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MULTIPLICATION BY BLASCHKE PRODUCTS
AND STABILITY OF IDEALS IN LIPSCHITZ ALGEBRAS

KONSTANTIN M. DYAKONOV

1. Introduction.

Let D denote the open unit disk {zeC: |z| < 1} and T its boundary. For
a€(0, + o) denote by A* the classical Lipschitz-Zygmund space of smooth
functions on the circle:

A*E{feC(T): |47 {1l = O(hI®), he R},
where m is any integer withm > «, || - ||, is the usual L® norm, and 4} stands for
the mth order difference operator. (Recall that the 4}’s are defined by induction:
Af = AL AL,
A NOEFE) - fQ©), LeT)

Further, let A% be the analytic subspace of A% A% A* A H®, where as usual
H* stands for the algebra of bounded analytic functions on D. An equivalent
definition ([Z], vol. 1) is as follows:

4={feH" f™(z) =01 —|z)* ™), zeD};

here mis again an integer such that m > «,and f™ is the mth order derivative of f.
This paper is devoted to a certain subtle point concerning the multiplicative
structure of functions in A5.

Suppose f € A% and @ is an inner function (i.e. 0 H* and lim |6(r{)| = 1 for
almost all { € T). Assume that 1T

0y foeAs.

It is known (see [Shi 1], [Shi 2] or Theorem B below) thatin the case 0 < a < 1
(1) implies

) f0eAy forall keN,
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where N is the set of positive integers. That seems to be rather natural. However,
the situation changes radically if «, the order of smoothness, becomes > 1. The
implication (1) = (2) is still valid for singular (cf. [G], chapter II) inner functions 6,
yet it turns out that for any « > 1 one can find a function f, f € A%, and a Blaschke
product B such that fBe A% but fB*¢ A%. This surprising phenomenon was
discovered by N. A. Shirokov [Shi 1,2]. In fact, his ingenious construction

provides a function f in 4° % (| A% and a Blaschke product B such that

a>0 .
fBe A%, but the modulus of continuity of (fB?) need not satisfy any prescribed
estimate.

Thus, the passage from f B to f B is sometimes accompanied with a great loss
of smoothness. This striking result displays a subtle distinction between the cases
0 <a < 1and a > 1, as far as factorization of A% functions is concerned. (The
Zygmund classes A%, ke N, will not be considered in this paper, so we do not
mention the case o = 1.)

On the other hand, it has been proved that if n < « < n + 1 (neN), then the
inclusion

3 fB"*te A
does imply (and is, therefore, equivalent to)
@ fB*e A4 forallkeN,

f being a function in A% and B a Blaschke product. This fact is again a conse-
quence of Shirokov’s results [Shi 1,2]; it is also contained in Theorem B, due to
the author, which we cite in Section 2 below. If one replaces (3) by a weaker
condition

) fB e Ay,

it turns out that, generally speaking, (5) is no longer sufficient for (4) to hold. It
should be noted though that (5)implies fBe A%, ..., fB"~ ' € A%. This is because
A% possesses the following “division property” (cf. [H], [S]): whenever f € A%, Ois
inner and f/0e H®, it follows that f/0e A%.

A natural problem in this context is: given ne N and a € (n, n + 1), describe the
Blaschke products B in terms of their zeros, for which the implication (5) = (4)
does hold with an arbitrary f e A%.

Before proceeding with the solution, we introduce some notation. For 8 an
inner function, set I*(6) & A% ~ OH>, so that I*(0) is a closed ideal in the algebra
A%. For ge H®, let T, denote the multiplication map defined by T,f = fg.

Obviously, the above problem is equivalent to characterizing the B's for which
(©) TzI*(B") = A%,
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where a > 1, a¢ N, n = [a]. (Here [a] denotes the integral part of a.)

Thus we are actually concerned with a certain stability property of the ideal
I%(B") with respect to multiplication by “its own” Blaschke product B and/or by
its powers B*. Note that, in view of the above discussion, (6) is equivalent to

(7 Tg I*(B") = A% for all ke N.

If I*(B") is nontrivial and satisfies (6) or (7), B will be called stable. (Perhaps the
term “a-stable” would sound more natural, but we shall soon see that this
property does not depend on a.)

