MULTIPLICATION BY BLASCHKE PRODUCTS AND STABILITY OF IDEALS IN LIPSCHITZ ALGEBRAS

KONSTANTIN M DYAKONOV

1. Introduction.

Let D denote the open unit disk $\{z \in \mathbb{C}: |z| < 1\}$ and T its boundary. For $\alpha \in (0, +\infty)$ denote by Λ^{α} the classical *Lipschitz-Zygmund space* of smooth functions on the circle:

$$\Lambda^{\alpha} \stackrel{\text{def}}{=} \{ f \in C(\mathsf{T}) : \|\Delta_h^m f\|_{\infty} = O(|h|^{\alpha}), h \in \mathsf{R} \},$$

where *m* is any integer with $m > \alpha$, $\|\cdot\|_{\infty}$ is the usual L^{∞} norm, and Δ_h^m stands for the *m*th order difference operator. (Recall that the Δ_h^m 's are defined by induction: $\Delta_h^k = \Delta_h^1 \Delta_h^{k-1}$,

$$(\Delta_h^1 f)(\zeta) \stackrel{\text{def}}{=} f(e^{ih}\zeta) - f(\zeta), \quad \zeta \in \mathsf{T}.$$

Further, let Λ_A^{α} be the *analytic subspace* of Λ^{α} : $\Lambda_A^{\alpha} \stackrel{\text{def}}{=} \Lambda^{\alpha} \cap H^{\infty}$, where as usual H^{∞} stands for the algebra of bounded analytic functions on D. An equivalent definition ([Z], vol. 1) is as follows:

$$\Lambda_A^{\alpha} = \{ f \in H^{\infty} : f^{(m)}(z) = O((1 - |z|)^{\alpha - m}), z \in D \};$$

here m is again an integer such that $m > \alpha$, and $f^{(m)}$ is the mth order derivative of f. This paper is devoted to a certain subtle point concerning the multiplicative structure of functions in Λ_A^{α} .

Suppose $f \in \Lambda_A^{\alpha}$ and θ is an inner function (i.e. $\theta \in H^{\infty}$ and $\lim_{r \to 1^-} |\theta(r\zeta)| = 1$ for almost all $\zeta \in T$). Assume that

$$(1) f\theta \in \Lambda_A^{\alpha}.$$

It is known (see [Shi 1], [Shi 2] or Theorem B below) that in the case $0 < \alpha < 1$ (1) implies

(2)
$$f\theta^k \in \Lambda^{\alpha}_A$$
 for all $k \in \mathbb{N}$,

Received September 14, 1992.

where N is the set of positive integers. That seems to be rather natural. However, the situation changes radically if α , the order of smoothness, becomes > 1. The implication (1) \Rightarrow (2) is still valid for singular (cf. [G], chapter II) inner functions θ , yet it turns out that for any $\alpha > 1$ one can find a function $f, f \in \Lambda_A^{\alpha}$, and a Blaschke product B such that $fB \in \Lambda_A^{\alpha}$ but $fB^2 \notin \Lambda_A^{\alpha}$. This surprising phenomenon was discovered by N. A. Shirokov [Shi 1,2]. In fact, his ingenious construction

provides a function f in $A^{\infty} \stackrel{\text{def}}{=} \bigcap_{\alpha>0} A^{\alpha}_{A}$ and a Blaschke product B such that $fB \in A^{\infty}$, but the modulus of continuity of $(fB^{2})'$ need not satisfy any prescribed estimate.

Thus, the passage from fB to fB^2 is sometimes accompanied with a great loss of smoothness. This striking result displays a subtle distinction between the cases $0 < \alpha < 1$ and $\alpha > 1$, as far as factorization of Λ_A^{α} functions is concerned. (The Zygmund classes Λ^k , $k \in \mathbb{N}$, will not be considered in this paper, so we do not mention the case $\alpha = 1$.)

On the other hand, it has been proved that if $n < \alpha < n + 1$ $(n \in \mathbb{N})$, then the inclusion

$$fB^{n+1} \in \Lambda_A^{\alpha}$$

does imply (and is, therefore, equivalent to)

(4)
$$fB^k \in \Lambda_A^{\alpha} \quad \text{for all } k \in \mathbb{N},$$

f being a function in A_A^{α} and B a Blaschke product. This fact is again a consequence of Shirokov's results [Shi 1,2]; it is also contained in Theorem B, due to the author, which we cite in Section 2 below. If one replaces (3) by a weaker condition

$$fB^n \in \Lambda^{\alpha}_A,$$

it turns out that, generally speaking, (5) is no longer sufficient for (4) to hold. It should be noted though that (5) implies $fB \in \Lambda_A^{\alpha}, \ldots, fB^{n-1} \in \Lambda_A^{\alpha}$. This is because Λ_A^{α} possesses the following "division property" (cf. [H], [S]): whenever $f \in \Lambda_A^{\alpha}$, θ is inner and $f/\theta \in H^{\infty}$, it follows that $f/\theta \in \Lambda_A^{\alpha}$.

