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TANGENTIAL CHARACTERIZATIONS OF BMOA
ON STRICTLY PSEUDOCONVEX DOMAINS

WILLIAM S. COHN

Let 2 be a bounded strictly pseudoconvex domain in C* with €* boundary 9Q.
Thus, we suppose that there is a € defining function r: C" — R, a neighborhood
0 of 8, the closure of £, and a constant C > 0 such that

Q={:rQ) <0},
0Q ={{:r(() =0},
|Vrl 0,

everywhere on 0€2, and that the Levi form of r is positive definite on @:

2

w;w, = Clw]?
,Zk@C,ﬁCk Qww = Clw|
for all {e © and all we C".
For { €0Q set Dr() = ( A 66( ) Then Dr({) is normal to 0Q. If “C , »”
1 n

denotes the Hermitian inner product on C" let p be the pseudo-metric defined on
0Q by
pCm) = 1<C = 1, Dr@Q> | + 1< = m, Dr(m>] + 1L — n?
and for { €0Q2 and 6 > 0 define the non-isotropic ball
09 ={n:nedQ and p(,n) < 3}.

See [St chapter IT] for a discussion of the properties of p and the collection of balls
0.

Since |Vr| is non-vanishing on 2 it follows that there are finitely many sets
A" whose union contains a neighborhood of 922 on each of which exists a ¢
projection n from 4" to Q2 and a diffemorphism of A~ onto (A" N 0£2) x (—&o,&0)-
Thus each point { in 4" may be identified with the pair (z({), ({)).
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The pseudo-metric defined on 92 and the local product structure given above
on a neighborhood of 0Q give the “homogeneous space” structure used in the
study of holomorphic functions defined on £2. Recall that foreach ne 4" N 0Q we
may define the approach region

Iin) = {{e# nQ:|p(),n) < tirOI},

where t > 0. In what follows we will assume that a single ¢ has been chosen and
suppress the dependence of the approach region on the parameter ¢.

If G is a holomorphic function on Q and 0 < p < oo, we will say that G belongs
to the Hardy space H? = H?(Q) if the admissible maximal function

MF(n) = sup |G(z)]

zel'(m)

defined for each ne dQ belongs to I#(ds). Here do denotes the “surface area
measure” on 0€Q.

It is well known that the dual space of the Hardy space H! is the space BMOA
of functions F in H? whose boundary values on 0Q satisfy the bounded mean
oscillation condition with respect to the non-isotropic metric p({, #). Precisely, an
H? function F belongs to BMOA if there is a constant C such that

Ag(IF — AgF) £ C,

where 4, denotes the average over a non-isotropic ball Q = {: p(n,{) < ¢} given
by the formula

1
AqF = TQ)J;FdU

The quantity
IFlly = IIFllg= + sup Ag(IF — AgF|)
Q

defines a norm on BMOA.
The duality between H! and BMOA is achieved by the pairing

{G,F> =J GF do,
[7/e]

which is well defined whenever G € H? and F e BMOA, and satisfies the inequality
I<G,F>| = CliGllg: I F 4

Furthermore, an H? function F belongs to BMOA if and only there is a constant
C such that the inequality
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IKG,F>| £ CllGllg

holds for all Ge H>.

One way to prove the duality between BMOA and H! involves the alternative
charcterization of BMOA in terms of Carleson measure. Recall that a positive
measure p on £ is called a Carleson measure if there is a constant C such that

Q) < Ca(Q),

for every non-isotropic ball Q, where if E < 8, E is the “tent” over E given by
E = {weQ:Q(n(w),|r(w)) < E.

The following result is a version of the theorem of Fefferman and Stein appropri-
ate for the present context.

THEOREM A. The following conditions on a function F in H*(Q) are equivalent:
(i) F belongs to BMOA.
d
(ii) The measure |rV F|? ITm is a Carleson measure.
(ili) There is a constant C such that |{G,F»| £ C|/G| g: for all Ge H?.

Here, dm denotes Lebesgue measure on C".