Assuming in addition that the zeros {z;} of B form an interpolating sequence for
A% (for a precise definition see Section 2 below), we now provide a complete
characterization of all such B’s that are stable.

THEOREM 1. LetneN,n < a < n + 1, and let B be a A%-interpolating Blaschke
product with zeros {z;}% ,. The following are equivalent.

(i) B is stable.

() inf |z; —z) =00 — |z;]), jeN.

keN\(j}

In fact, we prove a more general assertion. Given two exponents « and f such
that n < f <« <n+ 1, a Blaschke product B will be termed («, f)-stable iff
I*(B") + {0} and

T,I*(B") < A~

In other words, B is (a, f)-stable iff for any f € A% (5) implies fB"** € A4 (and
hence fB*e A¥ for all ke N). For the sake of completeness, we note that for
n < a<n+ 1 the set TpI*(B") is always contained in A’ with 0 <y < n and is
never contained (unless I*(B") = {0}) in A% with y > «. That is why we assume
Ben,a].

Of course, (o, a)-stability is just “stability” as defined above, and so Theorem
1 is a special case of the next fact.

THEOREM 2. Let neN, n< f<a<n+1, and let B be a A%-interpolating
Blaschke product with zeros {z;}3>;. The following are equivalent.

(i) B is (a, p)-stable.

(i) inf |z;— z] = O((1 — |z;))#~"E""), jeN.

keN\(j)

The rest of the paper is organized as follows. In Section 2 we cite a few results
that will be used in the sequel; we also specify the notion of a “A%-interpolating
Blaschke product” that occurs in Theorems 1 and 2. Section 3 contains the proof
of Theorem 2. In Section 4 we give an application of Theorem 2 to embedding
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theorems for star-invariant subspaces of the Hardy classes H”. Finally, Section
5 contains some examples and remarks.

2. Preliminaries.

Let ae(0, + ), ¢ N, n =[a]. Suppose feA%. It is well known (and easily

shown) that for {;, {,eclosD {|z] < 1} andfors =0, 1,..., n

n (m)
® - ¥ 2

m=s

=" 2 QL =G

where C is a constant independent of {, and {,. (Note that in the case 0 < a < 1
we have n = 0, and so (8) reduces to the usual Lipschitz condition of order a.)

A closed subset E of clos D is said to be A%-interpolating iff any interpolation
problem

f|E= (pO’f,’E=(p1"'-af(n)|E=(pn

has a solution fe A%, provided that the data ¢, E — C satisfy the necessary
conditions stated above:

© |oey- 2 ¢ o P CulieB)
m=s (m - S)’
fors=0,1,...,n.
The following characterization of A%-interpolating sets is due to E. M. Dyn’kin
[Dyn].

THEOREM A. Let (0, + o), aé N. A closed set E, E < clos D, is A%-interpola-
ting if and only if the two conditions hold:

@) inf{p((1,{2): {1,Ca€ END, {y % 03} >0,
where p((1,05) =1Ly — Cal/11 = Gial.

(b) There is a constant ¢ > 0 such that for any arc I, I < T, we have

supdist({ E) = clll,

Lel

where as usual dist ({, E)d=°finf |¢ — z| and |1| is the length of 1.
zeE
Of course, condition (a) means that the set E N D is countable and its points
{z;} form a separated sequence with respect to the pseudohyperbolic distance
p(*,*). Moreover, (a) and (b) together imply [Dyn] that this sequence is, in fact,
uniformly separated (or H®-interpolating), i.e.
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(10) inf ] | 222> 0.

J kk¥j

1-—- Z-jzk

It should be noted also that the class of A%-interpolating sets does not actually
depend on a.
Given a Blaschke product

-]

B(z) = B y(2) = [

j=1 IZJ| I—Z-JZ

Zj Z;—2Z

with pairwise distinct zeros (set Z;/|z;| < _1ifz ; = 0), we call it A%-interpolating
if the closure of its zeros, clos {z;}, is a A%-interpolating set. As mentioned above,
for such B’s we have (10); on the other hand, the set E = clos {z;} must satisfy the
Beurling-Carleson condition

~]‘log dist({,E) |d{| > — 0
T

(i.e. the non-uniqueness condition for A% [C]), whence the ideals I*(B*) are
nontrivial for all ke N.