A natural problem in this context is: given $n \in \mathbb{N}$ and $\alpha \in (n, n + 1)$, describe the Blaschke products B in terms of their zeros, for which the implication $(5) \Rightarrow (4)$ does hold with an arbitrary $f \in \Lambda_A^{\alpha}$.

Before proceeding with the solution, we introduce some notation. For θ an inner function, set $I^{\alpha}(\theta) \stackrel{\text{def}}{=} \Lambda^{\alpha} \cap \theta H^{\infty}$, so that $I^{\alpha}(\theta)$ is a closed ideal in the algebra Λ_{A}^{α} . For $g \in H^{\infty}$, let T_{g} denote the multiplication map defined by $T_{g}f = fg$.

Obviously, the above problem is equivalent to characterizing the B's for which (6) $T_B I^{\alpha}(B^n) \subset \Lambda_A^{\alpha}$,

where $\alpha > 1$, $\alpha \notin \mathbb{N}$, $n = \lceil \alpha \rceil$. (Here $\lceil \alpha \rceil$ denotes the integral part of α .)

Thus we are actually concerned with a certain stability property of the ideal $I^{\alpha}(B^n)$ with respect to multiplication by "its own" Blaschke product B and/or by its powers B^k . Note that, in view of the above discussion, (6) is equivalent to

(7)
$$T_{B^k}I^{\alpha}(B^n) \subset \Lambda^{\alpha}_A \quad \text{for all } k \in \mathbb{N}.$$

If $I^{\alpha}(B^n)$ is nontrivial and satisfies (6) or (7), B will be called *stable*. (Perhaps the term " α -stable" would sound more natural, but we shall soon see that this property does not depend on α .)

Assuming in addition that the zeros $\{z_j\}$ of B form an interpolating sequence for Λ_A^{α} (for a precise definition see Section 2 below), we now provide a complete characterization of all such B's that are stable.

THEOREM 1. Let $n \in \mathbb{N}$, $n < \alpha < n + 1$, and let B be a Λ_A^{α} -interpolating Blaschke product with zeros $\{z_i\}_{i=1}^{\infty}$. The following are equivalent.

(i) B is stable.

(ii)
$$\inf_{k \in \mathbb{N} \setminus \{j\}} |z_j - z_k| = O(1 - |z_j|), \quad j \in \mathbb{N}.$$

In fact, we prove a more general assertion. Given two exponents α and β such that $n < \beta \le \alpha < n + 1$, a Blaschke product B will be termed (α, β) -stable iff $I^{\alpha}(B^{n}) \ne \{0\}$ and

$$T_B I^{\alpha}(B^n) \subset \Lambda_A^{\beta}$$
.

In other words, B is (α, β) -stable iff for any $f \in \Lambda_A^{\alpha}$ (5) implies $fB^{n+1} \in \Lambda_A^{\beta}$ (and hence $fB^k \in \Lambda_A^{\beta}$ for all $k \in \mathbb{N}$). For the sake of completeness, we note that for $n < \alpha < n + 1$ the set $T_B I^{\alpha}(B^n)$ is always contained in Λ_A^{γ} with $0 < \gamma \le n$ and is never contained (unless $I^{\alpha}(B^n) = \{0\}$) in Λ_A^{γ} with $\gamma > \alpha$. That is why we assume $\beta \in (n, \alpha]$.

Of course, (α, α) -stability is just "stability" as defined above, and so Theorem 1 is a special case of the next fact.

THEOREM 2. Let $n \in \mathbb{N}$, $n < \beta \leq \alpha < n+1$, and let B be a Λ_A^{α} -interpolating Blaschke product with zeros $\{z_i\}_{i=1}^{\infty}$. The following are equivalent.

(i) B is (α, β) -stable.