A proof of Theorem A might proceed along the following lines. First, If F is in
BMOA then by using the integral representation for F given by formula (4) below
(see [KSt]) and the argument given in [T, Chapter XV, Prop. 1.2] one can prove
that |V F|? %’Tn— is a Carleson measure. Next, if |rV F|? —T?I— is a Carleson measure
then one can use a weighted Bergman kernel to express F together with the
characterization of H' in terms of tent spaces to show that <G, F) defines
a bounded linear functional on H'; in fact we employ this type of argument in
Lemma 3 below. Finally, if (G, F) is known to define a bounded linear functional
on H!, then it can be seen that the bounded mean oscillation condition holds by
integrating F against a real H' atom a (defined in terms of the metric p; see
[CW]), sinceif P, denotes the Szego projection, we have the estimate [Py af g <
C for a constant C independent of a. Alternatively, it follows from the fact that H*
is a closed subspace of L!(do) (see the corollary on page 40 of [St]) that F is the
Szegd projection of a bounded function. From this the bounded mean oscillation
condition follows from an argument similar to the one given in [G], Chapter VI,
Theorem 1.5.

It seems to be well known that in condition (i) the vector expression VF may be
replaced by the (scalar) normal derivative
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> oOr OF
NF(Z)= _1_6%;—527'

See [J] for further refinements on the unit ball. Our purpose here is to offer
a characterization of BMOA in terms of complex tangential derivatives of an
analytic function. For ¢ real let Q, = {z:r(z) < t} and suppose r({) = t. Then

or
Dr(0) = (6‘3{ a ) is normal to 02, at {. Recall that if T;(02,) denotes the
1 n

(complexified) tangent space of 0, at { then
T,(02,) = C* () @ C"'(0) ® R(EDr(0))
where C"!({) denotes the orthogonal complement of the complex span of
{Dr({)} in C" and R(iDr({)) denotes the real span of iDr(().
Suppose then that v is a C* mapping from ¢ to C". Write
v(Q) = @19, - . -, va(0)).

Then v determines the vector fields

n

v = jz ](C) acl
and
- n 0
T, = g a( .

If “v is complex tangential” to 09, i.e.
<v(©), Dr(¢)> =0
for all {, then it follows that
oQeC 1), WDeC Q)

for all { on 09, and the restriction of both T, and T, to R, define vector fields on
the manifold 9€,. It is natural to say therefore that the vector fields 7, and T, are
complex tangential on Q. Any such complex tangential vector field can be written
as a linear combination (with €* coefficients) of the vector fields

and

T af of o oty
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where 1 <i,j < n. Working on the unit ball Ahern and Bruna [AB] gave
conditions on holomorphic functions F in terms of the “analytic” tangential
derivatives Ty T . . . T, F, thatis, each T; is chosen among the collection of T}, and
not the T; ;, which are necessary and sufficient that F belong to a Hardy-Sobolev
space. For strictly pseudoconvex domains this was also done in [C1] and [Gr];
see also [C2]. Based on the results of those authors one would expect that in
a “complex tangential characterization” of BMOA the expression VF in The-
orem A would be replaced by some sort of second order tangential derivative.
This turns out to be correct. We proceed now to formulate versions of the
theorems of [C1] and [C2] for the space BMOA.

Suppose that there is finite covering of 0Q by open balls {,} and that for each
v there is a ¥ mapping v’ of 0, to C" satisfying the following conditions: .

(@I >0
for all (e @, and
(0, Dr()y =0

for all {€0,.
Let each v’ determine “analytic” complex tangential vector field T, = T,,. Our
main result is the following theorem.

THEOREM 1. The following conditions on a function F belonging to H*(R) are

equivalent.
i) F belongs to BMOA.

.. . dm .

ii) For some positive integer k the measure |r*/> T/ F|? —I—rl— is a Carleson measure
foreachvand allj £ k.

dm .

iii) For all positive integers k the measure |r/> T*F|* T is a Carleson measure

for each v.

We point out that, as in [C1] and [C2], locally, we work with only one vector
field T, as opposed to finitely many vector fields T;;, which locally span the
complex tangent space at a point on 9Q. Thus this result, while similar in spirit to
work of Ahern and Bruna [AB] on the unit ball and Grellier [Gr] on a strictly
pseudoconvex domain, is also different than the work of those authors and
probably cannot be obtained from the methods used by them.

