the
universal C*-algebra is C[0, 1], so a simple proof exists. However, most of the
ideas for Theorem 2.2 and Proposition 2.3 came from examining Olsen and
Pedersen’s proof.

3. Matrix Algebras.

We now show that a homomorphic image of M,(0, 1] is an acceptable substitute
for a set of matrix units.

PROPOSITION 3.1. If ¢ : M,(0,1] — B is a star-homomorphism to a C*-algebra
Bandif h = @(t ® e,,), then there is an injective star-homomorphism

«:hBh® M, —» B
with image the C*-algebra generated by ¢(M,(0,1]) and hBh. For x€ B, ‘
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a(hxh @ e;;) = (1'% @ e;y) W' > xh' 2 p(t2 @ e ).
Proor. For x,yeB,
a(hxh ® e;)a(hyh ® ;) = p(t'/> @ ei)h' 2 xh'2p(t @ e11)h' P yh' 2ot ® ey4)

= (t'* ® e;))h*2xh?yh'2p(t'? ® eyx)
= a(hxh?*yh ® ey).

ForO0<y=<1/2,

o(t'? ® e1) = @(t” ® e;)h 1277,

Therefore,

la(hxh ® e;)l| < || ~7xh! 7).

Taking limits, as y — 0, shows that the iven formula does define a bounded
*-homomorphism that extends to all of hBh ® M,,.
Clearly hBh is in the image of « and since

a(h® @ e;;) = @(t"?> ® e; )h* 2 hh' 2 o(t'* @ ey )
= ("’ @ ;) (> ® e11) 0(t'* @ ey))
=p*® e;j),

the image of « also contains ¢(M,(0, 1]).
To show « is injective, it suffices to show that « restricted to hBh ® e, is
isometric. For xe B,

a(hxh ® ey;) = h*'?(h*2xh*?)h*/? = hxh

and thus [ja(y ® e;,)|| = ||y|| for any y e hBh.

The isomorphism « is natural in the following sense.

PROPOSITION 3.2. Suppose that By and B, are C*-algebras and

B:By— B,,
¢i:M,(0,1] — B;
are star-homomorphisms. Let h; = @i(t ® e;;). If Bo @, = ¢, then
Boa; = a;0(Bo ®id),

where fo: hyBh, — hyB3h, is the restriction of B and a; is as in Poposition 3.1.

THEOREM 3.3. If Ais a g-unital, projective C*-algebrathen A ® M, is projective.

ProoF. Suppose that n: B — C is surjective and we are given
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9: AR M, - C.
Let he A be such that 0 < h < 1 and 4 = hAh. Define a homomorphism
$2:M,(0,1]-C

by 02(f ® e;;) = ¢(f(h) @ e;;). Since M,(0, 1] is projective, by [4, Theorem 4.8],
there exists a homomorphism

¢1:M,(0,1] > B

withtog, = ¢@,.
Let h; = ¢;(t ® e,,). Notice that h, = ¢(h ® e,,). By Proposition 3.1 we have
monomorphisms

a;:hBhy ® M, > B,
ay:h,Chy, ® M, - C.
For anyae A,
p(hah @ e;j) = p((h'? ® ei)(h'> ® e11)(a ® e1,)(h' @ e1;)(h' ® ey)))
= @,(t"* @ e)hy* p(a ® ey )y @,(t'* R ey))
= ax((hp(a ® e11)h;) @ ey)).
Therefore, if we define
Y:A4 - hy,Chy

by Y(hah) = h,p(a ® €,,)h,, we obtain a homomorphism such that ¢ =
o, 0(¥ ® id). (Infact, y(a) = ¢(a ® e,,).) By Proposition 3.2, we have the follow-
ing commutative diagram:

hBh; ® M, = B
lmo®id in
A® M, ¥24, 7,Ch, ® M, =2
Here n,, is the restriction of = which, by Lemma 2.1, is a surjection of h,Bh, onto

h,Ch,. By assumption,  lifts and hence so do Y ® id and ¢.

COROLLARY 3.4. If X is a finite tree, minus a single point, then Co(X)®@ M, is
projective.

4. Semiprojectivity.

The above techniques work well with Blackadar’s version of semiprojectivity.
We just need a replacement for Lemma 2.1 to deal with hereditary subalgebras of
inductive limits. ‘
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LEMMA 4.1. Suppose that B, = B, ., is an inductive system with surjective
connecting maps v,. Let C = lim B, and let y, ,,: B, — B,, and y, ,: B, > C denote
the canonical homomorphisms. Given hy €(By) ., if h, = y1 4(hy) and h =y, ,(h,)
then

lim %,B,h, = hCh.

-

ProoF. Consider the commutative diagram

l !

hn+ an+ lhn+l g Bn+1

Notice that both vertical maps are surjective. The horizontal maps are injective,
so it follows that the limit map is also injective. Surjectivity follows from

n(haByh,) = hCh.

The proofs of Theorems 2.2 and 3.3 now modify easily to prove the following
theorems. In these theorems, we are referring to semiprojectivity as defined in
[2]. In particular, we answer the question raised in [2, Remark 2.20].

THEOREM 4.2. If A, and A, are o-unital, semiprojective C*-algebras then
A; @ A, is semiprojective.

THEOREM 4.3. If A is a o-unital, semiprojective C*-algebra then A @ M, is
semiprojective.
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