(ii)
$$\inf_{k \in \mathbb{N} \setminus \{j\}} |z_j - z_k| = O((1 - |z_j|)^{(\beta - n)/(\alpha - n)}), \ j \in \mathbb{N}.$$

The rest of the paper is organized as follows. In Section 2 we cite a few results that will be used in the sequel; we also specify the notion of a " Λ_A^α -interpolating Blaschke product" that occurs in Theorems 1 and 2. Section 3 contains the proof of Theorem 2. In Section 4 we give an application of Theorem 2 to embedding

theorems for star-invariant subspaces of the Hardy classes H^p . Finally, Section 5 contains some examples and remarks.

2. Preliminaries.

Let $\alpha \in (0, +\infty)$, $\alpha \notin \mathbb{N}$, $n = [\alpha]$. Suppose $f \in \Lambda_A^{\alpha}$. It is well known (and easily shown) that for $\zeta_1, \zeta_2 \in \operatorname{clos} D \stackrel{\text{def}}{=} \{|z| \le 1\}$ and for $s = 0, 1, \ldots, n$

(8)
$$\left| f^{(s)}(\zeta_1) - \sum_{m=s}^{n} \frac{f^{(m)}(\zeta_2)}{(m-s)!} (\zeta_1 - \zeta_2)^{m-s} \right| \le C|\zeta_1 - \zeta_2|^{\alpha-s},$$

where C is a constant independent of ζ_1 and ζ_2 . (Note that in the case $0 < \alpha < 1$ we have n = 0, and so (8) reduces to the usual Lipschitz condition of order α .)

A closed subset E of clos D is said to be Λ_A^{α} -interpolating iff any interpolation problem

$$f|E = \varphi_0, f'|E = \varphi_1, \dots, f^{(n)}|E = \varphi_n$$

has a solution $f \in \Lambda_A^{\alpha}$, provided that the data φ_s : $E \to \mathbb{C}$ satisfy the necessary conditions stated above:

(9)
$$\left| \varphi_s(\zeta_1) - \sum_{m=s}^n \frac{\varphi_m(\zeta_2)}{(m-s)!} (\zeta_1 - \zeta_2)^{m-s} \right| \le C|\zeta_1 - \zeta_2|^{\alpha-s} \quad (\zeta_1, \zeta_2 \in E)$$

for s = 0, 1, ..., n.

The following characterization of Λ_A^{α} -interpolating sets is due to E. M. Dyn'kin [Dyn].

THEOREM A. Let $\alpha \in (0, +\infty)$, $\alpha \notin \mathbb{N}$. A closed set $E, E \subset \operatorname{clos} D$, is Λ_A^{α} -interpolating if and only if the two conditions hold:

(a)
$$\inf \{ \rho(\zeta_1, \zeta_2) : \zeta_1, \zeta_2 \in E \cap D, \zeta_1 \neq \zeta_2 \} > 0,$$

where $\rho(\zeta_1, \zeta_2) \stackrel{\text{def}}{=} |\zeta_1 - \zeta_2| / |1 - \zeta_1 \zeta_2|$.

(b) There is a constant c > 0 such that for any arc $I, I \subset T$, we have

$$\sup_{\zeta \in I} \operatorname{dist}(\zeta, E) \ge c|I|,$$

where as usual dist $(\zeta, E) \stackrel{\text{def}}{=} \inf_{z \in E} |\zeta - z|$ and |I| is the length of I.

Of course, condition (a) means that the set $E \cap D$ is countable and its points $\{z_j\}$ form a separated sequence with respect to the pseudohyperbolic distance $\rho(\cdot,\cdot)$. Moreover, (a) and (b) together imply [Dyn] that this sequence is, in fact, uniformly separated (or H^{∞} -interpolating), i.e.

(10)
$$\inf_{j} \prod_{k:k \neq j} \left| \frac{z_j - z_k}{1 - \bar{z}_j z_k} \right| > 0.$$

It should be noted also that the class of Λ_A^{α} -interpolating sets does not actually depend on α .

Given a Blaschke product

$$B(z) = B_{\{z_j\}}(z) = \prod_{i=1}^{\infty} \frac{\bar{z}_i}{|z_i|} \frac{z_j - z}{1 - \bar{z}_i z}$$

with pairwise distinct zeros (set $\bar{z}_j/|z_j| \stackrel{\text{def}}{=} -1$ if $z_j = 0$), we call it Λ_A^α -interpolating if the closure of its zeros, clos $\{z_j\}$, is a Λ_A^α -interpolating set. As mentioned above, for such B's we have (10); on the other hand, the set $E = \text{clos } \{z_j\}$ must satisfy the Beurling-Carleson condition

$$\int \log \operatorname{dist}(\zeta, E) |d\zeta| > -\infty$$

(i.e. the non-uniqueness condition for Λ_A^{α} [C]), whence the ideals $I^{\alpha}(B^k)$ are nontrivial for all $k \in \mathbb{N}$.