Theorem 1 will be proved by establishing that condition (i) implies condition
(iii) and that condition (ii) implies condition (i); this will suffice since it is trivial
that condition (iii) implies condition (ii).

The implication that condition (ii) implies condition (i) in the theorem above
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actually follows from a stronger result which we now prepare to state.

For s > —1 let By(w,z) be the Bergman kernel which gives the orthogonal
projection of the space I*(dm,) onto space H n I*(dm). Here dm, = |r|*dm,
I?(dmy) is the space of functions f defined on Q satisfying

113, = J | f1? dm, < oo,
Q2

and H N I?(dm,) is the Bergman space of holomorphic functions in I? (dm,). Thus
if F e H N I?(dm,) then

F(z) = J F(w)By(w, z)dmg(w)
2
for all ze Q. If f € I} (dm,) we define

P f(z) = Lf (W) By(w, z)dmy(w).

THEOREM 2. Let T, be vector fields as described above. Suppose that f is a (not
necessarily holomorphic) function defined on Q satisfying the condition that there is

o ood
a positive integer k such that |r¥'> TJ f|? I—:T— is a Carleson measure for each v and all
j = k. Lets + 1 — k/2 > 0. Then the weighted Bergman projection P f belongs to
BMOA.

It is clear that Theorem 2 establishes the implication (ii) implies (i) in Theo-
rem 1.

We now develop the machinery necessary for our proofs of Theorems 1 and 2.

In the study of holomorphic functions and the Bergman projection on the unit
ball, the kernel G(w,z) = 1 — {z,w) plays an important role. Note that G is
holomorphic in the second variable and anti-holomorphic in the first variable.
There is an analogue of this kernel which is appropriate for the context of strictly
pseudoconvex domains. This kernel is the modification of the kernel constructed
by Kerzman and Stein in [KSt] discussed in [C1]. It can be used as the kernel of
[KSt] is used to get a fairly explicit formula for either the Szegé kernel or
a weighted Bergman kernel; see [KSt], [L], [R], and [C1] and [C2]. We
summarize its properties in the following proposition.

PROPOSITION 1. Let Q be a bounded strictly pseudoconvex domain in C". Sup-
pose that m is a positive integer. Then there is a kernel G(w, z) = G,(w, z) which is
%™ on C" x C" and a finite collection of open balls O, such that 0Q < O, such that
the following conditions hold:
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Gw,w) = —r(w), weudl,;
G
—a———(w,w)=0 and L...,n weu0,;
w;j
G G or
o =0 “r _ P .
3, (z,2) , and 2 (z,2) 22, (@, j=1,...,n zeu0,;
IGw, 2)| = C(rw)l + [r(2)| + Iw — zI*), z,weQnoO,;
and
0G
8—z'j(w’ 2)=0, wzed,.
Furthermore, for any j = 1,...,n
oG
(1) %on™2) _ 5 0~ esima)
ow; Hi=m

where I denotes a multi-index of length m, (w — z)' is a polynomial in w and
z vanishing to order m when w = z and each ey is a C* function of z and w.

REMARK. The point of condition (1) is that the kernel G is “almost” anti-
holomorphic in the first variable. Notice also that we have used the notation 0,
to denote two different open coverings of dQ; by taking a refinement of the two
coverings we will be able to assume that the two coverings are in fact the same.

We will need to exploit the relation between the Hardy spaces and the “tent
spaces” studied by Coifman, Meyer and Stein. If f is a function on Q, we will say
that f belongs to the tent space T = T7() if the admissible area function

B , dm(z) )”2
A _(Lm'f P yarT)

defined for each 17 € 62 belongs to I? (do). Tent spaces were defined and studied in
the context of the upper half space R%"! by Coifman, Meyer, and Stein in
[CMSt]. Some of their results were generalized to context including the present
one by Ahern and Nagel in [AN]. It can be shown that most of the results in
[CMSt] have analogues in the present setting and we will comment on these
~ when the need arises.

We will need a variant of a theorem which is proved in [C2]; see [C2],

Theorem 2. The proof of that result also establishes the following proposition.