As another auxiliary result we cite the next Theorem B, due to the author
[D 1]. (The most essential part of it is also contained in a previous paper [D 2].)
In order to state it, we introduce the following notation: given 6e H® and ¢ > 0,
let (8,6) < {zeD: |0(z)| < &}.

THEOREM B. Let a€(0, + o0), me N, m > a. Suppose fe A% and 0 is an inner
Junction. The following statements are equivalent.

@) f/6"e A~

(ii) O™ € A%.

(iii) fO*e A* VkeZ.

(iv) For some £€(0, 1) (or, equivalently, for any € (0, 1)), we have

11 f@=0(1 —|z)*) as |z -1, zeQ(b,¢).

It is this last quantitative condition that will be used as a multiplication
criterion.
Finally, the following lemma will be needed (cf. [G], Chapter X, Lemma 1.4).

LemMA C. Let B be an interpolating (i.e. H*®-interpolating) Blaschke product
with zeros {z;} such that the infimum occurring in (10) equals 8. Then there exist
A=A0),0< A< 1,and e = g(0),0 < ¢ < 1, such that

(12) Q(B,e) = | J{zeD: p(z,z)) < 4}.
j
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(Recall that the non-euclidean metric p(-,-) is defined by p(z,w) = |z — w|/
1 — Zw]).

3. Proof of Theorem 2.

For the reader’s convenience, we reproduce the theorem itself and then proceed
with the proof.

Given a sequence {z;}72; < D, we set djdéf inf |z; — z].

keN\(j}

THEOREM 2. Let neN, n< < a<n+ 1, and let B be a A%-interpolating
Blaschke product with zeros {z;}> . The following are equivalent.

(i) B is (o, f)-stable (see sect. 1).

(i) d; = O((1 — |z;)® ™), jeN.

PROOF. (i) = (ii). Let E = clos {z;}. Define the interpolation data ¢, ¢,.. .,
¢,-1 to be zero on E, and let ¢,; E — C be defined by

(pn(zj) = d}"—"(iGN), (P,,lEﬂT =0.

This done, conditions (9) are easily verified. Indeed, the ¢,’s being continuous on
E, it suffices to check that

(Pm(zk)
(m — s)!

(zj—z)" | S Clz; — z|*™*

o) — 3

m=s

(13)

fors =0,1,...,n where z; and z, are two distinct zeros of B, and Cis a constant.
Case 1. s=0,1,...,n — 1. The left-hand side in (13) equals
1 la—n n—s x-S
=———d; 'Zj_zkl §|Zj‘“2k| s

(n—s)

where we have used the obvious inequalities

(pn(zk)
(n—s)!

(z;—z)""°

1/n—s <1 and d, £lz; — 2zl
Case 2. s = n. The left-hand side in (13) equals
lon(z) — @ulz)l = 5" — &g ™" | S 57" + 7" S 20z, — 2l

because both d; and d, are < |z; — 2.
Thus (13) is established (with C = 2), and so is (9). Recalling that E is a A%-in-
terpolating set, one can find a function f € A% such that

fIE=f|E=...=ft"VE=0, fP|E=0,

Hence for all je N we have
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(14) fe)=fGe)=...=f""De)=0, fOh;)=dj""

Thus, in each of z;’s f has a zero of multiplicity n, whence f'e I*(B").
The (o, f)-stability of B now implies fBe A%, which is equivalent to

(fB"* V() =01 — |z/~"""), zeD.

(See the Introduction for the definition of A% in terms of derivatives.) In particu-
lar,

(15) (fB)"*V(z;) = O((1 — Iz;))f "7 Y).
Further, the Leibniz formula says
n+1
(fB)(n+l)(Zj) _ Z (n '-: 1>f(""(zj)B‘””'"‘)(Zj)-
m=0

Clearly, the only non-zero summand here is the one arising for m = n (recall (14)
and the obvious fact that B(z;) = 0).
Therefore,

(fB** V() = (n + 1) f®(z;)) B'(z)) = (n + 1)d} " B(z)).
Now (15) yields
d5™"|B'(z;)| < const-(1 — |z; !

Multiplying both sides by 1 — |z;| and noting that inf|B'(z;)|(1 — |z;]) > O(this is
J
but a well-known restatement of (10)), we get
di™" < const-(1 — |z}’ 7",

which clearly coincides with (ii).