As another auxiliary result we cite the next Theorem B, due to the author [D 1]. (The most essential part of it is also contained in a previous paper [D 2].) In order to state it, we introduce the following notation: given $\theta \in H^{\infty}$ and $\varepsilon > 0$, let $\Omega(\theta, \varepsilon) \stackrel{\text{def}}{=} \{z \in D : |\theta(z)| < \varepsilon\}$.

THEOREM B. Let $\alpha \in (0, +\infty)$, $m \in \mathbb{N}$, $m > \alpha$. Suppose $f \in \Lambda_A^{\alpha}$ and θ is an inner function. The following statements are equivalent.

- (i) $f/\theta^m \in \Lambda^\alpha$.
- (ii) $f\theta^m \in \Lambda_A^{\alpha}$.
- (iii) $f\theta^k \in \Lambda^\alpha \quad \forall k \in \mathbb{Z}$.
- (iv) For some $\varepsilon \in (0,1)$ (or, equivalently, for any $\varepsilon \in (0,1)$), we have

(11)
$$f(z) = O((1-|z|)^{\alpha}) \quad \text{as} \quad |z| \to 1, \ z \in \Omega(\theta, \varepsilon).$$

It is this last quantitative condition that will be used as a multiplication criterion.

Finally, the following lemma will be needed (cf. [G], Chapter X, Lemma 1.4).

LEMMA C. Let B be an interpolating (i.e. H^{∞} -interpolating) Blaschke product with zeros $\{z_j\}$ such that the infimum occurring in (10) equals δ . Then there exist $\lambda = \lambda(\delta)$, $0 < \lambda < 1$, and $\varepsilon = \varepsilon(\delta)$, $0 < \varepsilon < 1$, such that

(12)
$$\Omega(B,\varepsilon) \subset \bigcup_{i} \{z \in D: \rho(z,z_{i}) < \lambda\}.$$

(Recall that the non-euclidean metric $\rho(\cdot,\cdot)$ is defined by $\rho(z,w) = |z-w|/|1-\bar{z}w|$).

3. Proof of Theorem 2.

For the reader's convenience, we reproduce the theorem itself and then proceed with the proof.

Given a sequence
$$\{z_j\}_{j=1}^{\infty} \subset D$$
, we set $d_j \stackrel{\text{def}}{=} \inf_{k \in \mathbb{N} \setminus \{i\}} |z_j - z_k|$.

THEOREM 2. Let $n \in \mathbb{N}$, $n < \beta \leq \alpha < n + 1$, and let B be a Λ_A^{α} -interpolating Blaschke product with zeros $\{z_i\}_{i=1}^{\infty}$. The following are equivalent.

- (i) B is (α, β) -stable (see sect. 1).
- (ii) $d_j = O((1 |z_j|)^{(\beta n)/(\alpha n)}), j \in \mathbb{N}.$

PROOF. (i) \Rightarrow (ii). Let $E = \operatorname{clos} \{z_j\}$. Define the interpolation data $\varphi_0, \varphi_1, \ldots, \varphi_{n-1}$ to be zero on E, and let $\varphi_n : E \to \mathbb{C}$ be defined by

$$\varphi_n(z_i) = d_i^{\alpha-n} (j \in \mathbb{N}), \quad \varphi_n|E \cap \mathbb{T} = 0.$$

This done, conditions (9) are easily verified. Indeed, the φ_s 's being continuous on E, it suffices to check that

(13)
$$\left| \varphi_s(z_j) - \sum_{m=s}^n \frac{\varphi_m(z_k)}{(m-s)!} (z_j - z_k)^{m-s} \right| \le C|z_j - z_k|^{\alpha-s}$$

for s = 0, 1, ..., n, where z_j and z_k are two distinct zeros of B, and C is a constant. Case 1. s = 0, 1, ..., n - 1. The left-hand side in (13) equals

$$\left|\frac{\varphi_n(z_k)}{(n-s)!}(z_j-z_k)^{n-s}\right| = \frac{1}{(n-s)!}d_k^{\alpha-n}|z_j-z_k|^{n-s} \leq |z_j-z_k|^{\alpha-s},$$

where we have used the obvious inequalities

$$1/(n-s)! \le 1$$
 and $d_k \le |z_j - z_k|$.