PROPOSITION 2. Suppose 0 < p < co. Let K((, z) be a kernel of the form
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Ir@I*Ir QP H(L, 2)

K(,2) = G, Z),.+1 +a+b+1/2

or

a C bH ,
K(C7 Z) = g((zz’)lc)!uri(- 1)'|+a+£c+52 4

where lis a non-negative integer, H({, z) a € function which satisfies the condition
that

IH(, 2) = Clz - {I',

and a and b are real numbers satisfying the conditions a >0, b > —1, and
(n + b+ 1)p — n > 0. Then the operator

Kf(z) = Lf K 2)dm(0)

maps the space TF(Q) to itself.

We now begin the proof that condition (i) of Theorem 1 implies condition (iii).
We need a way to construct H' functions from functions in the tent space T,! ().

LEMMA 1. Let A e T;} () and be supported on a compact of 2. Let k be a positive
integer, and suppose that J(w, z) is a kernel of the form

J(w,2) = [rw)* " TH(G(z, w) "),

where T,, denotes a complex tangenital derivative acting on the w variable. Then if
the integer m chosen to construct the kernel G is sufficiently large and

JA(2) = J‘ AWw)J(w, z) dm(w)
Q

it follows that IP(JA* |z < Cll 4]z,

where P, denotes the Szegé projection of I*(do) onto H2,“*” denotes the restriction
to 02 of a function defined on Q, and C is a constant independent of A.

PRroOOF. Using the fact that T, G(z, w) vanishes to the first order when w = z
one can verify that
ko hiz,w)
k —-ny __ J\"s
Tw (G(Z’ W) ) - lgo G(z, w)n +j?
where h; is € in both variables and, if 2j — k 2 0, satisfies the inequality

Ihyz, W) < Clz — i~
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Furthermore, if D, denotes any first order derivative with respect to the variable
z then it may also be verified that
x hi(z, w)
D,(T*G(z,w)™™) = £o

( ( ) ) j=z-1 G(Z’w)n+1+l
where h; is € in both variables and if 2j — k is non-negative, satisfies the
inequality

lhi(z,w)| < Clz — w|* 7k,

We may therefore apply Proposition 2 to deduce that the operator which takes
A to r(z) D, JA(z) is bounded on T;'(£2). Now use the fact that

_6(22:; G(z,w)
forj = 1,...,nfor all zin a neighborhood of § to deduce that if @ is a differential
operator of order k, then if m is chosen to be sufficiently large, there is a fixed
strictly pseudoconvex neighborhood @ of @ (independent of 4) and constants
C = C(2) (also independent of 4) on which the coefficients v; of the Jclosed (0,1)
form 8J A satisfy the estimates

SClz—w"

sup |2v(z)| = Cl| Al
0

(Notice that §, and T* commute.) Use the formula described in [K, Theorem
9.1.2] we may solve the equation du = §J 4 (on a slightly larger domain contain-
ing the closure of () with a function u which satisfies the same estimates as the
coefficients v;above. We may therefore use the smoothness of u and the tent space
characterization of H!(£) (see [Gr]) to conclude that the holomorphic function
JA — uis in H() and there is a constant C independent of 4 such that

|JA — ullgs £ Cll A7

Since the Szegé projection of u* is also smooth, the proof is completed by using
the last estimate and the observation that P, (JA)* = P,(JA — w)* + P u* =
(JA — u* + P, u*

We now show that condition (iii) in Theorem 1 follows from condition (i).
Suppose that f e BMOA. Let k be a fixed positive integer and for 4 € T;' which is
compactly supported in Q let P.. J A be the H' function which is given by Lemma
1 above. It follows that

) [KPLJAfY] = KT A* O £ ClAl,

where C does not depend on 4. Use Fubini’s theorem to calculate that ,
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©)] WA= J . AW)rWI" ™1 TG » f (W) dm(w),

where

G*fw)= J 6nf (2)G(z, w)"da(z).
We now use (2) and (3) to show that
PO TEG » S - T

is a Carleson measure. First, in (3) let 4 range over all (compactly supported) tent
space atoms A supported in a fixed “tent” {, that is

J‘ |A|2—— =@

see [CMSt]. By (2) the right hand side of (3) remains uniformly bounded by
a constant independent of A. Duality now gives that

Irwyf2 TS, G * f (W) —— i (W)I

is a Carleson measure. The proof will be complete if we show that G * f may be
replaced by f in the last statement.