(ii) = (i). Let feI*(B"). Since a A%-interpolating Blaschke product is also
H*-interpolating, we have (10). Denote the left-hand side of (10) by J and let
A = A(6)and & = ¢(J) be the same asin Lemma C. Our plan s to use (ii) in order to
derive condition (11) with « replaced by § and 6 replaced by B. This done, an
application of Theorem B will complete the proof.

As mentioned in Section 2 above, f satisfies (8) where now we set s = 0:

n (m)
(16) - 3 L6

m=0 M'

G =M ECUL -GS

here {, and {, are arbitrary points in clos D and C a positive constant. (A direct
way of verifying (16) is to observe that the left-hand side equals
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th-1

&2 t th
lfdtl Jdt2~ . J' dtnff(n+l)(tn+l)dtn+l

41 {1 {1 {1

and to make the obvious estimates on the integrals.)
First we let z; and z, be two distinct zeros of B and apply (16) with {, = z,,
{» = z;. Noting that

17 f)=f'@e)=...=f""Y)=0 VjeN
(recall that f is divisible by B"), we get

‘n‘,‘|f(")(zj)| lzj — zil" £ Clz; — z|*,

whence
™) £ Cnllz; — z )™
Since k was an arbitrary number is N\ {j}, it follows that
(18) [f®(z)] < const-di™".
Rewriting (ii) as
d;™" < const-(1 — |z, "
and substituting this in (18), we obtain
(19) |f®(z;)| < const-(1 —|z;/* ", jeN.
Now suppose z€ Q(B, ¢). In view of (12) there is a je N such that p(z, z;) < A.
Another application of (16) (this time we set {; = z,{, = z;) gives
1)~ =5 fOe)e ~ 2| S Clz = 2

where we have once again used (17). Hence

1 .
f@I = Flf‘"’(zf)l lz—zj|"+ Clz —zj|* =
20) < const-(1 — [z} "z — z;" + Clz — zj|*.
(The last inequality relies on (19).)
It is not hard to see (cf. [G], Chapter I, Section 1) that if p(z,z;) < 4 < 1 then
there are positive constants ¢, = c,(4) and ¢, = c,(4) such that
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1—zj] £ (1 —z)
and
|z — z;] £ ca(l — |2I).
Combining these inequalities with (20) we get
If @) < Ci(1 = |2 + Co(1 — |z))* < Cs(1 — |2,

where C,, C, and C; are some new constants.
Thus, for an arbitrary fe I*(B") we have established the estimate

f@ =0 - z)), zeQ(B,e),

which coincides with (11) up to the obvious replacements.
Conditions (iii) and (iv) in Theorem B being equivalent, we conclude that

fBeA? VkeZ

In particular, fBe A%. Therefore B is (a, f)-stable, as required.

4. Embedding theorems for star-invariant subspaces.

For p > 0, let H? denote the classical Hardy space (see [G] or [K]) in the unit
disk,D. For pe[1, 4+ o] and 6 an inner function, let K} stand for the correspond-
ing star-invariant subspace:

K2 H? A 0HE,

p def

where H§'= { fe H?: f(0) = 0} and the bar denotes complex conjugation. The
term “star-invariant” here means “invariant under the backward shift operator”.
(It is a matter of common knowledge that the totality of K&, as 6 ranges over all
inner functions, coincides with the family of all closed star-invariant subspaces in
H? pe[l, + o).

In the case pe(0, 1) we set

def
K2= closy, K&;

here closy, denotes the closure with respect to the H? metric.
This section deals with some embedding theorems of the form T,K§ = H?,
where p and q are positive exponents satisfying

(21) 0 <max(l,p) <gq < + 0,

[ is a function holomorphic in D and smooth up to the boundary, and T; is the
multiplication map defined by T;g = fg.

The following proposition was proved by the author in [D 1] along with
Theorem B (see Section 2 above).
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THEOREM B'. Let p and q satisfy (21). Set « = 1/p — 1/q, and let m be an integer
for which mp > 1. Given a function f, fe A%, and an inner function 0, each of the
conditions (i) — (iv) in Theorem B is equivalent to

) T, K. < H.