Case 2. s = n. The left-hand side in (13) equals

$$|\varphi_n(z_j) - \varphi_n(z_k)| = |d_j^{\alpha-n} - d_k^{\alpha-n}| \le d_j^{\alpha-n} + d_k^{\alpha-n} \le 2|z_j - z_k|^{\alpha-n},$$

because both d_i and d_k are $\leq |z_i - z_k|$.

Thus (13) is established (with C=2), and so is (9). Recalling that E is a Λ_A^{α} -interpolating set, one can find a function $f \in \Lambda_A^{\alpha}$ such that

$$f|E = f'|E = \ldots = f^{(n-1)}|E = 0, \quad f^{(n)}|E = \varphi_n.$$

Hence for all $j \in \mathbb{N}$ we have

(14)
$$f(z_i) = f'(z_i) = \dots = f^{(n-1)}(z_i) = 0, \quad f^{(n)}(z_i) = d_i^{\alpha - n}.$$

Thus, in each of z_j 's f has a zero of multiplicity n, whence $f \in I^{\alpha}(B^n)$.

The (α, β) -stability of B now implies $fB \in A_A^{\beta}$, which is equivalent to

$$(fB)^{(n+1)}(z) = O((1-|z|)^{\beta-n-1}), z \in D.$$

(See the Introduction for the definition of A_A^{β} in terms of derivatives.) In particular.

$$(fB)^{(n+1)}(z_i) = O((1-|z_i|)^{\beta-n-1}).$$

Further, the Leibniz formula says

$$(fB)^{(n+1)}(z_j) = \sum_{m=0}^{n+1} \binom{n+1}{m} f^{(m)}(z_j) B^{(n+1-m)}(z_j).$$

Clearly, the only non-zero summand here is the one arising for m = n (recall (14) and the obvious fact that $B(z_i) = 0$).

Therefore,

$$(fB)^{(n+1)}(z_i) = (n+1)f^{(n)}(z_i)B'(z_i) = (n+1)d_i^{\alpha-n}B'(z_i).$$

Now (15) yields

$$d_i^{\alpha-n}|B'(z_i)| \leq \operatorname{const} \cdot (1-|z_i|)^{\beta-n-1}$$

Multiplying both sides by $1 - |z_j|$ and noting that $\inf_j |B'(z_j)|(1 - |z_j|) > 0$ (this is but a well-known restatement of (10)), we get

$$d_i^{\alpha-n} \leq \operatorname{const} \cdot (1-|z_i|)^{\beta-n},$$

which clearly coincides with (ii).

(ii) \Rightarrow (i). Let $f \in I^{\alpha}(B^n)$. Since a Λ_A^{α} -interpolating Blaschke product is also H^{∞} -interpolating, we have (10). Denote the left-hand side of (10) by δ and let $\lambda = \lambda(\delta)$ and $\varepsilon = \varepsilon(\delta)$ be the same as in Lemma C. Our plan is to use (ii) in order to derive condition (11) with α replaced by β and θ replaced by β . This done, an application of Theorem B will complete the proof.

As mentioned in Section 2 above, f satisfies (8) where now we set s = 0:

(16)
$$\left| f(\zeta_1) - \sum_{m=0}^{n} \frac{f^{(m)}(\zeta_2)}{m!} (\zeta_1 - \zeta_2)^m \right| \le C|\zeta_1 - \zeta_2|^{\alpha};$$

here ζ_1 and ζ_2 are arbitrary points in clos D and C a positive constant. (A direct way of verifying (16) is to observe that the left-hand side equals

$$\left| \int_{\zeta_1}^{\zeta_2} dt_1 \int_{\zeta_1}^{t_1} dt_2 \dots \int_{\zeta_1}^{t_{n-1}} dt_n \int_{\zeta_1}^{t_n} f^{(n+1)}(t_{n+1}) dt_{n+1} \right|$$

and to make the obvious estimates on the integrals.)

First we let z_j and z_k be two distinct zeros of B and apply (16) with $\zeta_1 = z_k$, $\zeta_2 = z_j$. Noting that

(17)
$$f(z_i) = f'(z_i) = \dots = f^{(n-1)}(z_i) = 0 \quad \forall i \in \mathbb{N}$$