It follows from the work of Kerzman and Stein [KSt] that there is a ¥~
function ¥(z, w) such that

(Z, W 4

Q) f()—J f@ G g do(2)

and therefore

fw) =¥w,w)G*f(w) + Lnf @(¥(z,w) — (W, w))G(z,w) ")do(2).

Since feBMOA, fe¥(do) for all 0 < p < o0, and | f||lLrws = C(p) | fll4 for
a constant C(p) depending only on p. Estimate that

1/p 1/p’
IG*f(w)l < ( f Lf1P do) (J IG(z, w)| " da(Z))
o bifs]

S COIS llrw) == = CE)ILf Il Ir(w)l =",

where p’ is conjugate to p. If we take p sufficiently large, it is easy to see from this
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last inequality that |G * f(w)|? dm(w) is a Carleson measure. It follows easily now
that

Ir(w)*~ V2 T (w, w) G * f (W)

is also a Carleson measure. To complete the proof we need only show that if
Uw) = r*= D2 w) T L S@)(¥(z,w) — ¥(w,w))G(z, w) ") do(2),
2

then |U(w)|*> dm(w) is also a Carleson measure. But this follows from the argument
given above and the fact that the kernel

P&~ 12(y) TH(W (2, w) — P(w, w)G(z, w)™™)

has essentially the same singularity as the kernel G™". This completes the proof.

We now begin the proof of Theorem 2 (and therefore the implication that
condition (ii) implies condition (i) in Theorem 1.) If ge H! and T denotes an
“analytic” complex tangential derivative, then it follows from the work of [Gr]
that r*/2(z) T*g(z) belongs to the tent space T;. This is obviously the idea behind
the following lemma.

LEMMA 2. Let k be a positive integer and suppose s + 1 — k/2 > 0. Suppose that
¥Y(w, z) and h(w, z) are €™ functions. Suppose further that h(w, z) is anti-holomor-
phic in the variable z and also satisfies the condition that

[h(w,2)| < Clw — zI*.
Then the linear operator defined by either of the formulas

1 ¥(w,z)h(w,z)
Lg(w) = [r(w)l*** 742 Lﬂ Q(Z)Wda(z)

or

¥(w, z) h(w,
Lg(w) = [r(wl 1747 f e 7((”2—"7?—(—’?3 do2)

is a bounded mapping from H*(Q) to T} ().

ProOF. The argument we now outline will apply to either of the operators
defined above. Suppose then that Lg is given by the second formula above. By
writing da(z) = n where 5 is an (n — 1,n) form we may use Stoke’s formula to
calculate that

e—1+ _ Y(w, 2)h(w, 2)
[r(w)| ~* "1+ Lg(w) = Jﬂa(g(z)a—;?ﬁﬁ A '7)-
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Since differentiating the kernel G in the z variable results in a non-singular kernel,
it follows that we may confine our attention to expressions of the form

¥(w, z)h(w, z)
(%) L Dg(2) T T dm(z)

where Dg denotes a first order differential operator (with ¥ coeflicients) operat-
ing on g. Since g is holomorphic, it follows that

Dyg(2) = a1(2)9(2) + D.g(2) + D,g(2)

where a; is €%, D, is an “analytic” complex tangential derivative (with €
coefficients) and D, is complex normal, that is, of the form bN where bis ¥™ and
or 0 . . . .
Ng = Z;; 1 6246—5 Since Q is strictly pseudoconvex we may write D,g(z) as
j 0%
a linear combination of expression of the form D.g(z) and D.D,g(z). Integration
by parts allows us to rewrite (5) as a sum of terms of the form

©) f (@2(2) + DIg(@)@:(2) + D) (%((wﬂ?—r@) dmiz),
0 W, z)

where a, is €. Since both g and r'/2D.g e T.! (see [Gr]) we see that (6) is of the

form

L GEIrE@I () + D)(%‘%) dm(z),

(w, z)"

where Ge T}. If we multiply this last expression by |[r(w)[**! %2 we obtain
a formula for a linear operator which is bounded on T,! by Proposition 2. This
completes the proof.