In fact, from the proof [D 1] one sees that the implication (ii) = (v) holds when
0™ is replaced by an arbitrary inner function 6, i.e. under the above assumptions
onp,q,aand f

(22) f0,eA%=T,K§ < H.
Our next result is

THEOREM 3. Let 0<p<l<g< +00, a & 1/p — 1/q, and suppose there is
a positive integer n for which n < o. < 1/p < n + 1. Suppose further that B is an
A%-interpolating Blaschke product with zeros {z;}. If

d.
(23) sup f— =+
j 1~ |z

then there exists an f, f'€ A%, such that

(24) T;K%, = H
but
(25) T;K5... ¢ H.

Before proceeding with the proof, we remark that K%. coincides with the
HP-closed linear span of the family of rational fractions

1
———— jeN, k=12,...,np
{(1 —z2F 7€ }

Thus, when we enlarge this family by letting in addition k = n + 1, the effect
may be fatal (i.e., the corresponding embedding theorem may become false). It
should be noted that in the case where 1 < p < g < + 00 such a phenomenon
does not occur.

ProoF. By Theorem 1,(23) means that Bis not stable, i.e. TzI*(B") ¢ A%. This
in turn implies the existence of an f, f € A%, such that fB"e A% but fB"*! ¢ A%.
Applying (22) with 8, = B", we obtain (24). Applying Theorem B’ with 6 = B,
m = n 4+ 1, we arrive at (25).

The following generalization of Theorem 3 can be derived in a similar fashion
with recourse to Theorem 2.
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THEOREM 4. Let 0 <p<l<r<q< +oo, a=1/p—1/q, B 1/p — r.
Suppose that for some n,ne N, we haven < f < p~! < n + 1. If Bis a A%-interpo-
lating Blaschke product with zeros {z;} for which

supd;(1 — |z;)) =" = o
j
then there exists an f, fe A%, such that (24) holds but T;K}... ¢ H".

S. Remarks and examples.

1. In connection with embedding theorems for the K3 spaces we cite [Co 1,2,3],
[TV] and [D 2,3] where some partial information can be found on the embed-
dings K§ < I?(u) or K§ < I%(u), u being a suitable measure on clos D and 6 an
inner function. A complete characterization of the pairs (6, u) for which the
embedding holds still seems to be unknown.

2. Suppose that the sequence {z;} = D is A%-interpolating and satisfies, in
addition, the following regularity conditions:

1 — |z

dj=le"‘Zj+1I, Sup 1 < + 0.
j —

|Zj+1l

Under these assumptions we are able to prove the converse of Theorem 3: if
B = By, ,isstable then T; K}. < H?implies T; K§... < H* A similar supplement
to Theorem 4 can be provided.

3. We proceed by giving a few examples.

(@) Let {z;} be a sequence in D tending to 1 nontangentially (i.e. sup |1 — z;|/
i

(1 —lzl) < +o0) such that inf p(z;,2,) > 0. The arising Blaschke product
¥k
B = B, is easily shown to be stable.
(b) Supposen < f<a<n+1,neN. Fixy = 1 and let {z;} be defined by
M—z|=27, 1—|z1=2"% 1Imz;>0.

It is not hard to see that ¢;-277/ < d; < ¢;-277 (here ¢, and c, are absolute
constants), and so condition (ii) in Theorem 2 holds iff y < (@ — n)/(8 — n). In
particular, taking y = (o — n)/(f — n) one obtains a Blaschke product that is
(o, B)-stable but not («, f,)-stable whenever f§ < f; < a.

(c) Furthermore, consider the “super-tangential” sequence {z;} defined by

1—z]=270 1—|z|=2"% Imz;>0.
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Clearly, condition (ii) in Theorem 2 is never fulfilled and so, for any values of x and
B, the Blaschke product B, , fails to be («, f)-stable.

In order to make sure that the sequences constructed in (a), (b) and (c) above are
A%-interpolating, one may use either Theorem A or, still better, the following
proposition [Kot]: if
1 - Zj||1 — 2

{z;} =D, limz;=1, |z; — 1| 2 |z;4, — 1] and sup 7 < + o,
jow it lzi—zd
then {z;} U {1} is a A%-interpolating set.

4. Results obtained in [D1], [D2] imply thatif B = By, is not stable then it
must necessarily be sparse, i.e.

sup []

Jj kk¥j

Zk"‘Zj

1-— Zij

On the other hand, there are sparse Blaschke products that are stable; e.g. let
Zj = 1-— (j!)—‘z, B= B(zj)'
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