(recall that f is divisible by B^n), we get

$$\frac{1}{n!}|f^{(n)}(z_j)||z_j-z_k|^n \le C|z_j-z_k|^{\alpha},$$

whence

$$|f^{(n)}(z_i)| \leq Cn! |z_i - z_k|^{\alpha - n}$$

Since k was an arbitrary number is $\mathbb{N}\setminus\{i\}$, it follows that

(18)
$$|f^{(n)}(z_i)| \le \operatorname{const} \cdot d_i^{\alpha - n}.$$

Rewriting (ii) as

$$d_i^{\alpha-n} \leq \operatorname{const} \cdot (1-|z_i|)^{\beta-n}$$

and substituting this in (18), we obtain

(19)
$$|f^{(n)}(z_i)| \leq \operatorname{const} \cdot (1 - |z_i|^{\beta - n}, \ j \in \mathbb{N}.$$

Now suppose $z \in \Omega(B, \varepsilon)$. In view of (12) there is a $j \in \mathbb{N}$ such that $\rho(z, z_j) < \lambda$. Another application of (16) (this time we set $\zeta_1 = z, \zeta_2 = z_j$) gives

$$\left| f(z) - \frac{1}{n!} f^{(n)}(z_j) (z - z_j)^n \right| \le C |z - z_j|^{\alpha},$$

where we have once again used (17). Hence

(20)
$$|f(z)| \leq \frac{1}{n!} |f^{(n)}(z_j)| |z - z_j|^n + C|z - z_j|^\alpha \leq \\ \leq \operatorname{const} \cdot (1 - |z_j|)^{\beta - n} |z - z_j|^n + C|z - z_j|^\alpha.$$

(The last inequality relies on (19).)

It is not hard to see (cf. [G], Chapter I, Section 1) that if $\rho(z, z_j) < \lambda < 1$ then there are positive constants $c_1 = c_1(\lambda)$ and $c_2 = c_2(\lambda)$ such that

$$1 - |z_i| \le c_1 (1 - |z|)$$

and

$$|z - z_i| \le c_2 (1 - |z|).$$

Combining these inequalities with (20) we get

$$|f(z)| \le C_1 (1-|z|)^{\beta} + C_2 (1-|z|)^{\alpha} \le C_3 (1-|z|)^{\beta},$$

where C_1 , C_2 and C_3 are some new constants.

Thus, for an arbitrary $f \in I^{\alpha}(B^n)$ we have established the estimate

$$f(z) = O((1 - |z|)^{\beta}), \quad z \in \Omega(B, \varepsilon),$$

which coincides with (11) up to the obvious replacements.

Conditions (iii) and (iv) in Theorem B being equivalent, we conclude that

$$fB^k \in \Lambda^\beta \quad \forall k \in \mathbb{Z}.$$

In particular, $fB \in \Lambda_A^{\beta}$. Therefore B is (α, β) -stable, as required.

4. Embedding theorems for star-invariant subspaces.

For p > 0, let H^p denote the classical Hardy space (see [G] or [K]) in the unit disk, D. For $p \in [1, +\infty]$ and θ an inner function, let K_{θ}^p stand for the corresponding star-invariant subspace:

$$K_{\theta}^{p} \stackrel{\mathrm{def}}{=} H^{p} \cap \theta \overline{H_{0}^{p}},$$

where $H_0^p \stackrel{\text{def}}{=} \{ f \in H^p : f(0) = 0 \}$ and the bar denotes complex conjugation. The term "star-invariant" here means "invariant under the backward shift operator". (It is a matter of common knowledge that the totality of K_θ^p , as θ ranges over all inner functions, coincides with the family of all closed star-invariant subspaces in H^p , $p \in [1, +\infty)$.)

In the case $p \in (0, 1)$ we set

$$K_{\alpha}^{p} \stackrel{\text{def}}{=} \operatorname{clos}_{\mu\nu} K_{\alpha}^{\infty}$$
:

here $clos_{H^p}$ denotes the closure with respect to the H^p metric.

This section deals with some embedding theorems of the form $T_f K_\theta^p \subset H^q$, where p and q are positive exponents satisfying

(21)
$$0 < \max(1, p) < q < +\infty,$$

f is a function holomorphic in D and smooth up to the boundary, and T_f is the multiplication map defined by $T_f g = fg$.

The following proposition was proved by the author in [D 1] along with Theorem B (see Section 2 above).