LeMMA 3. Let f satisfy the condition that there is a positive integer k such that
c o d
|2 Tif)? _|;'n|l is a Carleson measure for each v and all j < k. Suppose s > —1 and

K(w, z) is a kernel of the form

_ IrwP¥(w,2)
K(W, Z) - G(W, Z)n+ 1+s

or
Kw, z) = O E0.2)

o

where ¥ is a €~ function on C* x C". Let
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Kf(z) = f gf (W) K(w, z) dm(w).
Then if the integer m chosen to construct the kernel G is sufficiently large, there is

a constant C such that

U 9(z) KAz) do(z)| < Cligll g
o

forallge H'.

Proor. Without loss of generality, we may assume that f is supported on one
of the sets O,; the general case is reduced to this one by a partition of unity
argument. Let us denote the function v* by v and the vector field T, by T. Arguing
as in [C1] integrate by parts to deduce that

<w — z,ow)* rw)l*

G(W, Z)n +1+s

k
Kfzy= % f T/f(w)Hj(w, 2) dm(w) + E(2),
j=oJe
where H;is a ¢~ function and the “error” E(z) is a function arising from terms in
which the kernel G has been differentiated and therefore, in view of property (1),
can be made as smooth as desired provided the integer m chosen to construct the
kernel G is sufficiently large.
Use Fubini’s theorem to write {g, Kf — E) as a sum of terms of the form

dm(w)
r(w)

f T f(w)r/*(w) K*g(w)
Q

where

7 Nk
Krato = ot [ LD = ot

By Lemma 2, K*g belongs to the tent space T1(R) and
IK*glir: < Cliglin:

for an absolute constant C independent of g. The lemma therefore follows from
the expression obtained for (g, Kf — E) by the duality between the tent space
T and Carleson measures (see [CMSt]) and the smoothness of E. This com-
pletes the proof.

LEMMA 4. Let K be a kernel as in Lemma 3 and suppose that f is a function
satisfying the condition of Lemma 3 for some positive integer k. Then Kf also
satisfies this condition for all positive integers.

PROOF. Assume first that the € function ¥ appearing in the formula for the

i
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kernel K is identically 1 and denote such kernels by the notation K, We will
prove the conclusion of the lemma for functions K, f. We first argue as in the
proof of Lemma 1. From the construction of the kernel G it follows that

5ZG(w,z) =0, zwe0,

and
0 —
- Gz,w)| = Clz — w|"
0z;
forj=1,...,nfor all z in a neighborhood of Q. It follows that there is an open

neighborhood O (independent of f) on which we may solve the equation du =
0K o f with a function u which is smooth on @. The function u — K, fis therefore
holomorphic in Q and it follows from the conclusion of Lemma 3 and the
smoothness of u that u — K, fe BMOA. The desired conclusion for K, f follows
now from the implication that (i) implies (ii) in Theorem 1 proven above and the
smoothness of u.

To handle the general case, expand the kernel ¥(w, z) in a Taylor series in the
variable w about w = z to write

Y(w,2) = I_ZO ni(2)q(w) + Ep(w, 2),

where p, and g, are polynomials and E is a ¥* function vanishing to order M on
the diagonal. It is not hard to see that

Kf(z) = 'ZZ,O P(2) Ko fi(2) + g(2),

where g(z) may be as smooth as desired (provided M is taken large enough) and
each fj satisfies the same hypothesis as f. The conclusion follows now from the
special case just established. This completes the proof.

We may now finish the proof of Theorem 2.

Using the representation of the weighted Bergman kernel B; given in [C2] it
follows that

M
Pf(2)= ) KAf+g
i=o
where g is as smooth as we like on @, K is a kernel of the type described in Lemma
3, A° is the identity, and for j = 1,..., M, 4/ f= A/~ Af where A is a sum of
kernels of the type described in Lemma 3. By Lemma 4, each 4’f satisfies the
Carleson measure condition of that Lemma. From this it follows from Lemma
3 that
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1<9, Ps /1 = Cliglann

for a constant C independent of g. This completes the proof.
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