THEOREM B'. Let p and q satisfy (21). Set $\alpha = 1/p - 1/q$, and let m be an integer for which mp > 1. Given a function $f, f \in \Lambda_A^{\alpha}$, and an inner function θ , each of the conditions (i) – (iv) in Theorem B is equivalent to

$$(v) T_f K_{\theta m}^p \subset H^q.$$

In fact, from the proof [D 1] one sees that the implication (ii) \Rightarrow (v) holds when θ^m is replaced by an arbitrary inner function θ_1 , i.e. under the above assumptions on p, q, α and f

$$(22) f\theta_1 \in \Lambda^{\alpha}_A \Rightarrow T_f K^p_{\theta_1} \subset H^q.$$

Our next result is

THEOREM 3. Let $0 , <math>\alpha \stackrel{\text{def}}{=} 1/p - 1/q$, and suppose there is a positive integer n for which $n < \alpha < 1/p < n + 1$. Suppose further that B is an Λ_A^{α} -interpolating Blaschke product with zeros $\{z_i\}$. If

$$\sup_{i} \frac{d_{i}}{1 - |z_{i}|} = +\infty$$

then there exists an $f, f \in \Lambda^{\alpha}$, such that

$$(24) T_f K_{Rn}^p \subset H^q$$

but

$$(25) T_c K_{nn+1}^p \not\subset H^q.$$

Before proceeding with the proof, we remark that $K_{B^n}^p$ coincides with the H^p -closed linear span of the family of rational fractions

$$\left\{\frac{1}{(1-\bar{z}_jz)^k}: j\in\mathbb{N}, \quad k=1,2,\ldots,n\right\}.$$

Thus, when we enlarge this family by letting in addition k = n + 1, the effect may be fatal (i.e., the corresponding embedding theorem may become false). It should be noted that in the case where 1 such a phenomenon does not occur.

PROOF. By Theorem 1, (23) means that B is not stable, i.e. $T_B I^{\alpha}(B^n) \neq \Lambda_A^{\alpha}$. This in turn implies the existence of an f, $f \in \Lambda_A^{\alpha}$, such that $fB^n \in \Lambda_A^{\alpha}$ but $fB^{n+1} \notin \Lambda_A^{\alpha}$. Applying (22) with $\theta_1 = B^n$, we obtain (24). Applying Theorem B' with $\theta = B$, m = n + 1, we arrive at (25).

The following generalization of Theorem 3 can be derived in a similar fashion with recourse to Theorem 2.

Theorem 4. Let $0 , <math>\alpha \stackrel{\text{def}}{=} 1/p - 1/q$, $\beta \stackrel{\text{def}}{=} 1/p - 1/r$. Suppose that for some $n, n \in \mathbb{N}$, we have $n < \beta < p^{-1} < n + 1$. If B is a Λ_A^{α} -interpolating Blaschke product with zeros $\{z_j\}$ for which

$$\sup_{j} d_{j}(1-|z_{j}|)^{-(\beta-n)/(\alpha-n)} = +\infty$$

then there exists an $f, f \in \Lambda^{\alpha}_{A}$, such that (24) holds but $T_{f}K_{R^{n+1}}^{p} \subset H^{r}$.

5. Remarks and examples.

- 1. In connection with embedding theorems for the K_{θ}^{p} spaces we cite [Co 1,2,3], [TV] and [D 2,3] where some partial information can be found on the embeddings $K_{\theta}^{p} \subset L^{p}(\mu)$ or $K_{\theta}^{p} \subset L^{q}(\mu)$, μ being a suitable measure on clos D and θ an inner function. A complete characterization of the pairs (θ, μ) for which the embedding holds still seems to be unknown.
- 2. Suppose that the sequence $\{z_j\} \subset D$ is Λ_A^{α} -interpolating and satisfies, in addition, the following regularity conditions:

$$d_j = |z_j - z_{j+1}|, \quad \sup_j \frac{1 - |z_j|}{1 - |z_{j+1}|} < +\infty.$$

Under these assumptions we are able to prove the converse of Theorem 3: if $B = B_{\{x_j\}}$ is stable then $T_f K_{B^n}^p \subset H^q$ implies $T_f K_{B^{n+1}}^p \subset H^q$. A similar supplement to Theorem 4 can be provided.

- 3. We proceed by giving a few examples.
- (a) Let $\{z_j\}$ be a sequence in D tending to 1 nontangentially (i.e. $\sup_j |1-z_j|/|z_j|$

 $(1-|z_j|)<+\infty)$ such that $\inf_{j\neq k}\rho(z_j,z_k)>0$. The arising Blaschke product $B=B_{\{z_i\}}$ is easily shown to be stable.

(b) Suppose $n < \beta < \alpha < n + 1$, $n \in \mathbb{N}$. Fix $\gamma \ge 1$ and let $\{z_i\}$ be defined by

$$|1-z_i|=2^{-j}, \quad 1-|z_i|=2^{-\gamma j}, \quad \text{Im } z_i>0.$$

It is not hard to see that $c_1 \cdot 2^{-j} \le d_j \le c_2 \cdot 2^{-j}$ (here c_1 and c_2 are absolute constants), and so condition (ii) in Theorem 2 holds iff $\gamma \le (\alpha - n)/(\beta - n)$. In particular, taking $\gamma = (\alpha - n)/(\beta - n)$ one obtains a Blaschke product that is (α, β) -stable but not (α, β_1) -stable whenever $\beta < \beta_1 \le \alpha$.

(c) Furthermore, consider the "super-tangential" sequence $\{z_j\}$ defined by

$$|1-z_j|=2^{-j}$$
, $1-|z_j|=2^{-2^j}$, $\text{Im } z_j>0$.

Clearly, condition (ii) in Theorem 2 is never fulfilled and so, for any values of α and β , the Blaschke product $B_{\{z_i\}}$ fails to be (α, β) -stable.

In order to make sure that the sequences constructed in (a), (b) and (c) above are Λ_A^a -interpolating, one may use either Theorem A or, still better, the following proposition [Kot]: if

$$\{z_j\} \subset \mathsf{D}, \lim_{j \to \infty} z_j = 1, \ |z_j - 1| \ge |z_{j+1} - 1| \ \text{and} \ \sup_{j \ne k} \frac{|1 - z_j||1 - z_k|}{|z_j - z_k|^2} < +\infty,$$

then $\{z_j\} \cup \{1\}$ is a Λ_A^{α} -interpolating set.

4. Results obtained in [D1], [D2] imply that if $B = B_{\{z_j\}}$ is not stable then it must necessarily be *sparse*, i.e.

$$\sup_{j} \prod_{k:k \neq j} \left| \frac{z_k - z_j}{1 - \bar{z}_k z_j} \right| = 1.$$

On the other hand, there are sparse Blaschke products that are stable; e.g. let $z_j = 1 - (j!)^{-2}$, $B = B_{\{z_i\}}$.

REFERENCES

- [C] L. Carleson, Sets of uniqueness for functions regular in the unit circle, Acta Math. 87 (1952), 325-345.
- [Co1] W. S. Cohn, Carleson measures for functions orthogonal to invariant subspaces, Pacific J. Math. 103 (1982), 347–364.
- [Co2] W. S. Cohn, Carleson measures and operators on star-invariant subspaces, J. Operator Theory 15 (1986), 181–202.
- [Co3] W. S. Cohn, Radial imbedding theorems for invariant subspaces, Complex Variables Theory Appl. 17 (1991), 33-42.
- [D1] K. M. Dyakonov, Smooth functions and coinvariant subspaces of the shift operator, Algebra i Analiz 4 (1992), no. 5, 117-147. English transl.: to appear in St. Petersburg Math. J.
- [D2] K. M. Dyakonov, Division and multiplication by inner functions and embedding theorems for star-invariant subspaces, Amer. J. Math. 115 (1993), 881-902.
- [D3] K. M. Dyakonov, Moduli and arguments of analytic functions from subspaces in H^p that are invariant for the backward shift operator, Sibirsk. Mat. Zh. 31 (1990), no. 6, 64-79. English transl. in Siberian Math. J. 31 (1990), 926-939.
- [Dyn] E. M. Dyn'kin, Free interpolation sets for Hölder classes, Mat. Sb. (N.S.) 109 (151) (1979), no. 1, 107–128.
- [G] J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- [H] V. P. Havin, Factorization of analytic functions that are smooth up to the boundary, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 22 (1971), 202-205.
- [K] P. Koosis, Introduction to H^p-spaces, Cambridge University Press, Cambridge, 1980.
- [Kot] A. M. Kotochigov, Interpolation by analytic functions that are smooth up to the boundary, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30 (1972), 167-169.
- [S] F. A. Shamoyan, Division by an inner function in some spaces of analytic functions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 22 (1971), 206-208.

- [Shi 1] N. A. Shirokov, Division and multiplication by inner functions in spaces of analytic functions smooth up to the boundary, Lect. Notes in Math. 864 (1981), 413-439.
- [Shi 2] N. A. Shirokov, Analytic functions smooth up to the boundary, Lect. Notes in Math. 1312 (1988), 1-213.
- [TV] S. R. Treil and A. L. Volberg, Embedding theorems for invariant subspaces of the backward shift operator, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 149 (1986), 38-51. English transl. in J. Soviet Math.
- [Z] A. Zygmund, Trigonometric series, Cambridge University Press, London and New York, 1968.

24-1-412, PR. KHUDOZHNIKOV ST. PETERSBURG 194295, RUSSIA.